Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 8(10): e11174, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36340003

ABSTRACT

The organic fraction of municipal solid waste is mainly composed of food waste (FW), and traditional disposal practices for this fraction are generally considered to have negative environmental and economic impacts. However, the organic characteristics of this fraction could also be exploited through the anaerobic digestion of FW (FW-AD), which represents unique advantages, including the reduction of the area required for final disposal and environmental pollution and the same time the generation of renewable energy (mainly methane gas), and a by-product for agricultural use (digestate) due to its high nutrient content. Although approximately 88% of the world's population resides in areas with temperatures below 8 °C, psychrophilic conditions (temperatures below 20 °C) have hardly been studied, while mesophilic (66%) and thermophilic (27%) ranges were found to be more common than psychrophilic FW-AD (7%). The latter condition could decrease microbial activity and organic matter removal, which could affect biogas production and even make AD unfeasible. To improve the efficiency of the psychrophilic FW-AD process, there are strategies such as: measurement of physical properties as particle size, rheological characteristics (viscosity, consistency index and substrate behavior index), density and humidity, bioaugmentation and co-digestion with other substrates, use of inocula with psychrophilic methanogenic communities, reactor heating and modification of reactor configurations. However, these variables have hardly been studied in the context of psychrophilic conditions and future research should focus on evaluating the influence of these variables on FW-AD under psychrophilic conditions. Through a bibliometric analysis, this paper has described and analyzed the FW-AD process, with a focus on the psychrophilic conditions (<20 °C) so as to identify advances and future research trends, as well as determine strategies toward improving the anaerobic process under low temperature conditions.

2.
Environ Sci Pollut Res Int ; 28(29): 38455-38465, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33733420

ABSTRACT

The aim of this study was to investigate the impact of biochar addition on the mesophilic semi-continuous anaerobic digestion of swine waste with a focus on the effects of the organic loading rate (OLR) on biogas production, methane yield, total volatile fatty acids (TVFA), alkalinity, ammonium, volatile solids (VS) removal efficiency and process stability. Four reactors, two with amended biochar (R1 and R2) and two without biochar addition as controls (R3 and R4), were operated at OLRs in the range of 2-7 g VS/(L d), which corresponded to hydraulic retention times (HRTs) in the range of 7-2 days, respectively. The addition of biochar initially caused an increase in the generation of biogas and methane when compared to the control reactors when the process operated at OLRs of 2 and 3 g VS/(L d). This behaviour could be attributed to the presence of several trace elements (such as Fe, Co, Ni and Mn) in the biochar, which are involved in the action of acetyl-CoA synthase and methyl coenzyme M reductase to catalyse key metabolic steps, especially the methanogenic stage. The pH, alkalinity, TVFA and TVFA/Alkalinity ratio values for the effluents remained within the optimal ranges for the anaerobic digestion process. It was also found that the increase in OLR in the range of 2-5 g VS/(L d) determined a proportional increase in the VS removal rate. However, when the OLR increased up to 7 g VS/(L d), a drastic decrease in the VS removal rate was found for the control reactors. Biochar amendment contributed to a more balanced state of the anaerobic process, preventing biomass washout.


Subject(s)
Bioreactors , Methane , Anaerobiosis , Animals , Charcoal , Swine
SELECTION OF CITATIONS
SEARCH DETAIL