Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 438
Filter
1.
Int J Mol Med ; 54(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-38963051

ABSTRACT

Lipid metabolism disorders are a major cause of several chronic metabolic diseases which seriously affect public health. Salusin­α, a vasoactive peptide, has been shown to attenuate lipid metabolism disorders, although its mechanism of action has not been reported. To investigate the effects and potential mechanisms of Salusin­α on lipid metabolism, Salusin­α was overexpressed or knocked down using lentiviral vectors. Hepatocyte steatosis was induced by free fatty acid (FFA) after lentiviral transfection into HepG2 cells. The degree of lipid accumulation was assessed using Oil Red O staining and by measuring several biochemical indices. Subsequently, bioinformatics was used to analyze the signaling pathways that may have been involved in lipid metabolism disorders. Finally, semi­quantitative PCR and western blotting were used to verify the involvement of the liver kinase B1 (LKB1)/AMPK pathway. Compound C, an inhibitor of AMPK, was used to confirm this mechanism's involvement further. The results showed that Salusin­α significantly attenuated lipid accumulation, inflammation and oxidative stress. In addition, Salusin­α increased the levels of LKB1 and AMPK, which inhibited the expression of sterol regulatory element binding protein­1c, fatty acid synthase and acetyl­CoA carboxylase. The addition of Compound C abrogated the Salusin­α­mediated regulation of AMPK on downstream signaling molecules. In summary, overexpression of Salusin­α activated the LKB1/AMPK pathway, which in turn inhibited lipid accumulation in HepG2 cells. This provides insights into the potential mechanism underlying the mechanism by which Salusin­α ameliorates lipid metabolism disorders while identifying a potential therapeutic target.


Subject(s)
AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Lipogenesis , Protein Serine-Threonine Kinases , Signal Transduction , Humans , AMP-Activated Protein Kinase Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Gene Expression Regulation/drug effects , Hep G2 Cells , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/genetics , Lipid Metabolism Disorders/drug therapy , Lipogenesis/genetics , Lipogenesis/drug effects , Oxidative Stress/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
2.
Chin J Nat Med ; 22(7): 619-631, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39059831

ABSTRACT

Our prior investigations have established that Inonotus obliquus (Chaga) possesses hypoglycemic effects. Persistent hyperglycemia is known to precipitate renal function abnormalities. The functionality of the kidneys is intricately linked to the levels of cyclic guanosine-3',5'-monophosphate (cGMP), which are influenced by the activities of nitric oxide synthase (NOS) and phosphodiesterase (PDE). Enhanced cGMP levels can be achieved either through the upregulation of NOS activity or the downregulation of PDE activity. The objective of the current study is to elucidate the effects of Chaga on disorders of glucolipid metabolism and renal abnormalities in rats with type 2 diabetes mellitus (T2DM), while concurrently examining the NOS-cGMP-PDE5 signaling pathway. A model of T2DM was developed in rats using a high-fat diet (HFD) combined with streptozotocin (STZ) administration, followed by treatment with Chaga extracts at doses of 50 and 100 mg·kg-1 for eight weeks. The findings revealed that Chaga not only mitigated metabolic dysfunctions, evidenced by improvements in fasting blood glucose, total cholesterol, triglycerides, and insulin resistance, but also ameliorated renal function markers, including serum creatinine, urine creatinine (UCr), blood urea nitrogen, 24-h urinary protein, and estimated creatinine clearance. Additionally, enhancements in glomerular volume, GBM thickness, podocyte foot process width (FPW), and the mRNA and protein expressions of podocyte markers, such as nephrin and wilms tumor-1, were observed. Chaga was found to elevate cGMP levels in both serum and kidney tissues by increasing mRNA and protein expressions of renal endothelial NOS and neural NOS, while simultaneously reducing the expressions of renal inducible NOS and PDE5. In summary, Chaga counteracts HFD/STZ-induced glucolipid metabolism and renal function disturbances by modulating the NOS-cGMP-PDE5 signaling pathway. This research supports the potential application of Chaga in the clinical prevention and treatment of T2DM and diabetic nephropathy (DN), with cGMP serving as a potential therapeutic target.


Subject(s)
Cyclic GMP , Cyclic Nucleotide Phosphodiesterases, Type 5 , Diet, High-Fat , Inonotus , Kidney , Nitric Oxide Synthase , Signal Transduction , Animals , Cyclic GMP/metabolism , Male , Signal Transduction/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Kidney/drug effects , Kidney/metabolism , Diet, High-Fat/adverse effects , Rats , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Rats, Sprague-Dawley , Streptozocin , Humans , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Blood Glucose/metabolism , Blood Glucose/drug effects , Hypoglycemic Agents/pharmacology
3.
Biochim Biophys Acta Mol Basis Dis ; : 167329, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960053

ABSTRACT

Gestational diabetes mellitus (GDM) disrupts glucolipid metabolism, endangering maternal and fetal health. Despite limited research on its pathogenesis and treatments, we conducted a study using serum samples from GDM-diagnosed pregnant women. We performed metabolic sequencing to identify key small molecule metabolites and explored their molecular interactions with FGF21. We also investigated FGF21's impact on GDM using blood samples from affected women. Our analysis revealed a novel finding: elevated levels of L-Cystine in GDM patients. Furthermore, we observed a positive correlation between L-Cystine and FGF21 levels, and found that L-Cystine induces NRF2 expression via FGF21 for a period of 96 h. Under high glucose (HG) conditions, FGF21 upregulates NRF2 and downstream genes NQO1 and EPHX1 via AKT phosphorylation induced by activation of IRS1, enhancing endothelial function. Additionally, we confirmed that levels of FGF21, L-Cystine, and endothelial function at the third trimester were effectively enhanced through appropriate exercise and diet during pregnancy in GDM patients (GDM + ED). These findings suggest FGF21 as a potential therapeutic agent for GDM, particularly in protecting endothelial cells. Moreover, elevated L-Cystine via appropriate exercise and diet might be a potential strategy to enhance FGF21's efficacy.

4.
Wien Med Wochenschr ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042241

ABSTRACT

BACKGROUND: There are few studies that have analyzed the characteristics of hypercalcemia in hospitalized oncological patients. Our objectives were to describe the clinical characteristics of hospitalized patients with paraneoplastic hypercalcemia and to identify prognostic variables for mortality. METHODS: This was an observational, longitudinal, retrospective, and bicentric study. It included adult patients admitted to two hospitals in Málaga, Spain (2014-2018). The minimum follow-up period was 2 years or until death. RESULTS: A total of 154 patients were included; the majority (71.4%) were admitted to the internal medicine department. The median follow-up was 3.5 weeks (interquartile range [IQR] 1.1-11.5). The mean (standard deviation) age was 67.6 (12.3) years, with a predominance of males (58.4%). The median (IQR) serum calcium at admission was 13.2 (11.8-14.6) mg/dl. The most common neoplasms were pulmonary (27.3%), hematologic (23.4%), urological (13%), and breast (12.3%). Furthermore, 56.5% of cases had a known history of neoplasia at the time of diagnosis. The parathyroid hormone (PTH) level was determined in 24%; of these, 10.8% had elevated levels. In all, 95.5% of patients died during follow-up. The median survival was 3.4 weeks (95% confidence interval 2.6-4.3). Factors associated with higher mortality were age, serum calcium at admission, previous history of neoplasia, etiology other than multiple myeloma, and noncorrection of hypercalcemia. CONCLUSIONS: In hospitalized patients, paraneoplastic hypercalcemia was associated with high short-term mortality. Several factors associated with a worse prognosis were identified in these patients.

5.
J Dermatolog Treat ; 35(1): 2375580, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39013549

ABSTRACT

Psoriasis is a prevalent skin disease affecting approximately 1%-3% of the population and imposes significant medical, social and economic burdens. Psoriasis involves multiple organs and is often complicated with obesity, diabetes, dyslipidemia, and hypertension. Because of the benefits of lipid-lowering agents and antidiabetic medications for psoriasis, metabolic abnormalities possibly play a pathogenic role in psoriasis.This review focuses on the impacts of a variety of metabolic disorders on psoriasis and the underlying mechanisms.In psoriasis, enhanced glycolysis, glutamine metabolism and altered fatty acid composition in the psoriatic lesion and plasma result in the excessive proliferation of keratinocytes and secretion of inflammatory cytokines. Altered metabolism is associated with the activation of MTORC signaling pathway and transcription factors such as HIF and S6K1. Therefore, MTORC1 can be a target for the treatment of psoriasis. Additionally, there are diabetes drugs and lipid-lowering drugs including TZDs, GLP-1 RAs, Metformin, statins and fibrates, which improve both metabolic levels and psoriasis symptoms.


Subject(s)
Psoriasis , Psoriasis/drug therapy , Psoriasis/metabolism , Psoriasis/complications , Humans , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Signal Transduction/drug effects
6.
Interact J Med Res ; 13: e55699, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046774

ABSTRACT

BACKGROUND: The interrelation between COVID-19 and various cardiovascular and metabolic disorders has been a critical area of study. There is a growing need to understand how comorbidities such as cardiovascular diseases (CVDs) and metabolic disorders affect the risk and severity of COVID-19. OBJECTIVE: The objective of this study is to systematically analyze the association between COVID-19 and cardiovascular and metabolic disorders. The focus is on comorbidity, examining the roles of CVDs such as embolism, thrombosis, hypertension, and heart failure, as well as metabolic disorders such as disorders of glucose and iron metabolism. METHODS: Our study involved a systematic search in PubMed for literature published from 2000 to 2022. We established 2 databases: one for COVID-19-related articles and another for CVD-related articles, ensuring all were peer-reviewed. In terms of data analysis, statistical methods were applied to compare the frequency and relevance of MeSH (Medical Subject Headings) terms between the 2 databases. This involved analyzing the differences and ratios in the usage of these terms and employing statistical tests to determine their significance in relation to key CVDs within the COVID-19 research context. RESULTS: The study revealed that "Cardiovascular Diseases" and "Nutritional and Metabolic Diseases" were highly relevant as level 1 Medical Subject Headings descriptors in COVID-19 comorbidity research. Detailed analysis at level 2 and level 3 showed "Vascular Disease" and "Heart Disease" as prominent descriptors under CVDs. Significantly, "Glucose Metabolism Disorders" were frequently associated with COVID-19 comorbidities such as embolism, thrombosis, and heart failure. Furthermore, iron deficiency (ID) was notably different in its occurrence between COVID-19 and CVD articles, underlining its significance in the context of COVID-19 comorbidities. Statistical analysis underscored these differences, highlighting the importance of both glucose and iron metabolism disorders in COVID-19 research. CONCLUSIONS: This work lays the foundation for future research that utilizes a knowledge-based approach to elucidate the intricate relationships between these conditions, aiming to develop more effective health care strategies and interventions in the face of ongoing pandemic challenges.

7.
J Ethnopharmacol ; 335: 118621, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053718

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mailuo Shutong Pill (MLST), a traditional Chinese medicine (TCM), has been widely used for clearing heat and detoxifying, eliminating stasis and dredging meridians, dispelling dampness and diminishing swelling. Earlier study found that MLST could improve cerebral ischemic-reperfusion injury, however, the potential mechanism has not been well evaluated. AIM OF STUDY: In this study, a well established and widely used mice model of middle cerebral artery occlusion/reperfusion (MCAO/R) was preformed to evaluate the protective function of MLST on cerebral ischemic-reperfusion injury and further discuss the potential pharmacological mechanisms. MATERIALS AND METHODS: Chemical profiling of MLST was analyzed based on Ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry. ICR mice were challenged by MCAO/R surgery. The protective effect of MLST on MCAO/R injury was evaluated by neurological deficit score, cerebral infarct rate, brain water content, H&E and nissl staining. The blood-brain barrier (BBB) integrity was detected by Evans blue staining. The potential pharmacological mechanism of MLST in treating MCAO/R injury was further elucidated by the methods of proteomics, central carbon targeted metabolomics, as well as Western blot. Immunohistochemistry was used to detect the microglia infiltration, enzyme linked immunosorbent assay (ELISA) kit was explored to evaluate the content of IL-1ß, TNF-α and IL-6 in brain tissue, and Western blot was used to detect proteins expression in brain tissue. RESULTS: A total of 76 chemical compounds have been determined in MLST. MLST effectively protected mice from MCAO/R injury, which was confirmed by lower neurological deficit score, cerebral infarct rate, brain water content and nissl body loss, and improved brain pathology. Meanwhile, MLST upregulated the expression of ZO-1, Occludin and Claudin 5 by downregulating the ratio of TIMP1/MMP9 to suppress the entrance of Evans blue to brain tissue, indicating that MLST maintained the integrity of BBB. Further studies indicated that MLST inhibited the inflammatory level of brain tissue by inhibiting microglia infiltration and downregulating NLRP3 inflammasome signaling pathway. The results of proteomics, Western blot, and central carbon targeted metabolomics confirmed that MLST regulated Glycolysis/Gluconogenesis, Pyruvate metabolism and TCA cycle in brain tissue of mice with MCAO/R. CONCLUSION: MLST inhibits neuroinflammation by regulating glucose metabolism disorders to interfere with immune metabolism reprogramming and inhibit the NLRP3 inflammasome signaling pathway, and finally improve cerebral ischemia-reperfusion injury. This study confirms that MLST is a potential drug for treating Cerebral ischemic stroke.

8.
Article in English | MEDLINE | ID: mdl-38934278

ABSTRACT

BACKGROUND: The incidence of dyslipidemia increases after menopause. Electroacupuncture (EA) has been recommended for menopause-related disease. However, the positive effect on lipid metabolism disorders is still unclear. OBJECTIVES: To investigate the underlying mechanism of EA treatment on lipid metabolism disorders through ONT full-length transcriptome sequencing Methods: Adult female SD rats were randomly divided into Ctrl, sham operation+high-fat feed(Sham+HFD), Ovariectomized+high-fat feed (OVX+HFD), Ovariectomized+high-fat feed + Atorvastatin (OVX+HFD+ATO) and OVX+HFD+EA groups. Periovarian adipose tissue around the bilateral ovaries of rats in the Sham+HFD group was resected. Rats in the OVX+HFD, OVX+HFD+ATO and OVX+HFD+EA groups were subjected to bilateral oophorectomy to prepare the ovariectomized rat model. Treatment was applied to rats in the OVX+HFD+EA group. ST36, PC6, SP6, BL18 and ST40 were the selected acupoints. Daily food intake and body weights of rats were recorded. The samples were collected 30 days after treatment. The serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein (HDL-C) were detected to assess the improvement of lipid metabolism disorders. HE and oil red O staining were used to stain the liver tissues. Total RNA was extracted from liver tissues, and its transcriptional changes were determined by high-throughput sequencing. Additionally, RTÁqPCR and immunofluorescence staining were used to verify the crucial signal pathway screened by the ONT fullÁlength transcriptome sequencing. RESULTS: EA treatment resulted in a lowered weight of perirenal fat and liver and a significant improvement in the color of the liver. In addition, EA could improve the lipid profile and hepatic steatosis in OVX+HFD rats. According to fullÁlength transcriptome sequencing, 2292 genes showed differential expression in the OVX+HFD group; of these, 1121 were upregulated and 1171 down-regulated. 609 DEGs were found in the OVX+HFD+EA group compared to the OVX+HFD group; 235 up-regulated and 374 down-regulated. We also found that 77 genes are significantly upregulated after EA intervention through Venn map analysis (including Agtr1a, Pdia3, etc.), which may be the targeted genes for EA treatment of lipid metabolism disorders. Finally, we verified the expression of Pdia3, Perk and Qrich1 levels in liver tissues. HFD feeding could increase the expression of Pdia3 and its downstream signal pathways molecular Perk and Qrich1. But these effects were reversed by EA treatment, the results demonstrated that the expression of pdia3, Perk, as well as Qrich1 of OVX+HFD rats had a decreasing trend after EA treatment. CONCLUSIONS: EA could ameliorate lipid metabolic disorder in OVX+HFD rats. The Pdia3/Perk/Qrich1 signal pathway may play crucial roles in the improvement of lipid metabolism disorder of OVX+HFD rats after EA treatment.

9.
Biomedicines ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38927431

ABSTRACT

The APOA1/C3/A4/A5 cluster is an essential component in regulating lipoprotein metabolism and maintaining plasma lipid homeostasis. A genome-wide association analysis and Mendelian randomization have revealed potential associations between genetic variants within this cluster and lipid metabolism disorders, including hyperlipidemia and cardiovascular events. An enhanced understanding of the complexity of gene regulation has led to growing recognition regarding the role of epigenetic variation in modulating APOA1/C3/A4/A5 gene expression. Intensive research into the epigenetic regulatory patterns of the APOA1/C3/A4/A5 cluster will help increase our understanding of the pathogenesis of lipid metabolism disorders and facilitate the development of new therapeutic approaches. This review discusses the biology of how the APOA1/C3/A4/A5 cluster affects circulating lipoproteins and the current progress in the epigenetic regulation of the APOA1/C3/A4/A5 cluster.

11.
Reprod Sci ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871967

ABSTRACT

We explore the interaction between estrogen and PCSK9 and their collective impact on lipid metabolism, especially concerning the regulation of low-density lipoprotein receptor levels. Utilizing both animal and cellular models, including ovariectomized mice and HepG2 cell lines, we demonstrate that estrogen deficiency leads to a disruption in lipid metabolism, characterized by elevated levels of total cholesterol and LDL-C. The study commences with mice undergoing ovariectomy, followed by a diet regimen comprising either high-fat diet or normal feed for a four-week duration. Key assessments include analyzing lipid metabolism, measuring PCSK9 levels in the bloodstream, and evaluating hepatic low-density lipoprotein receptor expression. We will also conduct correlation analyses to understand the relationship between PCSK9 and various lipid profiles. Further, a subset of ovariectomized mice on high-fat diet will undergo treatment with either estrogen or PCSK9 inhibitor for two weeks, with a subsequent re-evaluation of the earlier mentioned parameters. Our findings reveal that estrogen inhibits PCSK9-mediated degradation of low-density lipoprotein receptor, a process crucial for maintaining lipid homeostasis. Through a series of experiments, including immunohistochemistry and western blot analysis, we establish that PCSK9 is involved in lipid metabolism disorders caused by estrogen deficiency and that estrogen regulates PCSK9 and low-density lipoprotein receptor at post-transcriptional level. The study provides a mechanism for the involvement of PCSK9 in elucidating the disorders of lipid metabolism caused by estrogen deficiency due to perimenopause and ovarian decline.

12.
JACC Case Rep ; 29(12): 102367, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38774638

ABSTRACT

We present a young boy with a diagnosis of homozygous familial hypercholesterolemia who presented with statin and ezetimibe resistance. The patient received lipoprotein apheresis at 6 years of age. His low-density lipoprotein cholesterol levels significantly were reduced by adding lomitapide and evinacumab, and his carotid plaque started to regress.

13.
J Pineal Res ; 76(4): e12956, 2024 May.
Article in English | MEDLINE | ID: mdl-38695262

ABSTRACT

The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.


Subject(s)
Circadian Rhythm , Glucose , Humans , Animals , Circadian Rhythm/physiology , Glucose/metabolism , Circadian Clocks/physiology , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology
14.
Poult Sci ; 103(7): 103818, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733755

ABSTRACT

Mule ducks tend to accumulate abundant fat in their livers via feeding, which leads to the formation of a fatty liver that is several times larger than a normal liver. However, the mechanism underlying fatty liver formation has not yet been elucidated. Fibroblast growth factor 1 (FGF1), a member of the FGF superfamily, is involved in cellular lipid metabolism and mitosis. This study aims to investigate the regulatory effect of FGF1 on lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells and elucidate the underlying molecular mechanism. Hepatocytes were induced by adding 1,500:750 µmol/L oleic and palmitic acid concentrations for 36 h, which were stimulated with FGF1 concentrations of 0, 10, 100, and 1000 ng/mL for 12 h. The results showed that FGF1 significantly reduced the hepatic lipid droplet deposition and triglyceride content induced by complex fatty acids; it also reduced oxidative stress; decreased reactive oxygen species fluorescence intensity and malondialdehyde content; upregulated the expression of antioxidant factors nuclear factor erythroid 2 related factor 2 (Nrf2), HO-1, and NQO-1; significantly enhanced liver cell activity; promoted cell cycle progression; inhibited cell apoptosis; upregulated cyclin-dependent kinase 1 (CDK1) and BCL-2 mRNA expression; and downregulated Bax and Caspase-3 expression. In addition, FGF1 promoted AMPK phosphorylation, activated the AMPK pathway, upregulated AMPK gene expression, and downregulated the expression of SREBP1 and ACC1 genes, thereby alleviating excessive fat accumulation in liver cells induced by complex fatty acids. In summary, FGF1 may alleviate lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells by activating the AMPK signaling pathway.


Subject(s)
Ducks , Fatty Liver , Fibroblast Growth Factor 1 , Poultry Diseases , Animals , Fatty Liver/veterinary , Fatty Liver/metabolism , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/genetics , Poultry Diseases/metabolism , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Avian Proteins/metabolism , Avian Proteins/genetics , Liver/metabolism , Liver/drug effects
15.
Int J Biol Macromol ; 271(Pt 2): 132584, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795881

ABSTRACT

This study evaluated the regulatory effects of Astragalus membranaceus polysaccharides (AMP) on lipid metabolism disorders induced by a high-fat diet (HFD) in spotted sea bass (Lateolabrax maculatus). Compared with the normal diets (10 % lipids), diets containing 15 % lipid levels were used as the high-fat diet (HFD). Three levels of the AMP (0.06 %, 0.08 %, 0.10 %) were added in the HFD and used as experimental diets. A total of 375 spotted sea bass (average weight 3.00 ± 0.01 g) were divided into 15 tanks and deemed as 5 groups, with each tank containing 25 fish. Fish in each group were fed with different diets for 56 days. After feeding, the HFD induced lipid metabolism disorders in fish, as evidenced by elevated serum lipids, malonaldehyde levels, and more severe liver damage. The AMP alleviated the HFD-induced liver damage, as evidenced by the reduced severity of liver histological lesions and malonaldehyde levels. The low-density lipoprotein cholesterol was reduced, and the expression of FAS and PPAR-α were down and up-regulated, respectively. However, the AMP had a limited ability to affect the serum lipids and abdominal fat percentage. These results reveal the potential of the AMP used in aquaculture to regulate lipid metabolism disorders induced by the HFD.


Subject(s)
Astragalus propinquus , Bass , Diet, High-Fat , Lipid Metabolism , Polysaccharides , Animals , Diet, High-Fat/adverse effects , Polysaccharides/pharmacology , Astragalus propinquus/chemistry , Lipid Metabolism/drug effects , Lipid Metabolism Disorders/drug therapy , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/etiology , Liver/drug effects , Liver/metabolism , Liver/pathology , PPAR alpha/metabolism , Lipids/blood
16.
Nutrients ; 16(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794655

ABSTRACT

The aim of this study was to assess the causal relationships between mineral metabolism disorders, representative of trace elements, and key aging biomarkers: telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN). Utilizing bidirectional Mendelian randomization (MR) analysis in combination with the two-stage least squares (2SLS) method, we explored the causal relationships between mineral metabolism disorders and these aging indicators. Sensitivity analysis can be used to determine the reliability and robustness of the research results. The results confirmed that a positive causal relationship was observed between mineral metabolism disorders and TL (p < 0.05), while the causal relationship with mtDNA-CN was not significant (p > 0.05). Focusing on subgroup analyses of specific minerals, our findings indicated a distinct positive causal relationship between iron metabolism disorders and both TL and mtDNA-CN (p < 0.05). In contrast, disorders in magnesium and phosphorus metabolism did not exhibit significant causal effects on either aging biomarker (p > 0.05). Moreover, reverse MR analysis did not reveal any significant causal effects of TL and mtDNA-CN on mineral metabolism disorders (p > 0.05). The combination of 2SLS with MR analysis further reinforced the positive causal relationship between iron levels and both TL and mtDNA-CN (p < 0.05). Notably, the sensitivity analysis did not indicate significant pleiotropy or heterogeneity within these causal relationships (p > 0.05). These findings highlight the pivotal role of iron metabolism in cellular aging, particularly in regulating TL and sustaining mtDNA-CN, offering new insights into how mineral metabolism disorders influence aging biomarkers. Our research underscores the importance of trace element balance, especially regarding iron intake, in combating the aging process. This provides a potential strategy for slowing aging through the adjustment of trace element intake, laying the groundwork for future research into the relationship between trace elements and healthy aging.


Subject(s)
DNA, Mitochondrial , Mendelian Randomization Analysis , Telomere , Humans , DNA, Mitochondrial/genetics , Telomere/metabolism , Minerals/metabolism , Aging/genetics , DNA Copy Number Variations , Trace Elements/blood , Iron/metabolism , Iron/blood , Biomarkers/blood
17.
JACC Case Rep ; 29(10): 102342, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38682003

ABSTRACT

We report a case of a patient diagnosed with homozygous familial hypercholesterolemia and progressive supravalvular aortic stenosis. Treatment with long-term low-density lipoprotein apheresis and management with novel lipid-lowering agents including an angiopoetin-like protein inhibitor led to significant low-density lipoprotein reduction. The case highlights the challenges in managing the manifestations of homozygous familial hypercholesterolemia.

18.
Biomed Pharmacother ; 174: 116557, 2024 May.
Article in English | MEDLINE | ID: mdl-38583337

ABSTRACT

Myricanol (MY) is one of the main active components from bark of Myrica Rubra. It is demonstrated that MY rescues dexamethasone (DEX)-induced muscle dysfunction via activating silent information regulator 1 (SIRT1) and increasing adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation. Since SIRT1 and AMPK are widely involved in the metabolism of nutrients, we speculated that MY may exert beneficial effects on DEX-induced metabolic disorders. This study for the first time applied widely targeted metabolomics to investigate the beneficial effects of MY on glucose, lipids, and protein metabolism in DEX-induced metabolic abnormality in mice. The results showed that MY significantly reversed DEX-induced soleus and gastrocnemius muscle weight loss, muscle fiber damage, and muscle strength loss. MY alleviated DEX-induced metabolic disorders by increasing SIRT1 and glucose transporter type 4 (GLUT4) expressions. Additionally, myricanol prevented muscle cell apoptosis and atrophy by inhibiting caspase 3 cleavages and muscle ring-finger protein-1 (MuRF1) expression. Metabolomics showed that MY treatment reversed the serum content of carnitine ph-C1, palmitoleic acid, PS (16:0_17:0), PC (14:0_20:5), PE (P-18:1_16:1), Cer (t18:2/38:1(2OH)), four amino acids and their metabolites, and 16 glycerolipids in DEX mice. Kyoto encyclopedia of genes and genomes (KEGG) and metabolic set enrichment analysis (MSEA) analysis revealed that MY mainly affected metabolic pathways, glycerolipid metabolism, lipolysis, fat digestion and absorption, lipid and atherosclerosis, and cholesterol metabolism pathways through regulation of metabolites involved in glutathione, butanoate, vitamin B6, glycine, serine and threonine, arachidonic acid, and riboflavin metabolism. Collectively, MY can be used as an attractive therapeutic agent for DEX-induced metabolic abnormalities.


Subject(s)
Dexamethasone , Animals , Dexamethasone/pharmacology , Mice , Male , Lipid Metabolism/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Sirtuin 1/metabolism , Metabolome/drug effects , Lipid Metabolism Disorders/drug therapy , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/chemically induced , Apoptosis/drug effects , Mice, Inbred C57BL , Metabolomics/methods
19.
World J Gastroenterol ; 30(9): 1189-1212, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38577195

ABSTRACT

BACKGROUND: Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) plays a crucial role in metabolizing and detoxifying endogenous and exogenous substances. However, its contribution to the progression of liver damage remains unclear. AIM: To determine the role and mechanism of UGT1A1 in liver damage progression. METHODS: We investigated the relationship between UGT1A1 expression and liver injury through clinical research. Additionally, the impact and mechanism of UGT1A1 on the progression of liver injury was analyzed through a mouse model study. RESULTS: Patients with UGT1A1 gene mutations showed varying degrees of liver damage, while patients with acute-on-chronic liver failure (ACLF) exhibited relatively reduced levels of UGT1A1 protein in the liver as compared to patients with chronic hepatitis. This suggests that low UGT1A1 levels may be associated with the progression of liver damage. In mouse models of liver injury induced by carbon tetrachloride (CCl4) and concanavalin A (ConA), the hepatic levels of UGT1A1 protein were found to be increased. In mice with lipopolysaccharide or liver steatosis-mediated liver-injury progression, the hepatic protein levels of UGT1A1 were decreased, which is consistent with the observations in patients with ACLF. UGT1A1 knockout exacerbated CCl4- and ConA-induced liver injury, hepatocyte apoptosis and necroptosis in mice, intensified hepatocyte endoplasmic reticulum (ER) stress and oxidative stress, and disrupted lipid metabolism. CONCLUSION: UGT1A1 is upregulated as a compensatory response during liver injury, and interference with this upregulation process may worsen liver injury. UGT1A1 reduces ER stress, oxidative stress, and lipid metabolism disorder, thereby mitigating hepatocyte apoptosis and necroptosis.


Subject(s)
Glucuronosyltransferase , Liver , Animals , Humans , Mice , Disease Models, Animal , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Liver/metabolism
20.
Foods ; 13(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38672817

ABSTRACT

Alcohol abuse can lead to alcoholic liver disease, becoming a major global burden. Hovenia dulcis fruit peduncle polysaccharides (HDPs) have the potential to alleviate alcoholic liver injury and play essential roles in treating alcohol-exposed liver disease; however, the hepatoprotective effects and mechanisms remain elusive. In this study, we investigated the hepatoprotective effects of HDPs and their potential mechanisms in alcohol-exposed mice through liver metabolomics and gut microbiome. The results found that HDPs reduced medium-dose alcohol-caused dyslipidemia (significantly elevated T-CHO, TG, LDL-C), elevated liver glycogen levels, and inhibited intestinal-hepatic inflammation (significantly decreased IL-4, IFN-γ and TNF-α), consequently reversing hepatic pathological changes. When applying gut microbiome analysis, HDPs showed significant decreases in Proteobacteria, significant increases in Firmicutes at the phylum level, increased Lactobacillus abundance, and decreased Enterobacteria abundance, maintaining the composition of gut microbiota. Further hepatic metabolomics analysis revealed that HDPs had a regulatory effect on hepatic fatty acid metabolism, by increasing the major metabolic pathways including arachidonic acid and glycerophospholipid metabolism, and identified two important metabolites-C00157 (phosphatidylcholine, a glycerophospholipid plays a central role in energy production) and C04230 (1-Acyl-sn-glycero-3-phosphocholine, a lysophospholipid involved in the breakdown of phospholipids)-involved in the above metabolism. Overall, HDPs reduced intestinal dysbiosis and hepatic fatty acid metabolism disorders in alcohol-exposed mice, suggesting that HDPs have a beneficial effect on alleviating alcohol-induced hepatic metabolic disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...