ABSTRACT
Nanoscale water plays a pivotal role in determining the properties and functionalities of materials, and the precise control of its quantity and atomic-scale ordered structure is a focal point in nanotechnology and chemistry. Several studies have theoretically discussed the nano-ordered ice within one- or two-dimensional space and without confinement through hydrogen bonds. In particular, the water cluster has been predicted to play a significant role in biomolecules or functional nanomaterials; however, there has been little experimental evidence for their presence in hydrophobic cavities. In this study, the cubane water octamer - the most stable isomer among small water clusters - was detected within the hydrophobic cavities of UiO-66 metal-organic frameworks, revealing the presence of the smallest ice in their hydrophobic cavity, in the absence of hydrogen bonding. This observation contrasts earlier examples of water clusters confined within nanocavities through hydrogen bonds and provides experimental evidence for water-cluster capturing within hydrophobic cavities. Consequently, our renewed understanding of hydrophilicity and hydrophobicity warrants a design re-evaluation of materials for chemical applications, including fuel cells, water harvesting, catalysts, and batteries.
ABSTRACT
A hybrid organic monolithic column made of poly(lauryl methacrylate-co-1,6-hexanediol dimethacrylate) and the metal-organic framework MIL-68(Al) was prepared for the first time. The column was used in capillary liquid chromatography, both in isocratic and gradient elution modes. Separation performance towards small molecules of different chemical nature (polycyclic aromatic hydrocarbons, alkylbenzenes, phenols, etc.) was studied. Monte Carlo simulations were made to both select the proper precursors to obtain empty metal-organic framework micropores in the monolithic polymer and also, to analyze the potential free access of the studied analytes into the micropores (necessary to improve mass transfer and column efficiency). The hereby synthesized metal-organic framework microcrystals allowed obtaining homogeneous hybrid monolithic columns. Adding of MIL-68(Al) (1030 m2 g-1 BET specific surface area) increased the surface area from 3.9 m2 g-1 for the parent monolith to 18.2 m2 g-1 for the hybrid column containing 8 mg mL-1 of the microcrystals. Chromatographic performance of this new column was evaluated by studying retention factors, resolution, and plate counts at room temperature. Different compounds, not completely resolved in the parent monolith, were partially or completely separated after metal-organic framework addition. Using the monolithic column with only 2 mg mL-1 of MIL-68(Al), five alkylbenzenes were completely separated with very symmetrical peak shapes, resolution factors up to 3.60 and plate counts of 4300 plates m-1 for n-hexylbenzene. This value is higher than those obtained by other authors who used organic monolithic columns with embedded metal-organic frameworks to perform separations at room temperature. Additionally, nine polycyclic aromatic hydrocarbons were partially or completely resolved in gradient elution mode. The hybrid monolithic columns exhibited very good intra-day (%RSD=1.9), inter-day (%RSD=2.6), and column-to-column (%RSD=4.3) reproducibility values. Easy and fast column preparation, and versatility to efficiently separate several compounds of different chemical nature in isocratic and gradient mode, makes this new hybrid column a very good option for the analysis of small molecules in capillary (or nano) HPLC.
Subject(s)
Metal-Organic Frameworks , Polycyclic Aromatic Hydrocarbons , Chromatography, High Pressure Liquid/methods , Metal-Organic Frameworks/chemistry , Polycyclic Aromatic Hydrocarbons/isolation & purification , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Monte Carlo Method , Phenols/isolation & purification , Phenols/analysis , Phenols/chemistry , PorosityABSTRACT
Metal-organic frameworks (MOFs) are hybrid materials that are being explored as active electrode materials in energy storage devices, such as rechargeable batteries and supercapacitors (SCs), due to their high surface area, controllable chemical composition, and periodic ordering. However, the facile and controlled synthesis of a pure MOF phase without impurities or without going through a complicated purification process (that also reduces the yield) are challenges that must be resolved for their potential industrial applications. Moreover, various oxide formations of the Ni during Ni-MOF synthesis also represent an issue that affects the purity and performance. To resolve these issues, we report the controlled synthesis of nickel-based metal-organic frameworks (NiMOFs) by optimizing different growth parameters during hydrothermal synthesis and by utilizing nickel chloride as metal salt and H2bdt as the organic ligand, in a ratio of 1:1 at 150 °C. Furthermore, the synthesis was optimized by introducing a magnetic stirring stage, and the reaction temperature varied across 100, 150, and 200 °C to achieve the optimized growth of the NiMOFs crystal. The rarely used H2bdt ligand for Ni-MOF synthesis and the introduction of the ultrasonication stage before putting it in the furnace led to the formation of a pure phase without impurities and oxide formation. The synthesized materials were further characterized by powder X-ray diffraction (XRD) technique, scanning electron microscopy (SEM), and UV-vis spectroscopy. The SEM images exhibited the formation of nano NiMOFs having a rectangular prism shape. The average size was 126.25 nm, 176.0 nm, and 268.4 nm for the samples (1:1)s synthesized at 100 °C, 150 °C, and 200 °C, respectively. The electrochemical performances were examined in a three-electrode configuration, in a wide potential window from -0.4 V to 0.55 V, and an electrolyte concentration of 2M KOH was maintained for each measurement. The charge-discharge galvanostatic measurement results in specific capacitances of 606.62 F/g, 307.33 F/g, and 287.42 F/g at a current density of 1 A/g for the synthesized materials at 100 °C, 150 °C, and 200 °C, respectively.
ABSTRACT
Recent progress in synthesizing and integrating surface-supported metal-organic frameworks (SURMOFs) has highlighted their potential in developing hybrid electronic devices with exceptional mechanical flexibility, film processability, and cost-effectiveness. However, the low electrical conductivity of SURMOFs has limited their use in devices. To address this, researchers have utilized the porosity of SURMOFs to enhance electrical conductivity by incorporating conductive materials. This study introduces a method to improve the electrical conductivity of HKUST-1 templates by in situ polymerization of conductive polypyrrole (PPy) chains within the SURMOF pores (named as PPy@HKUST-1). Nanomembrane-origami technology is employed for integration, allowing a rolled-up metallic nanomembrane to contact the HKUST-1 films without causing damage. After a 24 h loading period, the electrical conductivity at room temperature reaches approximately 5.10-6 S m-1 . The nanomembrane-based contact enables reliable electrical characterization even at low temperatures. Key parameters of PPy@HKUST-1 films, such as trap barrier height, dielectric constant, and tunneling barrier height, are determined using established conduction mechanisms. These findings represent a significant advancement in real-time control of SURMOF conductivity, opening pathways for innovative electronic-optoelectronic device development. This study demonstrates the potential of SURMOFs to revolutionize hybrid electronic devices by enhancing electrical conductivity through intelligent integration strategies.
ABSTRACT
A new Cu(II) paddle-wheel-like complex with 4-vinylbenzoate was synthesized using acetonitrile as the solvent. The complex was characterized by X-ray crystal diffraction, FT-IR, diffuse reflectance spectroscopy, thermogravimetric, differential scanning calorimetric, magnetic susceptibility, and electronic paramagnetic resonance analyses. The X-ray crystal diffraction analysis indicated that each copper ion was bound at an equatorial position to four oxygen atoms from the carboxylate groups of the 4-vinylbenzoate ligand in a square-based pyramidal geometry. The distance between the copper ions was 2.640(9) Å. The acetonitrile molecules were coordinated at the axial position to the copper ions. Exposure of the Cu(II) complex to humid air promoted the gradual replacement of the coordinated acetonitrile by water molecules, but the complex structure integrity remained. The EPR spectra exhibited signals attributed to the presence of a mixture of the monomeric (S = ½) and dimeric (S = 1) copper species in a possible 3:1 ratio. The magnetic studies revealed a peak at 50-100 K, which could be associated with the oxygen absorption capacity of the Cu(II)-vba complex.
ABSTRACT
This research presents the results of the immobilization of Candida Antarctica Lipase B (CALB) on MOF-199 and ZIF-8 and its use in the production of biodiesel through the transesterification reaction using African Palm Oil (APO). The results show that the highest adsorption capacity, the 26.9 mg·g-1 Lipase, was achieved using ZIF-8 at 45 °C and an initial protein concentration of 1.20 mg·mL-1. The results obtained for the adsorption equilibrium studies allow us to infer that CALB was physically adsorbed on ZIF-8 while chemically adsorbed with MOF-199. It was determined that the adsorption between Lipase and the MOFs under study better fit the Sips isotherm model. The results of the kinetic studies show that adsorption kinetics follow the Elovich model for the two synthesized biocatalysts. This research shows that under the experimental conditions in which the studies were carried out, the adsorption processes are a function of the intraparticle and film diffusion models. According to the results, the prepared biocatalysts showed a high efficiency in the transesterification reaction to produce biodiesel, with methanol as a co-solvent medium. In this work, the catalytic studies for the imidazolate, ZIF-8, presented more catalytic activity when used with CALB. This system presented 95% biodiesel conversion, while the biocatalyst formed by MOF-199 and CALB generated a catalytic conversion percentage of 90%. Although both percentages are high, it should be noted that CALB-MOF-199 presented better reusability, which is due to chemical interactions.
Subject(s)
Biofuels , Enzymes, Immobilized , Palm Oil , Kinetics , Enzymes, Immobilized/metabolism , Lipase/metabolism , Fungal Proteins/metabolism , ThermodynamicsABSTRACT
Rapid synthesis of carbon-based magnetic materials derived from cobalt and iron metal-organic frameworks (MOFs), ZIF-67, and MIL-100(Fe), by microwave-assisted method, followed by carbonization under a N2 atmosphere is described in this study. The carbon-derived MOFs (CDMs) were evaluated for the removal of the emerging pollutants sulfadiazine (SDZ) and flumequine (FLU) used as veterinary drugs. The study aimed to link the adsorption behavior with their surface properties and elemental composition. C-ZIF-67 and C-MIL-100(Fe) showed hierarchical porous structures with specific surface areas of 295.6 and 163.4 m2 g-1, respectively. The Raman spectra of the CDMs show the characteristic D and G bands associated with defect-rich carbon and sp2 graphitic carbon, respectively. The CDMs exhibit cobalt species (Co3O4, CoO, and Co) in C-ZIF-67 and iron species (Fe2O3, Fe3O4, and Fe) in C-MIL-100 (Fe) which are related to the magnetic behavior of CDMs. C-ZIF-67 and C-MIL-100 (Fe) had saturation magnetization values of 22.9 and 53.7 emu g-1, respectively, allowing easy solid-liquid separation using a magnet. SDZ and FLU removal rates on CDMs follow pseudo-second-order kinetics, and adsorption isotherms fit the Langmuir model based on regression coefficient values. Adsorption thermodynamics calculations showed that the adsorption of SDZ and FLU by CDMs was a thermodynamically favorable process. Therefore, these properties of C-ZIF-67 and C-MIL-100 (Fe) and their regeneration ability facilitate their use as adsorbents for emerging pollutants.
Subject(s)
Metal-Organic Frameworks , Veterinary Drugs , Water Pollutants, Chemical , Metal-Organic Frameworks/chemistry , Iron/chemistry , Water Pollutants, Chemical/analysis , Carbon , Adsorption , Water/chemistryABSTRACT
Metal-organic frameworks (MOFs) have been an excellent platform for carbon dioxide reduction reactions (CO2RR). In this work, the feasibility of electrochemical reduction of CO2 to obtain C2-deep value-added products was investigated by the preparation of Mg-containing MOF-74 samples combined with transition metal cations (Ni2+, Co2+ and Zn2+). The prepared MOFs were used as electrocatalysts in CO2RR. Chronoamperometric analysis coupled to ATR-FTIR spectroscopy was employed to characterize the CO2 reduction products and subsequently via 1H NMR. Although an isostructural crystalline structure was observed in all synthesized MOFs, the pore diameter distribution was significantly affected due to the Mg coordination along with each transition metal nuclei with the organic ligand to form the MOF-74. Our results showed that Mg-containing MOF-74 electrocatalysts combined with Ni, Co and Zn ions successfully reduced CO2 to C2-deep products, while the monometallic Mg-MOF-74 showed only CO2 mineralization. An ester acetate, isopropyl alcohol, and formic acid were produced by Mg/Ni-MOF-74; isopropyl alcohol was provided by Mg/Co-MOF-74, and ethanol was generated by Mg/Zn-MOF-74. We observed that the change of the transition cation was a key factor in the selectivity of the obtained products, while the degree of Mg ions effectively incorporated into the MOF structure tuned the porosity and the electrocatalytic activity. Among them, Mg/Zn-MFOF-74 showed the highest Mg content loaded after synthesis and thus the most favorable electrocatalytic behavior towards CO2 reduction.
ABSTRACT
Triturated Moringa oleifera seeds have components that adsorb recalcitrant indigo carmine dye. Coagulating proteins known as lectins (carbohydrate-binding proteins) have already been purified from the powder of these seeds, in milligram amounts. The coagulant lectin from M. oleifera seeds (cMoL) was characterized by potentiometry and scanning electron microscopy (SEM) using MOFs, or metal-organic frameworks, of [Cu3(BTC)2(H2O)3]n to immobilize cMoL and construct biosensors. The potentiometric biosensor revealed an increase in the electrochemical potential resulting from the Pt/MOF/cMoL interaction with different concentrations of galactose in the electrolytic medium. The developed aluminum batteries constructed with recycled cans degraded an indigo carmine dye solution; the oxide reduction reactions of the batteries generated Al(OH)3, promoting dye electrocoagulation. Biosensors were used to investigate cMoL interactions with a specific galactose concentration and monitored residual dye. SEM revealed the components of the electrode assembly steps. Cyclic voltammetry showed differentiated redox peaks related to dye residue quantification by cMoL. Electrochemical systems were used to evaluate cMoL interactions with galactose ligands and efficiently degraded dye. Biosensors could be used for lectin characterization and monitoring dye residues in environmental effluents of the textile industry.
Subject(s)
Lectins , Moringa oleifera , Lectins/analysis , Moringa oleifera/chemistry , Indigo Carmine/analysis , Galactose , Seeds/chemistry , Carmine/analysisABSTRACT
The recovery of gold from wastewater is necessary from both environmental and economic standpoints. Metal-organic frameworks (MOFs) can serve as high-capacity and selective adsorbents, as shown in a recent work by Zhao and co-workers. Their novel three-dimension cationic framework goes further than selectively adsorbing AuCl4 - . It also serves as a stable platform to transform adsorbed gold into an efficient catalyst for the electrochemical reduction of CO2 . This work highlights the versatility of MOFs, which can serve as selective adsorbents and as a support for nanoparticle catalysts.
ABSTRACT
This study investigates electrospun fibers of metal-organic frameworks (MOFs), particularly CuBTC and ZIF-8, in polyacrylonitrile (PAN) for the solid-phase extraction (SPE) of Tamoxifen (TAM) and its metabolites (NDTAM, ENDO, and 4OHT) from human blood plasma. The focus is on the isolation, pre-concentration, and extraction of the analytes, aiming to provide a more accessible and affordable breast cancer patient-monitoring technology. The unique physicochemical properties of MOFs, such as high porosity and surface area, combined with PAN's stability and low density, are leveraged to improve SPE efficiency. The study meticulously examines the interactions of these MOFs with the analytes under various conditions, including elution solvents and protein precipitators. Results reveal that ZIF-8/PAN composites outperform CuBTC/PAN and PAN alone, especially when methanol is used as the protein precipitator. This superior performance is attributed to the physicochemical compatibility between the analytes' properties, like solubility and polarity, and the MOFs' structural features, including pore flexibility, active site availability, surface polarity, and surface area. The findings underscore MOFs' potential in SPE applications and provide valuable insights into the selectivity and sensitivity of different MOFs towards specific analytes, advancing more efficient targeted extraction methods in biomedical analysis.
ABSTRACT
Hexavalent chromium (Cr(VI)) is a highly mobile cancerogenic and teratogenic heavy metal ion. Among the varied technologies applied today to address chromium water pollution, photocatalysis offers a rapid reduction of Cr(VI) to the less toxic Cr(III). In contrast to classic photocatalysts, Metal-Organic frameworks (MOFs) are porous semiconductors that can couple the Cr(VI) to Cr(III) photoreduction to the chromium species immobilization. In this minireview, we wish to discuss and analyze the state-of-the-art of MOFs for Cr(VI) detoxification and contextualizing it to the most recent advances and strategies of MOFs for photocatalysis purposes. The minireview has been structured in three sections: (i) a detailed discussion of the specific experimental techniques employed to characterize MOF photocatalysts, (ii) a description and identification of the key characteristics of MOFs for Cr(VI) photoreduction, and (iii) an outlook and perspective section in order to identify future trends.
ABSTRACT
The use of track-etched membranes allows further fine-tuning of transport regimes and thus enables their use in (bio)sensing and energy-harvesting applications, among others. Recently, metal-organic frameworks (MOFs) have been combined with such membranes to further increase their potential. Herein, the creation of a single track-etched nanochannel modified with the UiO-66 MOF is proposed. By the interfacial growth method, UiO-66-confined synthesis fills the nanochannel completely and smoothly, yet its constructional porosity renders a heterostructure along the axial coordinate of the channel. The MOF heterostructure confers notorious changes in the transport regime of the nanofluidic device. In particular, the tortuosity provided by the micro- and mesostructure of UiO-66 added to its charged state leads to iontronic outputs characterized by an asymmetric ion current saturation for transmembrane voltages exceeding 0.3 V. Remarkably, this behavior can be easily and reversibly modulated by changing the pH of the media and it can also be maintained for a wide range of KCl concentrations. In addition, it is found that the modified-nanochannel functionality cannot be explained by considering just the intrinsic microporosity of UiO-66, but rather the constructional porosity that arises during the MOF growth process plays a central and dominant role.
ABSTRACT
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs. We discuss relevant aspects regarding their chemical structure, action mechanisms, design principles, applications, and future perspectives.
ABSTRACT
Enzymatic biocatalysis is a sustainable technology. Enzymes are versatile and highly efficient biocatalysts, and have been widely employed due to their biodegradable nature. However, because the three-dimensional structure of these enzymes is predominantly maintained by weaker non-covalent interactions, external conditions, such as temperature and pH variations, as well as the presence of chemical compounds, can modify or even neutralize their biological activity. The enablement of this category of processes is the result of the several advances in the areas of molecular biology and biotechnology achieved over the past two decades. In this scenario, metal-organic frameworks (MOFs) are highlighted as efficient supports for enzyme immobilization. They can be used to 'house' a specific enzyme, providing it with protection from environmental influences. This review discusses MOFs as structures; emphasizes their synthesis strategies, properties, and applications; explores the existing methods of using immobilization processes of various enzymes; and lists their possible chemical modifications and combinations with other compounds to formulate the ideal supports for a given application.
Subject(s)
Metal-Organic Frameworks , Biocatalysis , Biotechnology , Enzymes, Immobilized/chemistry , Metal-Organic Frameworks/chemistry , TemperatureABSTRACT
Skin has a preventive role against any damage raised by harmful microorganisms and physical and chemical assaults from the external environment that could affect the body's internal organs. Dermis represents the main section of the skin, and its contribution to skin physiology is critical due to its diverse cellularity, vasculature, and release of molecular mediators involved in the extracellular matrix maintenance and modulation of the immune response. Skin structure and complexity limit the transport of substances, promoting the study of different types of nanoparticles that penetrate the skin layers under different mechanisms intended for skin illness treatments and dermo-cosmetic applications. In this work, we present a detailed morphological description of the dermis in terms of its structures and resident cells. Furthermore, we analyze the role of the dermis in regulating skin homeostasis and its alterations in pathophysiological conditions, highlighting its potential as a therapeutic target. Additionally, we describe the use of nanoparticles for skin illness treatments focused on dermis release and promote the use of metal-organic frameworks (MOFs) as an integrative strategy for skin treatments.
ABSTRACT
Coordination polymers have been extensively studied in recent years. Some of these materials can exhibit several properties such as permanent porosity, high surface area, thermostability and light emission, as well as open sites for chemical functionalization. Concerning the fact that this kind of compounds are usually solids, the size and morphology of the particles are important parameters when an application is desired. Inside this context, there is a subclass of coordination polymers, named infinite coordination polymers (ICPs), which auto-organize as micro- or nanoparticles with low crystallinity. Specifically, the particles exhibiting spherical shapes and reduced sizes can be better dispersed, enter cells much easier than bulk crystals and be converted to inorganic materials by topotactic transformation. Luminescent ICPs, in particular, can find applications in several areas, such as sensing probes, light-emitting devices and bioimaging. In this review, we present the state-of-the-art of ICP-based spherical particles, including the growth mechanisms, some applications for luminescent ICPs and the challenges to overcome in future commercial usage of these materials.
Subject(s)
Nanospheres , Polymers , Luminescence , PorosityABSTRACT
The advances of surface-supported metal-organic framework (SURMOF) thin-film synthesis have provided a novel strategy for effectively integrating metal-organic framework (MOF) structures into electronic devices. The considerable potential of SURMOFs for electronics results from their low cost, high versatility, and good mechanical flexibility. Here, the first observation of room-temperature negative differential resistance (NDR) in SURMOF vertical heterojunctions is reported. By employing the rolled-up nanomembrane approach, highly porous sub-15 nm thick HKUST-1 films are integrated into a functional device. The NDR is tailored by precisely controlling the relative humidity (RH) around the device and the applied electric field. The peak-to-valley current ratio (PVCR) of about two is obtained for low voltages (<2 V). A transition from a metastable state to a field emission-like tunneling is responsible for the NDR effect. The results are interpreted through band diagram analysis, density functional theory (DFT) calculations, and ab initio molecular dynamics simulations for quasisaturated water conditions. Furthermore, a low-voltage ternary inverter as a multivalued logic (MVL) application is demonstrated. These findings point out new advances in employing unprecedented physical effects in SURMOF heterojunctions, projecting these hybrid structures toward the future generation of scalable functional devices.
ABSTRACT
Ethylene dimerization reaction is one of the most common mechanisms for the production of 1-butene. Recently, metal-organic frameworks (MOFs) have received extensive attention in this area since they combine all the advantages of homogeneous and heterogeneous catalysts in a single compound. Here a computational mechanistic study of MOF-supported palladium single-site catalyst for ethylene dimerization reaction is reported. Catalytic systems with both biphenyl-type backbone as organic ligand and its fluorine-functionalization have been investigated to reveal the origin of ligand effects on the catalytic activity and selectivity. The calculations revealed that the nonfluorinated palladium MOF catalyst undergoes dimerization over isomerization reaction. Then the influence of the fluorine-functionalized organic ligand was compared in the dimerization catalytic cycle, which was strongly favored in terms of activity and selectivity. Catalyst-substrate interactions were analyzed by energy decomposition analysis revealing the critical role of ligand backbone functionalization on the activity. This theoretical analysis identified three chemically meaningful dominant effects on these catalysts; steric, electrostatic and charge transfer effects. The steric effects promote nonfluorinated MOF catalyst, whereas the electrostatic effects are the dominant factor that promotes its fluorinated counterpart. This theoretical study provides feedback with future experimental studies about the role of fluorine ligand functionalization in palladium MOF catalysts for ethylene dimerization reaction.
Subject(s)
Metal-Organic Frameworks , Dimerization , Ethylenes , Fluorine , PalladiumABSTRACT
The FeBTC metal-organic framework (MOF) incorporated with magnetite is proposed as a novel material to solve water contamination with last generation pollutants. The material was synthesized by in situ solvothermal methods, and Fe3O4 nanoparticles were added during FeBTC MOF synthesis and used in drug adsorption. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy characterized the materials, with N2-physisorption at 77 K. Pseudo-second-order kinetic and Freundlich models were used to describe the adsorption process. The thermodynamic study revealed that the adsorption of three drugs was a feasible, spontaneous exothermic process. The incorporation of magnetite nanoparticles in the FeBTC increased the adsorption capacity of pristine FeBTC. The Fe3O4-FeBTC material showed a maximum adsorption capacity for diclofenac sodium (DCF), then by ibuprofen (IB), and to a lesser extent by naproxen sodium (NS). Additionally, hybridization of the FeBTC with magnetite nanoparticles reinforced the most vulnerable part of the MOF, increasing the stability of its thermal and aqueous media. The electrostatic interaction, H-bonding, and interactions in the open-metal sites played vital roles in the drug adsorption. The sites' competition in the multicomponent mixture's adsorption showed selective adsorption (DCF) and (NS). This work shows how superficial modification with a low-surface-area MOF can achieve significant adsorption results in water pollutants.