Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(31): 42107-42120, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33797719

ABSTRACT

The tolerance of Mentha crispa L. (garden mint) cultivated in cadmium-contaminated oxisol for 120 days was analyzed using plant growth variables such as height, the number of leaves and shoots in different Cd exposure periods, as well as assessing the metal concentration absorbed and accumulated in the plant parts (root, stem, and leaves). The maximum adsorption capacity was estimated at 9220 mg kg-1 and used as a reference to establish the different Cd concentrations to be applied in the soil. M. crispa showed tolerance and revealed a reduction of height, the number of leaves and shoots, root development, and secondary toxicity signs such as chlorosis and leaf wilting. Comparing to the stems and leaves, Cd was retained mainly in the roots. PERMANOVA showed that plant growth variables and Cd concentrations in the plant's part were affected by the Cd exposure time. The canonical discriminant analysis demonstrated height as the most affected variable until 45 growing days, and different responses were observed after 75 days. However, the number of shoots was the variable most affected by higher Cd concentrations. The bioaccumulation and translocation factors for all treatments were lower than one, indicating that M. crispa can be considered as an excluder plant and applied for a phytostabilization strategy.


Subject(s)
Mentha , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Gardens , Plant Leaves/chemistry , Plant Roots/chemistry , Soil Pollutants/analysis
2.
Plants (Basel) ; 10(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668499

ABSTRACT

The metallophyte Imperata cylindrica inhabits copper (Cu) polluted soils in large areas from Central Chile. Here, we subjected clonal vegetative plantlets to 300 mg Cu kg-1 of substrate for 21 days to identify the main molecular pathways involved in the response to Cu stress. Transcriptomic analyses were performed for shoots and roots, with and without Cu supply. RNA-Seq and de novo transcriptome assembly were performed to identify the gene response associated with molecular mechanisms of Cu tolerance in I. cylindrica. De novo transcriptome revealed a total of 200,521 transcripts (1777 bp) comprising ~91% complete ultra-conserved genes in the eukaryote and Plantae database. The differentially expressed genes (DEGs) in roots were 7386, with 3558 of them being up-regulated and the other 3828 down-regulated. The transcriptome response in shoots was significantly less, showing only 13 up-regulated and 23 down-regulated genes. Interestingly, DEGs mainly related with actin and cytoskeleton formation, and to a minor degree, some DEGs associated with metal transporters and superoxide dismutase activity in root tissues were found. These transcriptomic results suggest that cytoskeleton could be acting as a mechanism of Cu-binding in the root, resulting in a high Cu tolerance response in this metallophyte, which deserve to be analyzed ultra-structurally. Our study contributes to reinforcing the potential of I. cylindrica as a candidate plant species to be used as a phytoremediation agent in Cu-contaminated environments.

3.
Plants (Basel) ; 9(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092309

ABSTRACT

This work examined the capability of Imperata cylindrica to respond, tolerate and accumulate Cu when growing at high Cu concentration (300 mg kg-1 of substrate) at different times of exposure (2, 14 and 21 days). The Cu accumulation in plants was examined by atomic absorption spectroscopy (AAS) and Cu localized by Scanning Electron Microscopy-Energy Dispersive X-Ray spectroscopy. Additionally, the phenolic compound identifications and concentrations were determined using liquid chromatography coupled to mass spectrometry. Our results showed that root biomass decreased significantly at high Cu levels, with a greater decrease at 21 days (39.8% less biomass in comparison to control). The root showed 328 mg Cu kg-1 dry weight at 21 days of exposure to Cu, being the tissue that accumulates most of the Cu. Lipid peroxidation was a clear indicator of Cu stress, principally in shoots. The exposure to Cu significantly increased the synthesis of phenolic compounds in shoots of plants exposed 21 days to Cu, where 5-caffeoylquinic acid reached the highest concentrations. Our results support that I. cylindrica is a Cu accumulator plant in root organs with a medium level of accumulation (between 200-600 mg Cu kg-1 biomass), which can tolerate the exposure to high Cu levels by means of increasing the synthesis of phenolic compound in shoots, suggesting a potential use as phytoremediation tool in Cu polluted environments.

SELECTION OF CITATIONS
SEARCH DETAIL