Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 866
Filter
1.
Front Ophthalmol (Lausanne) ; 4: 1415002, 2024.
Article in English | MEDLINE | ID: mdl-38984107

ABSTRACT

The aim of the present study is to investigate the role of c-Jun N-terminal kinase (JNK) and matrix metalloproteinase-2 (MMP-2) in mediating the effects of interleukin-1ß (IL-1ß) on the function of lacrimal gland myoepithelial cells (MECs). MECs isolated from an α-smooth muscle actin-green fluorescent protein (SMA-GFP) transgenic mouse were treated with IL-1ß alone or in the presence of SP600125, a JNK inhibitor, or ARP100, an MMP-2 inhibitor. The GFP intensity and the cell size/area were measured, and on day 7, the SMA, calponin, and pro-MMP-2 protein levels and the MEC contraction were assessed. At baseline, the control and treated cells showed no differences in GFP intensity or cell size. Starting on day 2 and continuing on days 4 and 7, the GFP intensity and cell size were significantly lower in the IL-1ß-treated samples, and these effects were alleviated following inhibition of either JNK or MMP-2. Compared with the control, the levels of SMA and calponin were lower in the IL-1ß-treated samples, and both the JNK and MMP-2 inhibitors reversed this trend. The pro-MMP-2 protein level was elevated in the IL-1ß-treated samples, and this effect was abolished by the JNK inhibitor. Finally, oxytocin-induced MEC contraction was diminished in the IL-1ß-treated samples, and both the JNK and MMP-2 inhibitors reversed this effect. Our data suggest that IL-1ß uses the JNK/MMP-2 pathways to alter MEC functions, which might account for the diminished tears associated with aqueous-deficient dry eye disease.

2.
Cureus ; 16(6): e61941, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38978899

ABSTRACT

Background Colorectal cancer (CRC) is a prevalent and deadly disease characterized by significant molecular complexity. Matrix metalloproteinase-2 (MMP2) has been implicated in cancer progression due to its role in extracellular matrix degradation, yet comprehensive studies linking MMP2 expression to CRC progression and its molecular mechanisms remain needed. Methodology This study involved 90 CRC patients, with tumor and adjacent normal tissues analyzed via immunohistochemistry (IHC) to assess MMP2 expression. The human CRC cell line SW480 was treated with an MMP2 inhibitor, ARP100, and evaluated for changes in cell migration, invasion, proliferation, and apoptosis using various assays, including MTT, wound-healing, transwell, caspase activity, and western blot analysis. Results High MMP2 expression was significantly associated with advanced tumor stages, lymph node involvement, and metastasis in CRC patients. Compared to normal tissues, MMP2 expression was markedly higher in cancerous tissues. Inhibition of MMP2 in SW480 cells resulted in reduced migration, invasion, and proliferation, and induced apoptosis, evidenced by increased caspase 3 and 9 activities and higher levels of cleaved caspase proteins. Conclusion Elevated MMP2 expression is correlated with advanced CRC and aggressive tumor characteristics. MMP2 inhibition can suppress CRC cell invasiveness, migration, and proliferation while promoting apoptosis, suggesting its potential as a therapeutic target in CRC treatment.

3.
Life Sci ; 351: 122819, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38857651

ABSTRACT

AIMS: Our aim was to evaluate whether the hydrogen sulfide (H2S) donor, 4-carboxyphenyl-isothiocyanate (4-CPI), exerts cardioprotective effect in the two kidney- one clip (2K-1C) rats through oxidative stress and MMP-2 activity attenuation and compare it with the classical H2S donor, Sodium Hydrosulfide (NaHS). MATERIALS AND METHODS: Renovascular hypertension (two kidneys-one clip; 2K-1C) was surgically induced in male Wistar rats. After two weeks, normotensive (2K) and hypertensive rats were intraperitoneally treated with vehicle (0.6 % dimethyl sulfoxide), NaHS (0.24 mg/Kg/day) or with 4-CPI (0.24 mg/Kg/day), for more 4 weeks. Systolic blood pressure (SBP) was evaluated weekly by tail-cuff plethysmography. Heart function was assessed by using the Millar catheter. Cardiac hypertrophy and fibrosis were evaluated by hematoxylin and eosin, and Picrosirius Red staining, respectively. The H2S was analyzed using WSP-1 fluorimetry and the cardiac oxidative stress was measured by lucigenin chemiluminescence and Amplex Red. MMP-2 activity was measured by in-gel gelatin or in situ zymography assays. Nox1, gp91phox, MMP-2 and the phospho-p65 subunit (Serine 279) nuclear factor kappa B (NF-κB) levels were evaluated by Western blotting. KEY FINDINGS: 4-CPI reduced blood pressure in hypertensive rats, decreased cardiac remodeling and promoted cardioprotection through the enhancement of cardiac H2S levels. An attenuation of oxidative stress, with inactivation of the p65-NF-κB/MMP-2 axis was similarly observed after NaHS or 4-CPI treatment in 2K-1C hypertension. SIGNIFICANCE: H2S is a mediator that promotes cardioprotective effects and decreases blood pressure, and 4-CPI seems to be a good candidate to reverse the maladaptive remodeling and cardiac dysfunction in renovascular hypertension.


Subject(s)
Blood Pressure , Hydrogen Sulfide , Matrix Metalloproteinase 2 , NF-kappa B , Oxidative Stress , Animals , Male , Rats , Blood Pressure/drug effects , Cardiotonic Agents/pharmacology , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Hypertension, Renovascular/drug therapy , Hypertension, Renovascular/metabolism , Hypertension, Renovascular/physiopathology , Isothiocyanates/pharmacology , Matrix Metalloproteinase 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Sulfides/pharmacology
4.
J Korean Neurosurg Soc ; 67(3): 364-375, 2024 May.
Article in English | MEDLINE | ID: mdl-38720546

ABSTRACT

OBJECTIVE: Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. METHODS: Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. RESULTS: The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. CONCLUSION: Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.

5.
J Proteome Res ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647137

ABSTRACT

Proteases are enzymes that induce irreversible post-translational modifications by hydrolyzing amide bonds in proteins. One of these proteases is matrix metalloproteinase-2 (MMP-2), which has been shown to modulate extracellular matrix remodeling and intracellular proteolysis during myocardial injury. However, the substrates of MMP-2 in heart tissue are limited, and lesser known are the cleavage sites. Here, we used degradomics to investigate the substrates of intracellular MMP-2 in rat ventricular extracts. First, we designed a novel, constitutively active MMP-2 fusion protein (MMP-2-Fc) that we expressed and purified from mammalian cells. Using this protease, we proteolyzed ventricular extracts and used subtiligase-mediated N-terminomic labeling which identified 95 putative MMP-2-Fc proteolytic cleavage sites using mass spectrometry. The intracellular MMP-2 cleavage sites identified in heart tissue extracts were enriched for proteins primarily involved in metabolism, as well as the breakdown of fatty acids and amino acids. We further characterized the cleavage of three of these MMP-2-Fc substrates based on the gene ontology analysis. We first characterized the cleavage of sarco/endoplasmic reticulum calcium ATPase (SERCA2a), a known MMP-2 substrate in myocardial injury. We then characterized the cleavage of malate dehydrogenase (MDHM) and phosphoglycerate kinase 1 (PGK1), representing new cardiac tissue substrates. Our findings provide insights into the intracellular substrates of MMP-2 in cardiac cells, suggesting that MMP-2 activation plays a role in cardiac metabolism.

6.
Biomed Environ Sci ; 37(2): 146-156, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38582977

ABSTRACT

Objective: This study aimed to explore the association of single nucleotide polymorphisms (SNP) in the matrix metalloproteinase 2 (MMP-2) signaling pathway and the risk of vascular senescence (VS). Methods: In this cross-sectional study, between May and November 2022, peripheral venous blood of 151 VS patients (case group) and 233 volunteers (control group) were collected. Fourteen SNPs were identified in five genes encoding the components of the MMP-2 signaling pathway, assessed through carotid-femoral pulse wave velocity (cfPWV), and analyzed using multivariate logistic regression. The multigene influence on the risk of VS was assessed using multifactor dimensionality reduction (MDR) and generalized multifactor dimensionality regression (GMDR) modeling. Results: Within the multivariate logistic regression models, four SNPs were screened to have significant associations with VS: chemokine (C-C motif) ligand 2 (CCL2) rs4586, MMP2 rs14070, MMP2 rs7201, and MMP2 rs1053605. Carriers of the T/C genotype of MMP2 rs14070 had a 2.17-fold increased risk of developing VS compared with those of the C/C genotype, and those of the T/T genotype had a 19.375-fold increased risk. CCL2 rs4586 and MMP-2 rs14070 exhibited the most significant interactions. Conclusion: CCL2 rs4586, MMP-2 rs14070, MMP-2 rs7201, and MMP-2 rs1053605 polymorphisms were significantly associated with the risk of VS.


Subject(s)
Matrix Metalloproteinase 2 , Polymorphism, Single Nucleotide , Humans , Case-Control Studies , Cross-Sectional Studies , Genetic Predisposition to Disease , Genotype , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Pulse Wave Analysis , Signal Transduction
7.
J Clin Med ; 13(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38610612

ABSTRACT

Background: The purpose of the study was to determine whether the use of ß-adrenoceptor antagonists (ß-blockers) can affect metalloproteinase 2 (MMP-2) and its tissue inhibitor (TIMP-2) in patients with chronic kidney disease (CKD) on conservative treatment. Methods: The circulating MMP-2/TIMP-2 system, proinflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the marker of oxidative stress-Cu/Zn superoxide dismutase (Cu/Zn SOD)-were measured in 23 CKD patients treated with ß-blockers [ß-blockers (+)] and in 27 CKD patients not receiving the above medication [ß-blockers (-)]. Results: The levels of MMP-2, TIMP-2, and IL-6 were significantly lower in the ß-blockers (+) than in the ß-blockers (-) group, whereas Cu/Zn SOD concentrations were not affected by ß-blocker use. There was a strong, independent association between MMP-2 and TIMP-2 in both analyzed patient groups. In the ß-blockers (+) group, MMP-2 levels were indirectly related to the signs of inflammation, whereas in the ß-blockers (-) group, the alterations in the MMP-2/TIMP-2 system were associated with the oxidative stress marker and CKD etiology. Conclusions: This study is the first to suggest that the use of ß-blockers was associated with the reduction in IL-6 and the MMP-2/TIMP-2 system in CKD, providing a pharmacological rationale for the use of ß-blockers to reduce inflammation and abnormal vascular remodeling in CKD.

8.
Nutrients ; 16(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38612961

ABSTRACT

Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.


Subject(s)
Gelatinases , Matrix Metalloproteinase 9 , Humans , Adolescent , Matrix Metalloproteinase 2 , Sodium Chloride , Sodium Chloride, Dietary , Cholesterol, HDL , Endopeptidases
9.
World J Gastrointest Oncol ; 16(4): 1547-1563, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660652

ABSTRACT

BACKGROUND: Increasing data indicated that long noncoding RNAs (lncRNAs) were directly or indirectly involved in the occurrence and development of tumors, including hepatocellular carcinoma (HCC). Recent studies had found that the expression of lncRNA HAND2-AS1 was downregulated in HCC tissues, but its role in HCC progression is unclear. Ultrasound targeted microbubble destruction mediated gene transfection is a new method to overexpress genes. AIM: To study the role of ultrasound microbubbles (UTMBs) mediated HAND2-AS1 in the progression of HCC, in order to provide a new reference for the treatment of HCC. METHODS: In vitro, we transfected HAND2-AS1 siRNA into HepG2 cells by UTMBs, and detected cell proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) by cell counting kit-8 assay, flow cytometry, Transwell invasion assay and Western blotting, respectively. In addition, we transfected miR-837-5p mimic into UTMBs treated cells and observed the changes of cell behavior. Next, the UTMBs treated HepG2 cells were transfected together with miR-837-5p mimic and tissue inhibitor of matrix metalloproteinase-2 (TIMP2) overexpression vector, and we detected cell proliferation, apoptosis, invasion and EMT. In vivo, we established a mouse model of subcutaneous transplantation of HepG2 cells and observed the effect of HAND2-AS1 silencing on tumor formation ability. RESULTS: We found that UTMBs carrying HAND2-AS1 restricted cell proliferation, invasion, and EMT, encouraged apoptosis, and HAND2-AS1 silencing eliminated the effect of UTMBs. Additionally, miR-873-5p targets the gene HAND2-AS1, which also targets the 3'UTR of TIMP2. And miR-873-5p mimic counteracted the impact of HAND2-AS1. Further, miR-873-5p mimic solely or in combination with pcDNA-TIMP2 had been transformed into HepG2 cells exposed to UTMBs. We discovered that TIMP2 reversed the effect of miR-873-5p mimic caused by the blocked signalling cascade for matrix metalloproteinase (MMP) 2/MMP9. In vivo results showed that HAND2-AS1 silencing significantly inhibited tumor formation in mice. CONCLUSION: LncRNA HAND2-AS1 promotes TIMP2 expression by targeting miR-873-5p to inhibit HepG2 cell growth and delay HCC progression.

10.
Talanta ; 274: 126079, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38608631

ABSTRACT

Simple and low-cost biosensing solutions are suitable for point-of-care applications aiming to overcome the gap between scientific concepts and technological production. To compete with sensitivity and selectivity of golden standards, such as liquid chromatography, the functionalization of biosensors is continuously optimized to enhance the signal and improve their performance, often leading to complex chemical assay development. In this research, the efforts are made on optimizing the methodology for electrochemical reduction of graphene oxide to produce thin film-modified gold electrodes. Under the employed specific conditions, 20 cycles of cyclic voltammetry (CV) are shown to be optimal for superior electrical activation of graphene oxide into electrochemically reduced graphene oxide (ERGO). This platform is further used to develop a matrix metalloproteinase 2 (MMP-2) biosensor, where specific anti-MMP2 aptamers are utilized as a biorecognition element. MMP-2 is a protein which is typically overexpressed in tumor tissues, with important roles in tumor invasion, metastasis as well as in tumor angiogenesis. Based on impedimetric measurements, we were able to detect as low as 3.32 pg mL-1 of MMP-2 in PBS with a dynamic range of 10 pg mL-1 - 10 ng mL-1. Further experiments with real blood samples revealed a promising potential of the developed sensor for direct measurement of MMP-2 in complex media. High specificity of detection is demonstrated - even to the closely related enzyme MMP-9. Finally, the potential of reuse was demonstrated by signal restoration after experimental detection of MMP-2.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Graphite , Matrix Metalloproteinase 2 , Graphite/chemistry , Matrix Metalloproteinase 2/blood , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/analysis , Aptamers, Nucleotide/chemistry , Humans , Electrochemical Techniques/methods , Biosensing Techniques/methods , Oxidation-Reduction , Limit of Detection , Electrodes , Gold/chemistry
11.
J Nanobiotechnology ; 22(1): 209, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664830

ABSTRACT

BACKGROUND: Vasculogenic mimicry (VM), when microvascular channels are formed by cancer cells independent of endothelial cells, often occurs in deep hypoxic areas of tumors and contributes to the aggressiveness and metastasis of triple-negative breast cancer (TNBC) cells. However, well-developed VM inhibitors exhibit inadequate efficacy due to their low drug utilization rate and limited deep penetration. Thus, a cost-effective VM inhibition strategy needs to be designed for TNBC treatment. RESULTS: Herein, we designed a low-intensity focused ultrasound (LIFU) and matrix metalloproteinase-2 (MMP-2) dual-responsive nanoplatform termed PFP@PDM-PEG for the cost-effective and efficient utilization of the drug disulfiram (DSF) as a VM inhibitor. The PFP@PDM-PEG nanodroplets effectively penetrated tumors and exhibited substantial accumulation facilitated by PEG deshielding in a LIFU-mediated and MMP-2-sensitive manner. Furthermore, upon exposure to LIFU irradiation, DSF was released controllably under ultrasound imaging guidance. This secure and controllable dual-response DSF delivery platform reduced VM formation by inhibiting COL1/pro-MMP-2 activity, thereby significantly inhibiting tumor progression and metastasis. CONCLUSIONS: Considering the safety of the raw materials, controlled treatment process, and reliable repurposing of DSF, this dual-responsive nanoplatform represents a novel and effective VM-based therapeutic strategy for TNBC in clinical settings.


Subject(s)
Disulfiram , Lung Neoplasms , Matrix Metalloproteinase 2 , Nanoparticles , Neovascularization, Pathologic , Triple Negative Breast Neoplasms , Disulfiram/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Matrix Metalloproteinase 2/metabolism , Animals , Female , Humans , Mice , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Nanoparticles/chemistry , Neovascularization, Pathologic/drug therapy , Mice, Inbred BALB C , Mice, Nude , Drug Repositioning , Ultrasonic Waves , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use
12.
Tuberculosis (Edinb) ; 146: 102501, 2024 May.
Article in English | MEDLINE | ID: mdl-38490030

ABSTRACT

Matrix metalloproteinases (MMPs) have a role in driving neuroinflammation in infectious as well as non-infectious diseases; however, recent reports have potentiated the role of microRNAs in regulating MMPs at post-transcriptional levels, leading to dysregulation of crucial MMP functions like tissue remodelling, blood brain barrier integrity, etc. In present study, microRNAs regulating MMPs (MMP2 and MMP3) were selected from database search followed by literature support. Expression of these microRNAs i.e., hsa-miR-495-3p, hsa-miR-132-3p and hsa-miR-21-5p was assessed by RT-PCR and the protein levels of MMPs were assessed by ELISA in the cerebrospinal fluid (CSF) of tuberculous meningitis (TBM) patients, healthy controls (HC) and non-infectious neuroinflammatory disease (NID) patients. The expression of hsa-miR-495-3p and hsa-miR-132-3p showed downregulation in TBM while hsa-miR-21-5p was overexpressed as compared to healthy controls. Moreover, MMP levels were found to be deranged with a significant increase in MMP3 levels in the TBM and NID patients compared to HC group. These observations highlight dysregulated microRNAs (hsa-miR-495-3p, hsa-miR-21-5p and hsa-miR-132-3p) levels might impair the levels of MMPs (MMP2 and MMP3) leading to neuroinflammation in TBM and NID population. These findings can further be applied to target these microRNAs for developing newer treatment modalities for better complication management.


Subject(s)
MicroRNAs , Mycobacterium tuberculosis , Tuberculosis, Meningeal , Humans , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 3/genetics , Tuberculosis, Meningeal/genetics , Neuroinflammatory Diseases , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism
13.
Anticancer Res ; 44(4): 1465-1473, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537953

ABSTRACT

BACKGROUND/AIM: Uterine leiomyosarcoma (uLMS) is a rare, highly malignant, and invasive cancer, with early metastasis. Mismatch repair (MMR) proteins and matrix metalloproteinases (MMPs) are associated with the occurrence, proliferation, and invasion of most malignant cancers; however, their abnormal expression in uLMS remains poorly clarified. PATIENTS AND METHODS: Immunohistochemistry was performed to assess MMR protein and MMP2/9 expression as well as Ki67 marker proliferation in benign and malignant uterine smooth muscle tumors. Data from 28 cases of uterine leiomyoma and 31 cases of uLMS were analyzed. RESULTS: Tumor tissues from patients with uLMS had higher expression levels of MMP2 (p<0.001), MMP9 (p<0.05), and Ki67 (p<0.001) than those from patients with uterine leiomyoma; MMR protein expression showed the opposite trend (p<0.05). uLMS proliferation and metastasis correlated positively with MMP2 (p=0.012 and 0.015, respectively) but negatively with MMP9 (p=0.021 and 0.04, respectively). MMR protein expression did not correlate with uLMS proliferation or metastasis (p>0.05). CONCLUSION: Expression levels of MMP2 and MMP9 were upregulated in malignant uLMS tumors when compared with those in benign uterine leiomyoma tumors. Increased MMP2 expression might promote uLMS invasion and migration. MMP9 overexpression might be related to uLMS occurrence; however, it protects against uLMS invasion and metastasis. MMP2 and MMP9 may be potential predictors of uLMS cell proliferation, metastasis, and prognosis. These findings could be helpful in developing new strategies for diagnosing and treating uLMS.


Subject(s)
Leiomyoma , Leiomyosarcoma , Pelvic Neoplasms , Uterine Neoplasms , Female , Humans , Leiomyosarcoma/pathology , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 2 , Ki-67 Antigen , Uterine Neoplasms/pathology , Leiomyoma/pathology
14.
Heliyon ; 10(6): e27694, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38509956

ABSTRACT

Background: Bronchial asthma is a persistent inflammatory respiratory condition that restricts the passage of air and causes hyperresponsiveness. Chronic asthma can be classified into three categories: mild, moderate, and severe. Remodeling took place as the extracellular matrix accumulated in the walls of the airways. Inflammation occurs as a result of the damage caused by matrix metalloproteinase-2 (MMP-2) to basement membrane type IV collagen. The severity of asthma may be associated with miR-196a2. The objective of our study was to investigate the underlying mechanisms and clinical relevance of miR-196a2 and MMP-2 serum levels in relation to the severity of asthma. Methods: This study recruited 85 controls and 95 asthmatics classified as mild, moderate, or severe. Expression of miR-196a2 was measured by quantitative reverse transcriptase PCR. Using the enzyme-linked immunosorbent assay (ELISA), MMP-2, IL-6, and total immunoglobulin E (IgE) levels in the serum of asthmatics of various grades were compared to a control group. MMP-2's diagnostic and prognostic potential was determined using ROC curve analysis. This study also measured blood Eosinophils and PFTs. We examined MMP-2's connections with IgE, blood Eosinophils, and PFTs. Results: The current investigation found that miR-196a2 expression was significantly higher in the control group than in asthmatic patients as a whole. The study found that severe asthmatics had higher MMP-2, IL-6, and IgE serum levels than healthy controls. We identified the MMP-2 serum concentration cutoff with great sensitivity and specificity. Significant relationships between MMP-2 serum level and miR-196a2 expression in the patient group with severe asthmatics were found. The MMP-2, IL-6, and IgE serum levels were considerably higher in mild, moderate, and severe asthmatics than controls. The miR-196a2 expression and MMP-2 serum concentration correlated positively with IgE and blood eosinophils % and negatively with all lung function tests in the asthmatic patient group.Conclusion: the study revealed that the elevated miR-196a2 expression and serum concentration of MMP-2, IL-6, and IgE associated with elevated blood eosinophils % is associated with pathophysiology and degree of asthma severity. The miR-196a2 expression and MMP-2 serum concentration have a promising diagnostic and prognostic ability in bronchial asthma.

15.
Biomed Pharmacother ; 174: 116480, 2024 May.
Article in English | MEDLINE | ID: mdl-38547765

ABSTRACT

Sepsis is caused by an inadequate or dysregulated host response to infection. Enzymes causing cellular degradation are matrix metalloproteinases (MMPs). Lipopolysaccharide (LPS) is used in models of sepsis in laboratory settings The aim of the study was to measure MMP 2 and 12 concentrations in spleen and lungs in rats in which septic shock was induced by LPS. The experiment was carried out on 40 male Wistar rats (5 groups of 8): 0. controls 1. administered LPS 2. administered bestatin 3. LPS and bestatin 4.bestatin and after 6 hours LPS Animals were decapitated. Lungs and spleens were collected. Concentrations of MMP-2 and MMP-12 were determined using immunoenzymatic methods. Mean (±SD) MMP-2 in the controls was 43.57 ± 20.53 ng/ml in the lungs and 1.7 ± 0.72 ng/ml in the spleen; Group 1: 31.28 ± 13.13 ng/ml, 0.83 ± 0.8 ng/ml; Group 2: 44.24 ± 22.75 ng /ml, 1.01 ± 0.32 ng/ml; Group 3: 35.94 ± 15.13 ng/ml, 0.41 ± 0.03 ng/ml; Group 4:79.42 ± 44.70 ng/ml, 0.45 ± 0.15, respectively. Mean MMP-12 in controls was 19.79 ± 10.01 ng/ml in lungs and 41.13 ± 15.99 ng/ml in the spleen; Group 1:27.97 ± 15.1 ng/ml; 40.44 ± 11.2 ng/ml; Group 2: 37.93 ± 25.38 ng/ml 41.05 ± 18.08 ng/ml; Group 3: 40.59 ± 11.46 ng/ml, 35.16 ± 12.89 ng/ml; Group 4: 39.4 ± 17.83 ng/ml, 42.04 ± 12.35 ng/ml, respectively. CONCLUSIONS: 1. Bestatin reduces MMP 2 and 12 levels in spleen and lungs. 2. Treatment with bestatin minimizes the effect of LPS.


Subject(s)
Disease Models, Animal , Leucine , Leucine/analogs & derivatives , Lipopolysaccharides , Lung , Matrix Metalloproteinase 12 , Matrix Metalloproteinase 2 , Rats, Wistar , Sepsis , Spleen , Animals , Spleen/drug effects , Spleen/metabolism , Male , Matrix Metalloproteinase 2/metabolism , Lung/drug effects , Lung/enzymology , Lung/pathology , Lung/metabolism , Sepsis/drug therapy , Sepsis/chemically induced , Matrix Metalloproteinase 12/metabolism , Rats , Leucine/pharmacology , Leucine/therapeutic use , Matrix Metalloproteinase Inhibitors/pharmacology
16.
Int J Biol Macromol ; 262(Pt 2): 130043, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340921

ABSTRACT

Matrix metalloproteinase-2 (MMP-2)-responsive nanodrug vehicles have garnered significant attention as antitumor drug delivery systems due to the extensive research on matrix metalloproteinases (MMPs) within the tumor extracellular matrix (ECM). These nanodrug vehicles exhibit stable circulation in the bloodstream and accumulate specifically in tumors through various mechanisms. Upon reaching tumor tissues, their structures are degraded in response to MMP-2 within the ECM, resulting in drug release. This controlled drug release significantly increases drug concentration within tumors, thereby enhancing its antitumor efficacy while minimizing side effects on normal organs. This review provides an overview of MMP-2 characteristics, enzyme-sensitive materials, and current research progress regarding their application as MMP-2-responsive nanodrug delivery system for anti-tumor drugs, as well as considering their future research prospects. In conclusion, MMP-2-sensitive drug delivery carriers have a broad application in all kinds of nanodrug delivery systems and are expected to become one of the main means for the clinical development and application of nanodrug delivery systems in the future.


Subject(s)
Nanoparticles , Neoplasms , Humans , Matrix Metalloproteinase 2/metabolism , Drug Delivery Systems/methods , Neoplasms/drug therapy , Drug Carriers/therapeutic use
17.
Molecules ; 29(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398530

ABSTRACT

Endometriosis is a common gynecological condition with a complex physio-pathological background. This study aimed to assess the role of Rubus idaeus leaf extract (RiDE) as a potential therapeutic agent in reducing the size of the endometriotic lesions and modulate the plasma expression of MMP-2, MMP-9, and TGF-ß1. The endometriotic lesions were induced in a rat model by the autologous transplant of endometrium. Thirty-six female rats, Wistar breed, with induced endometriosis, were divided into four groups and underwent treatment for 28 days. The CTRL group received 0.5 mL/day of the vehicle; the DG group received 1 mg/kg b.w./day dienogest; the RiDG group received 0.25 mL/kg b.w./day RiDE and the D+RiDG group received 1 mg/kg b.w./day dienogest and 0.25 mL/kg b.w./day RiDE, respectively. Rats' weight, endometriotic lesion diameter and grade, and plasma levels of MMP-2, MMP-9, and TGF-ß1 were assessed before and after treatment. The administration of RiDE in association with dienogest vs. dienogest determined a lower weight gain and a reduction in diameter of the endometriotic lesions. RiDE administration restored MMP2 and MMP9 plasma levels to initial conditions. Rubus idaeus extract may help in reducing dienogest-associated weight gain, lower the size of endometriotic lesions, and have anti-inflammatory effects through MMP2 and MMP9 reduction.


Subject(s)
Endometriosis , Rubus , Humans , Rats , Female , Animals , Endometriosis/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/metabolism , Rubus/metabolism , Transforming Growth Factor beta1 , Polyphenols/therapeutic use , Rats, Wistar , Plant Breeding , Weight Gain
18.
Biochem Biophys Rep ; 37: 101609, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38205188

ABSTRACT

Background: High-molecular weight heparin (HMWH), a molecule extensively used as an anticoagulant, shows concentration-dependent angiogenic and anti-angiogenic potential. So far, no studies have reported the interactive potential of HMWH with various pro-angiogenic growth factors under physiological conditions. Haence, we aimed to find the impact of major pro-angiogenic growth factors under HMWH induced angiogenesis. Methods: Chicken Chorioallantoic Membranes (CAMs) are incubated with various concentrations of HMWH. Semiquantitative PCR method was implemented to measure the changes in the transcription level of pro-angiogenic growth factors. The scanning electron microscopic technique is applied to find the morphological changes in CAM. Molecular docking and molecular dynamics simulation studies using NAMD and CHARMM force field discerned the heparin-binding mode with the pro-angiogenic growth factors. Results: HMWH can enhance the transcription level of major pro-angiogenic growth factors, significantly impacting FGF2 under 100 µM concentration. The in-silico analysis reveals that HMWH shows the highest binding affinity with FGF2. Further, molecular dynamics and interaction studies using 1 kDa Heparin against FGF2 showed that the former binds stably with the latter due to a strong salt bridge formation between the sulfate groups and arginine residues (ARG 119 and ARG109). Conclusion: The combined experimental and in-silico analysis results reveal that HMWH can interact with pro-angiogenic growth factors under micromolar concentration while inducing angiogenesis. This observation further supports the therapeutic benefits of HMWH as an angiogenic factor under such low concentration. This technique is used to replenish the blood supply to chronic wounds to speed healing and prevent unnecessary amputations.

19.
Transpl Immunol ; 82: 101984, 2024 02.
Article in English | MEDLINE | ID: mdl-38184210

ABSTRACT

PURPOSE: The tissue inhibitor of metalloproteinase 2 (TIMP2), a natural inhibitor of matrix metalloproteinase (MMP), regulates inflammation, fibrosis, and cell proliferation. Chronic renal allograft dysfunction (CRAD) is a primary factor affecting the long-term survival of renal allografts. We assessed whether up-regulation of TIMP2 expression may affect the ERK1/2-NF-κB signaling pathway and CRAD development. METHODS: Lewis rats received orthotopic F344 kidney allografts to establish the classical CRAD model. The treatment group was injected with a lentivirus encoding a TIMP2-targeting small hairpin (sh)RNA (LTS) at 5 × 108 TU/ml monthly after kidney transplantation. A second CRAD group was injected with a lentivirus TIMP2-control vector (LTC). After 12 weeks, blood, urine, and kidney tissue were harvested to evaluate renal function and pathological examinations. Hematoxylin and eosin staining, Masson staining, and Periodic acid-Schiff staining were performed for renal histopathological evaluation according to the Banff criteria. TIMP2, phospho (p)-ERK1/2, p-p65 (NF-κB) expression levels were measured via immunohistochemical and Western blot analyses. RESULTS: Compared to the F344 and Lewis control groups, the expression of TIMP2, p-ERK1/2, and p-p65 were significantly higher in the CRAD and CRAD+LTC renal tissues (p < 0.05). There were also increased levels of serum creatinine, nitrogen, and 24 h urinary protein in these two groups (p < 0.05). Typical histopathological changes of CRAD were observed in the CRAD and CRAD+LTC groups. Administration of LTS effectively decreased the expression of TIMP2, p-ERK1/2, and p-P65, and reduced interstitial fibrosis and macrophage infiltration in the treatment group (p < 0.05). Additionally, MCP1 and ICAM-1, which are downstream cytokines of the NF-κB pathway, were also inhibited in the renal rat kidney from the LTS group (p < 0.05). Furthermore, renal function was well preserved in the LTS group compared to the CRAD group and CRAD+LTC group. CONCLUSION: A decrease of TIMP2 can alleviate the progression of inflammation in CRAD via inhibition of the ERK1/2-NF-κB signaling pathway.


Subject(s)
Kidney Transplantation , NF-kappa B , Animals , Rats , Allografts/metabolism , Fibrosis , Inflammation , MAP Kinase Signaling System , NF-kappa B/metabolism , Rats, Inbred F344 , Rats, Inbred Lew , Signal Transduction , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism
20.
Biosystems ; 235: 105103, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38123060

ABSTRACT

OBJECTIVE: Matrix metalloproteinase-2 (MMP2) plays a significant role in cleaving extracellular matrix components, leading to many cancer cells' progression and invasion behavior. Therefore, MMP2 inhibition may hold promise for cancer treatment. Anthraquinones have shown antineoplastic effects, some of which have been used in clinical practice as anticancer drugs. This study used a computational drug discovery approach to assess the possible inhibitory effects of selected anthraquinones on MMP2. The results were then compared with that of Captopril, which was considered a standard drug. METHODS: This study used the AutoDock 4.0 tool to evaluate the binding affinity of 21 anthraquinones to the MMP2 catalytic domain. The most favorable scores based on the Gibbs free binding energy scores were given to the highest-ranked ligands. The Discovery Studio Visualizer tool illustrated interactions between MMP2 residues and top-ranked anthraquinones. RESULTS: A total of 12 anthraquinones were identified with ΔGbinding scores less than - 10 kcal/mol. Pulmatin (Chrysophanol-8-glucoside) was the most potent MMP2 inhibitor, with a ΔGbinding score of - 12.91 kcal/mol. This anthraquinone was able to restrict MMP2 activity within a picomolar range. CONCLUSION: MMP2 inhibition by anthraquinones, notably Pulmatin, may be a useful therapeutic approach for cancer treatment.


Subject(s)
Anthraquinones , Antineoplastic Agents , Matrix Metalloproteinase 2 , Matrix Metalloproteinase Inhibitors , Anthraquinones/pharmacology , Anthraquinones/chemistry , Anthraquinones/metabolism , Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...