Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Front Oncol ; 13: 1091274, 2023.
Article in English | MEDLINE | ID: mdl-37007076

ABSTRACT

Introduction: Wilms Tumor (WT), or nephroblastoma, is the most common pediatric kidney cancer. Most WTs display a "favorable" triphasic histology, in which the tumor is comprised of blastemal, stromal, and epithelial cell types. Blastemal predominance after neoadjuvant chemotherapy or diffuse anaplasia ("unfavorable" histology; 5-8%) portend a worse prognosis. Blastema likely provide the putative cancer stem cells (CSCs), which retain molecular and histologic features characteristic of nephron progenitor cells (NPCs), within WTs. NPCs arise in the metanephric mesenchyme (MM) and populate the cap mesenchyme (CM) in the developing kidney. WT blastemal cells, like NPCs, similarly express markers, SIX2 and CITED1. Tumor xenotransplantation is currently the only dependable method to propagate tumor tissue for research or therapeutic screening, since efforts to culture tumors in vitro as monolayers have invariably failed. Therefore, a critical need exists to propagate WT stem cells rapidly and efficiently for high-throughput, real-time drug screening. Methods: Previously, our lab developed niche conditions that support the propagation of murine NPCs in culture. Applying similar conditions to WTs, we assessed our ability to maintain key NPC "stemness" markers, SIX2, NCAM, and YAP1, and CSC marker ALDHI in cells from five distinct untreated patient tumors. Results: Accordingly, our culture conditions maintained the expression of these markers in cultured WT cells through multiple passages of rapidly dividing cells. Discussion: These findings suggest that our culture conditions sustain the WT blastemal population, as previously shown for normal NPCs. As a result, we have developed new WT cell lines and a multi-passage in vitro model for studying the blastemal lineage/CSCs in WTs. Furthermore, this system supports growth of heterogeneous WT cells, upon which potential drug therapies could be tested for efficacy and resistance.

2.
Semin Cell Dev Biol ; 127: 68-76, 2022 07.
Article in English | MEDLINE | ID: mdl-34627669

ABSTRACT

Kidney organoid technology has led to a renaissance in kidney developmental biology. The complex underpinnings of mammalian kidney development have provided a framework for the generation of kidney cells and tissues from human pluripotent stem cells. Termed kidney organoids, these 3-dimensional structures contain kidney-specific cell types distributed similarly to in vivo architecture. The adult human kidney forms from the reciprocal induction of two disparate tissues, the metanephric mesenchyme (MM) and ureteric bud (UB), to form nephrons and collecting ducts, respectively. Although nephrons and collecting ducts are derived from the intermediate mesoderm (IM), their development deviates in time and space to impart distinctive inductive signaling for which separate differentiation protocols are required. Here we summarize the directed differentiation protocols which generate nephron kidney organoids and collecting duct kidney organoids, making note of similarities as much as differences. We discuss limitations of these present approaches and discuss future directions to improve kidney organoid technology, including a greater understanding of anterior IM and its derivatives to enable an improved differentiation protocol to collecting duct organoids for which historic and future developmental biology studies will be instrumental.


Subject(s)
Organoids , Pluripotent Stem Cells , Adult , Animals , Cell Differentiation , Humans , Kidney , Mammals , Nephrons , Organogenesis , Organoids/metabolism , Pluripotent Stem Cells/metabolism
4.
Front Physiol ; 12: 648056, 2021.
Article in English | MEDLINE | ID: mdl-34239447

ABSTRACT

BACKGROUND: The kidney ontogenesis is the most structurally affected by gestational protein restriction, reducing 28% of their functional units. The reduced nephron number is predictive of hypertension and cardiovascular dysfunctions that are generally observed in the adult age of most fetal programming models. We demonstrate miRNAs and predict molecular pathway changes associated with reduced reciprocal interaction between metanephros cap (CM) and ureter bud (UB) and a 28% decreased nephron stem cells in the 17 gestational days (17GD) low protein (LP) intake male fetal kidney. Here, we evaluated the same miRNAs and predicted targets in the kidneys of 21GD and at 7 days of life (7DL) LP offspring to elucidate the molecular modulations during nephrogenesis. METHODS: Pregnant Wistar rats were allocated into two groups: NP (regular protein diet- 17%) or LP (diet-6%). miRNA transcriptome sequencing (miRNA-Seq) was performed on the MiSeq platform from 21GD and 7DL male offspring kidneys using previously described methods. Among the top 10 dysfunctional regulated miRNAs, we validated 7 related to proliferation, differentiation, and apoptosis processes and investigated predicted target genes and proteins by RT-qPCR and immunohistochemistry. RESULTS: In 21GD, LP fetuses were identified alongside 21 differently expressed miRNAs, of which 12 were upregulated and 9 downregulated compared to age-matched NP offspring. In 7-DL LP offspring, the differentially expressed miRNAs were counted to be 74, of which 46 were upregulated and 28 downregulated. The curve from 17-GD to 7-DL shows that mTOR was fundamental in reducing the number of nephrons in fetal kidneys where the mothers were subjected to a protein restriction. IGF1 and TGFß curves also seemed to present the same mTOR pattern and were modulated by miRNAs 181a-5p, 181a-3p, and 199a-5p. The miRNA 181c-3p modulated SIX2 and Notch1 reduction in 7-DL but not in terms of the enhanced expression of both in the 21-GD, suggesting the participation of an additional regulator. We found enhanced Bax in 21-GD; it was regulated by miRNA 298-5p, and Bcl2 and Caspase-3 were controlled by miRNA (by 7a-5p and not by the predicted 181a-5p). The miRNA 144-3p regulated BCL6, which was enhanced, as well as Zeb 1 and 2 induced by BCL6. These results revealed that in 21GD, the compensatory mechanisms in LP kidneys led to the activation of UB ramification. Besides, an increase of 32% in the CM stem cells and a possible cell cycle halt of renal progenitor cells, which remaining undifferentiated, were observed. In the 7DL, much more altered miRNA expression was found in LP kidneys, and this was probably due to an increased maternal diet content. Additionally, we verified the activation of pathways related to differentiation and consumption of progenitor cells.

5.
Anat Rec (Hoboken) ; 303(10): 2578-2587, 2020 10.
Article in English | MEDLINE | ID: mdl-32790143

ABSTRACT

Branching morphogenesis is an integral developmental mechanism central to the formation of a range of organs including the kidney, lung, pancreas and mammary gland. The ramified networks of epithelial tubules it establishes are critical for the processes of secretion, excretion and exchange mediated by these tissues. In the kidney, branching serves to establish the collecting duct system that transports urine from the nephrons into the renal pelvis, ureter and finally the bladder. Generally speaking, the formation of these networks in different organs begins with the specification and differentiation of simple bud-like organ anlage, which then undergo a process of elaboration, typically by bifurcation. This process is often governed by the interaction of progenitor cells at the tips of the epithelia with neighboring mesenchymal cell populations which direct the branching process and which often themselves differentiate to form part of the adult organ. In the kidney, the tips of ureteric bud elaborate through a dynamic cell signaling relationship with overlying nephron progenitor cell populations. These cells sequentially commit to differentiation and the resulting nephrons reintegrate with the ureteric epithelium as development progresses. This review will describe recent advances in understanding the how the elaboration of the ureteric bud is patterned and consider the extent to which this process is shared with other organs.


Subject(s)
Cell Differentiation/physiology , Kidney/embryology , Organogenesis/physiology , Humans , Stem Cells/physiology
6.
Methods Mol Biol ; 1926: 23-30, 2019.
Article in English | MEDLINE | ID: mdl-30742259

ABSTRACT

Kidney organogenesis has been a widely used classical model system to study inductive tissue interactions that guide differentiation of many organs. The basis for this is in the pioneering work done during the early 1950s when the conditions of how to support ex vivo growth and differentiation of developing kidneys were revealed. Importantly, culturing developing kidneys remains as an essential instrument to advance our understanding of molecular and cellular regulation of morphogenesis even today. Despite the fact that embryonic kidneys have been cultured for decades, it is not a trivial method and requires specific anatomical and developmental biology knowledge. This chapter outlines the general steps in organ culture and details the requirements for successful kidney explant differentiation.


Subject(s)
Kidney/embryology , Organ Culture Techniques/methods , Animals , Cell Differentiation , Kidney/cytology , Mesoderm/cytology , Mice , Ureter/cytology , Ureter/enzymology
7.
Methods Mol Biol ; 1926: 39-51, 2019.
Article in English | MEDLINE | ID: mdl-30742261

ABSTRACT

Kidney development and induction of tubulogenesis have been studied for almost seven decades. The experimental setup of metanephric mesenchyme induction ex vivo allows to control the environment, to perform cellular manipulations, and to learn about renal development. Since the establishment of the ex vivo kidney culture technique in 1953, the method was modified to suit well the progress in biological and medical fields and still today present many advantages over the traditional in vivo studies.


Subject(s)
Kidney/embryology , Organ Culture Techniques/methods , Animals , Mesoderm/cytology , Mice , Organogenesis/genetics , Organogenesis/physiology , Spinal Cord/embryology
8.
Methods Mol Biol ; 1926: 143-149, 2019.
Article in English | MEDLINE | ID: mdl-30742269

ABSTRACT

Viral vectors enable efficient transfection of ectopic DNA into hard to transfect cells. Viral vectors are normally used to obtain permanent modification of target cells, and tissues expect for the cases where integrase-deficient viruses are used. Here we describe a method to stably transfect metanephric mesenchyme cells isolated from the murine embryonic kidney at day E11.5. Using this method, it is possible to transfect hard to transfect cells and successfully evade host tissue immune response. Due to these advantages, this method has become one of the most frequently used in generating stable cell line, manipulation of tissues, and gene therapy.


Subject(s)
Lentivirus/genetics , Viruses/genetics , Animals , Gene Transfer Techniques , Genetic Vectors/genetics , HEK293 Cells , Humans
9.
J Am Soc Nephrol ; 29(12): 2795-2808, 2018 12.
Article in English | MEDLINE | ID: mdl-30377232

ABSTRACT

BACKGROUND: The mammalian kidney develops through reciprocal inductive signals between the metanephric mesenchyme and ureteric bud. Transcription factor 21 (Tcf21) is highly expressed in the metanephric mesenchyme, including Six2-expressing cap mesenchyme and Foxd1-expressing stromal mesenchyme. Tcf21 knockout mice die in the perinatal period from severe renal hypodysplasia. In humans, Tcf21 mRNA levels are reduced in renal tissue from human fetuses with renal dysplasia. The molecular mechanisms underlying these renal defects are not yet known. METHODS: Using a variety of techniques to assess kidney development and gene expression, we compared the phenotypes of wild-type mice, mice with germline deletion of the Tcf21 gene, mice with stromal mesenchyme-specific Tcf21 deletion, and mice with cap mesenchyme-specific Tcf21 deletion. RESULTS: Germline deletion of Tcf21 leads to impaired ureteric bud branching and is accompanied by downregulated expression of Gdnf-Ret-Wnt11, a key pathway required for branching morphogenesis. Selective removal of Tcf21 from the renal stroma is also associated with attenuation of the Gdnf signaling axis and leads to a defect in ureteric bud branching, a paucity of collecting ducts, and a defect in urine concentration capacity. In contrast, deletion of Tcf21 from the cap mesenchyme leads to abnormal glomerulogenesis and massive proteinuria, but no downregulation of Gdnf-Ret-Wnt11 or obvious defect in branching. CONCLUSIONS: Our findings indicate that Tcf21 has distinct roles in the cap mesenchyme and stromal mesenchyme compartments during kidney development and suggest that Tcf21 regulates key molecular pathways required for branching morphogenesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Kidney/embryology , Kidney/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Down-Regulation , Female , Glial Cell Line-Derived Neurotrophic Factor/genetics , Humans , Immunohistochemistry , Kidney/abnormalities , Mesoderm/embryology , Mesoderm/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Morphogenesis/genetics , Pregnancy , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Wnt Proteins/genetics , Wnt Proteins/metabolism
10.
Proc Natl Acad Sci U S A ; 115(23): 5998-6003, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29784808

ABSTRACT

Nephrogenesis concludes by the 36th week of gestation in humans and by the third day of postnatal life in mice. Extending the nephrogenic period may reduce the onset of adult renal and cardiovascular disease associated with low nephron numbers. We conditionally deleted either Mtor or Tsc1 (coding for hamartin, an inhibitor of Mtor) in renal progenitor cells. Loss of one Mtor allele caused a reduction in nephron numbers; complete deletion led to severe paucity of glomeruli in the kidney resulting in early death after birth. By contrast, loss of one Tsc1 allele from renal progenitors resulted in a 25% increase in nephron endowment with no adverse effects. Increased progenitor engraftment rates ex vivo relative to controls correlated with prolonged nephrogenesis through the fourth postnatal day. Complete loss of both Tsc1 alleles in renal progenitors led to a lethal tubular lesion. The hamartin phenotypes are not dependent on the inhibitory effect of TSC on the Mtor complex but are dependent on Raptor.


Subject(s)
Nephrons , Organogenesis/physiology , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Female , Male , Mice , Mice, Transgenic , Nephrons/chemistry , Nephrons/cytology , Nephrons/growth & development , Nephrons/physiology , TOR Serine-Threonine Kinases/genetics , Tuberous Sclerosis Complex 1 Protein
11.
Stem Cell Reports ; 10(3): 766-779, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29429961

ABSTRACT

Human pluripotent stem cells (hPSCs) hold great promise for understanding kidney development and disease. We reproducibly differentiated three genetically distinct wild-type hPSC lines to kidney precursors that underwent rudimentary morphogenesis in vitro. They expressed nephron and collecting duct lineage marker genes, several of which are mutated in human kidney disease. Lentiviral-transduced hPSCs expressing reporter genes differentiated similarly to controls in vitro. Kidney progenitors were subcutaneously implanted into immunodeficient mice. By 12 weeks, they formed organ-like masses detectable by bioluminescence imaging. Implants included perfused glomeruli containing human capillaries, podocytes with regions of mature basement membrane, and mesangial cells. After intravenous injection of fluorescent low-molecular-weight dextran, signal was detected in tubules, demonstrating uptake from glomerular filtrate. Thus, we have developed methods to trace hPSC-derived kidney precursors that formed functioning nephrons in vivo. These advances beyond in vitro culture are critical steps toward using hPSCs to model and treat kidney diseases.


Subject(s)
Kidney/cytology , Nephrons/cytology , Pluripotent Stem Cells/cytology , Animals , Basement Membrane/cytology , Cell Culture Techniques/methods , Cell Differentiation/physiology , Humans , Mesangial Cells/cytology , Mice , Mice, SCID , Organogenesis/physiology , Podocytes/cytology
12.
Methods Mol Biol ; 1597: 195-206, 2017.
Article in English | MEDLINE | ID: mdl-28361319

ABSTRACT

An organoid can be defined as a three-dimensional organ-like structure formed from organ-specific progenitor cells. Organ progenitor cells were empirically found to self-organize three-dimensional tissues when they were aggregated and cultivated in vitro. While this nature power of progenitor cells has an amazing potential to recreate artificial organs in vitro, there had been difficulty to apply this technology to human organs due to the inaccessibility to human progenitor cells until human-induced pluripotent stem cell (hiPSC) was invented by Takahashi and Yamanaka in 2007. As embryonic stem cells do, hiPSCs also have pluripotency to give rise to any organs/tissues cell types, including the kidney, via directed differentiation. Here, we provide a detailed protocol for generating kidney organoids using human pluripotent stem cells. The protocol differentiates human pluripotent stem cells into the posterior primitive streak. This is followed by the simultaneous induction of posterior and anterior intermediate mesoderm that are subsequently aggregated and undergo self-organization into the kidney organoid. Such kidney organoids are comprised of all anticipated kidney cell types including nephrons segmented into the glomerulus, proximal tubule, loop of Henle, and distal tubule as well as the collecting duct, endothelial network, and renal interstitium.


Subject(s)
Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Kidney/cytology , Organoids/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Culture Techniques/methods , Cells, Cultured , Humans , Mesoderm , Mice
13.
Differentiation ; 94: 1-7, 2017.
Article in English | MEDLINE | ID: mdl-27923152

ABSTRACT

The Wnt5a null mouse is a complex developmental model which, among its several posterior-localized axis defects, exhibits multiple kidney phenotypes, including duplex kidney and loss of the medullary zone. We previously reported that ablation of Wnt5a in nascent mesoderm causes duplex kidney formation as a result of aberrant development of the nephric duct and abnormal extension of intermediate mesoderm. However, these mice also display a loss of the medullary region late in gestation. We have now genetically isolated duplex kidney formation from the medullary defect by specifically targeting the progenitors for both the ureteric bud and metanephric mesenchyme. The conditional mutants fail to form a normal renal medulla but no longer exhibit duplex kidney formation. Approximately 1/3 of the mutants develop hydronephrosis in the kidneys either uni- or bilaterally when using Dll1Cre. The abnormal kidney phenotype becomes prominent at E16.5, which approximates the time when urine production begins in the mouse embryonic kidney, and is associated with a dramatic increase in apoptosis only in mutant kidneys with hydronephrosis. Methylene blue dye injection and histologic examination reveal that aberrant cell death likely results from urine toxicity due to an abnormal ureter-bladder connection. This study shows that Wnt5a is not required for development of the renal medulla and that loss of the renal medullary region in the Wnt5a-deleted kidney is caused by an abnormal ureter-bladder connection.


Subject(s)
Cell Differentiation/genetics , Hydronephrosis/genetics , Kidney/growth & development , Wnt-5a Protein/genetics , Animals , Hydronephrosis/physiopathology , Kidney/physiopathology , Mice , Mice, Knockout , Morphogenesis/genetics , Signal Transduction/genetics , Ureter/abnormalities , Ureter/growth & development , Urinary Bladder/abnormalities , Urinary Bladder/growth & development
14.
Int J Mol Sci ; 17(9)2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27618015

ABSTRACT

The metanephric mesenchyme (MM) cells are a subset of kidney progenitor cells and play an essential role in mesenchymal-epithelial transition (MET), the key step of nephron generation. Six2, a biological marker related to Wnt signaling pathway, promotes the proliferation, inhibits the apoptosis and maintains the un-differentiation of MM cells. Besides, LiCl is an activator of Wnt signaling pathway. However, the role of LiCl in cellular regulation of MM cells remains unclear, and the relationship between LiCl and Six2 in this process is also little known. Here, we performed EdU assay and flow cytometry assay to, respectively, detect the proliferation and apoptosis of MM cells treated with LiCl of increasing dosages. In addition, reverse transcription-PCR (RT-PCR) and Western-blot were conducted to measure the expression of Six2 and some maker genes of Wnt and bone-morphogenetic-protein (BMP) signaling pathway. Furthermore, luciferase assay was also carried out to detect the transcriptional regulation of Six2. Then we found LiCl promoted MM cell proliferation at low-concentration (10, 20, 30, and 40 mM). The expression of Six2 was dose-dependently increased in low-concentration (10, 20, 30, and 40 mM) at both mRNA and protein level. In addition, both of cell proliferation and Six2 expression in MM cells declined when dosage reached high-concentration (50 mM). However, Six2 knock-down converted the proliferation reduction at 50 mM. Furthermore, Six2 deficiency increased the apoptosis of MM cells, compared with negative control cells at relative LiCl concentration. However, the abnormal rise of apoptosis at 30 mM of LiCl concentration implies that it might be the reduction of GSK3ß that increased cell apoptosis. Together, these demonstrate that LiCl can induce the proliferation and apoptosis of MM cells coordinating with Six2.


Subject(s)
Apoptosis/genetics , Cell Proliferation/genetics , Homeodomain Proteins/metabolism , Lithium Chloride/pharmacology , Transcription Factors/metabolism , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Mice , Transcription Factors/genetics , Wnt Signaling Pathway
15.
Int J Mol Sci ; 17(8)2016 Aug 06.
Article in English | MEDLINE | ID: mdl-27509493

ABSTRACT

Nephron progenitor cells surround around the ureteric bud tips (UB) and inductively interact with the UB to originate nephrons, the basic units of renal function. This process is determined by the internal balance between self-renewal and consumption of the nephron progenitor cells, which is depending on the complicated regulation networks. It has been reported that Zeb1 regulates the proliferation of mesenchymal cells in mouse embryos. However, the role of Zeb1 in nephrons generation is not clear, especially in metanephric mesenchyme (MM). Here, we detected cell proliferation, apoptosis and migration in MM cells by EdU assay, flow cytometry assay and wound healing assay, respectively. Meanwhile, Western and RT-PCR were used to measure the expression level of Zeb1 and Six2 in MM cells and developing kidney. Besides, the dual-luciferase assay was conducted to study the molecular relationship between Zeb1 and Six2. We found that knock-down of Zeb1 decreased cell proliferation, migration and promoted cell apoptosis in MM cells and Zeb1 overexpression leaded to the opposite data. Western-blot and RT-PCR results showed that knock-down of Zeb1 decreased the expression of Six2 in MM cells and Zeb1 overexpression contributed to the opposite results. Similarly, Zeb1 promoted Six2 promoter reporter activity in luciferase assays. However, double knock-down of Zeb1 and Six2 did not enhance the apoptosis of MM cells compared with control cells. Nevertheless, double silence of Zeb1 and Six2 repressed cell proliferation. In addition, we also found that Zeb1 and Six2 had an identical pattern in distinct developing phases of embryonic kidney. These results indicated that there may exist a complicated regulation network between Six2 and Zeb1. Together, we demonstrate Zeb1 promotes proliferation and apoptosis and inhibits the migration of MM cells, in association with Six2.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Homeodomain Proteins/genetics , Transcription Factors/genetics , Zinc Finger E-box-Binding Homeobox 1/physiology , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , Conserved Sequence , Gene Expression , Gene Expression Regulation, Developmental , HEK293 Cells , Homeodomain Proteins/metabolism , Humans , Kidney/growth & development , Mesoderm/cytology , Mice , Promoter Regions, Genetic , Protein Binding , Transcription Factors/metabolism , Transcriptional Activation
16.
Exp Ther Med ; 12(6): 3963-3971, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28105130

ABSTRACT

The aim of the present study was to isolate, culture and characterize sheep metanephric mesenchymal stem cells (MMSCs). The MMSCs were isolated from the kidney tissue of six-week-old sheep fetus. This study investigated whether primary MMSCs could be grown for 26 passages and expressed Oct-4, which is involved in the self-renewal of undifferentiated pluripotent stem cells. The MMSCs also expressed the renal lineage marker gene PAX2, and mesenchymal cell marker genes CD44, FN1 and VIM. Expression of these genes was detected using immunofluorescence and reverse transcription-polymerase chain reaction assays. Additionally, we observed that the MMSCs are able to differentiate into adipocyte, hepatocyte and chondrocyte cells. Karyotype analyses showed that these cells were 95% diploid and thus differentiated. These results indicate that the MMSCs obtained from sheep fetuses possessed certain characteristics of multipotent stem cells. Therefore, MMSCs may potentially offer utility for tissue engineering and cellular transplantation therapy, and further studies are required to investigate these uses.

17.
Pediatr Nephrol ; 31(6): 885-95, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26293980

ABSTRACT

Fibroblast growth factor receptors (FGFRs) and FGF ligands are highly expressed in the developing kidney and lower urinary tract. Several classic studies showed many effects of exogenous FGF ligands on embryonic renal tissues in vitro and in vivo. Another older landmark publication showed that mice with a dominant negative Fgfr fragment had severe renal dysplasia. Together, these studies revealed the importance of FGFR signaling in kidney and lower urinary tract development. With the advent of modern gene targeting techniques, including conditional knockout approaches, several publications have revealed critical roles for FGFR signaling in many lineages of the kidney and lower urinary tract at different stages of development. FGFR signaling has been shown to be critical for early metanephric mesenchymal patterning, Wolffian duct patterning including induction of the ureteric bud, ureteric bud branching morphogenesis, nephron progenitor survival and nephrogenesis, and bladder mesenchyme patterning. FGFRs pattern these tissues by interacting with many other growth factor signaling pathways. Moreover, the many genetic Fgfr and Fgf animal models have structural defects mimicking numerous congenital anomalies of the kidney and urinary tract seen in humans. Finally, many studies have shown how FGFR signaling is critical for kidney and lower urinary tract patterning in humans.


Subject(s)
Fibroblast Growth Factors/metabolism , Kidney/growth & development , Organogenesis , Receptors, Fibroblast Growth Factor/metabolism , Ureter/growth & development , Urinary Bladder/growth & development , Wolffian Ducts/growth & development , Acanthosis Nigricans/genetics , Acanthosis Nigricans/metabolism , Acrocephalosyndactylia/genetics , Acrocephalosyndactylia/metabolism , Animals , Antley-Bixler Syndrome Phenotype/genetics , Antley-Bixler Syndrome Phenotype/metabolism , Apoptosis , Craniosynostoses/genetics , Craniosynostoses/metabolism , Ear/abnormalities , Gene Knockout Techniques/methods , Humans , Kidney/metabolism , Kidney/pathology , Mice , Models, Animal , Mutation , Organogenesis/genetics , Receptors, Fibroblast Growth Factor/genetics , Scalp Dermatoses/genetics , Scalp Dermatoses/metabolism , Signal Transduction , Skin Abnormalities/genetics , Skin Abnormalities/metabolism , T-Box Domain Proteins/genetics , Ureter/metabolism , Ureter/pathology , Urinary Bladder/metabolism , Urinary Bladder/pathology , Wolffian Ducts/metabolism
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-486969

ABSTRACT

Vesicoureteral reflux,a most common congenital anomaly of the kidney and urinary tract,is associated with the malformation of ureterovesical junction. It does not cause any specific symptoms or signs un-less it is part of a syndrome or complicated by urinary tract infection. The exact cause is not clear,and genes or environmental factors may result in vesicoureteral reflux. The prevalence of siblings and offspring of reflux pa-tients are higher than normal control groups,so the genetic screening is necessary. This article will review the ge-netics of vesicoureteral reflux and possible interactions.

19.
J Cell Sci ; 128(23): 4293-305, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26490995

ABSTRACT

The Rho GTPase Cdc42 regulates key signaling pathways required for multiple cell functions, including maintenance of shape, polarity, proliferation, migration, differentiation and morphogenesis. Although previous studies have shown that Cdc42 is required for proper epithelial development and maintenance, its exact molecular function in kidney development is not well understood. In this study, we define the specific role of Cdc42 during murine kidney epithelial tubulogenesis by deleting it selectively at the initiation of ureteric bud or metanephric mesenchyme development. Deletion in either lineage results in abnormal tubulogenesis, with profound defects in polarity, lumen formation and the actin cytoskeleton. Ultimately, these defects lead to renal failure. Additionally, in vitro analysis of Cdc42-null collecting duct cells shows that Cdc42 controls these processes by regulating the polarity Par complex (Par3-Par6-aPKC-Cdc42) and the cytoskeletal proteins N-Wasp and ezrin. Thus, we conclude that the principal role of Cdc42 in ureteric bud and metanephric mesenchyme development is to regulate epithelial cell polarity and the actin cytoskeleton.


Subject(s)
Cell Polarity/physiology , Cytoskeleton/metabolism , Epithelial Cells/metabolism , Kidney Tubules/embryology , cdc42 GTP-Binding Protein/metabolism , Animals , Cytoskeleton/genetics , Epithelial Cells/cytology , Mice , cdc42 GTP-Binding Protein/genetics
20.
Dev Dyn ; 244(7): 866-73, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25903664

ABSTRACT

BACKGROUND: Specification of the metanephric mesenchyme is a central step of kidney development as this mesenchyme promotes nephric duct induction to form a ureteric bud near its caudal end. Before ureteric bud formation, the caudal nephric duct swells to form a pseudostratified epithelial domain that later emerges as the tip of the bud. However, the signals that promote the formation of the transient epithelial domain remain unclear. Here, we investigated the early roles of the mesenchymal factor Six family and its cofactor Eya on the initial induction of nephric duct development. RESULTS: The nephrogenic progenitor population is initially present but significantly reduced in mice lacking both Six1 and Six4 and undertakes an abnormal cell death pathway to be completely eliminated by ∼E10.5-E11.0, similar to that observed in Eya1(-/-) embryos. Consequently, the nephric duct fails to be induced to undergo normal proliferation to pseudostratify and form the ureteric bud in Six1(-/-) ;Six4(-/-) or Eya1(-/-) embryos. CONCLUSIONS: Our data support a model where Eya-Six may form a complex to regulate nephron progenitor cell development before metanephric specification and are critical mesenchymal factors for inducing nephric duct development.


Subject(s)
Cell Proliferation/physiology , Homeodomain Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nephrons/embryology , Nuclear Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Stem Cells/metabolism , Trans-Activators/metabolism , Ureter/embryology , Animals , Homeodomain Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Models, Biological , Nephrons/cytology , Nuclear Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Stem Cells/cytology , Trans-Activators/genetics , Ureter/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...