Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 411
Filter
1.
J Environ Radioact ; 278: 107494, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972087

ABSTRACT

One of the main factors that affect urban air quality is meteorology. The objective of this study is to understand and characterise the influence that "Galerna" (GL) (an abrupt westerly change over the northern coast of Spain) has on the daily variability of the air quality over Bilbao city (northern Spain). A total of 46 one-day periods from 2009 to 2019 during which GL have been analysed. Radon observations at the Bilbao city radiological station were used because radon is a suitable atmospheric tracer by which to assess and characterise air quality dynamics. The cluster analysis of these periods revealed that increases in radon concentrations, mainly in the afternoon, are associated with the occurrence of GL, but that, this increase in the daily variability of radon concentrations in Bilbao is not reflected in all these GL periods. This variability in the impact of the GL scenario on radon concentrations is associated with the location of Bilbao: along the Nervion valley and 16 km from the coast. The analysis of three GL periods using 10-min surface meteorological and radon data showed an anomalous increase in radon with the arrival of maritime winds, which is associated with the process of a progressive accumulation of radon concentrations over the coastal area in the previous days, and the displacement of these air masses inland owing to the development of the GL event. Our results consequently identify the impact of GL on urban air quality in the afternoon, along with the fact that the complex layout of this coastal area, with the presence of valleys and mountains, favours the formation of reservoir layers above the coastal and valley areas, thus influencing on daily variability of air pollution concentrations. These increases in radon concentrations do not present a significant impact on human health.

2.
Sci Rep ; 14(1): 14608, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918420

ABSTRACT

Precise modeling of weighted mean temperature (Tm) is essential for Global Navigation Satellite System (GNSS) meteorology. In retrieving precipitable water vapor (PWV) from GNSS, Tm is a crucial parameter for the conversion of zenith wet delay (ZWD) into PWV. In this study, an improved Tm model, named EGWMT, was developed to accurately estimate Tm at any site in Egypt. This new model was established using hourly ERA5 reanalysis data from European Centre for Medium-Range Weather Forecasts (ECMWF) covering the period from 2008 to 2019 with a spatial resolution of 0.25° × 0.25°. The performance of the proposed model was evaluated using two types of data sources, including hourly ERA5 reanalysis data from 2019 to 2022 and radiosonde profiles over a six-year period from 2017 to 2022. The accuracy of the EGWMT model was compared to that of four other models: Bevis, Elhaty, ANN and GGTm-Ts using two statistical quantities, including mean absolute bias (MAB) and root mean square error (RMSE). The results demonstrated that the EGWMT model outperformed the Bevis, Elhaty, ANN and GGTm-Ts models with RMSE improvements of 32.5%, 30.8%, 39% and 48.2%, respectively in the ERA5 data comparison. In comparison with radiosonde data, the EGWMT model achieved RMSE improvements of 22.5%, 34%, 38% and 19.5% against Bevis, Elhaty, ANN and GGTm-Ts models, respectively. In order to determine the significance of differences in means and variances, statistical tests, including t-test and F-test, were conducted. The results confirmed that there were significant differences between the EGWMT model and the four other models.

3.
Rev Environ Health ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38861673

ABSTRACT

The impact of air pollution is a major public health concern. However, there are few studies on the correlation between PM2.5 and respiratory infections. This study aimed to determine a link between PM2.5 and respiratory diseases among the elderly in Thailand. The data source for this study consisted of 43 electronic files from the Khon Kaen Provincial Health Office covering years 2020 and 2021 and surveyed a total of 43,534 people. The generalized linear mixed model (GLMM) was used to determine the adjusted odds ratio (AOR), and 95 % CI. We found that exposure to PM2.5 concentrations (in 10 µg m-3 increments) was associated with respiratory diseases (AOR: 3.98; 95 % CI [1.53-10.31]). Respondents who are male, aged less than 80 years, single, self-employed, or working as contractors, have a body mass index (BMI) not equal to the standard, have NCDs (hypertension, diabetes mellitus, and cardiovascular disease), are smokers, live in sub-districts where more than 5 % of the land is planted to sugarcane, or live in close proximity to a biomass power plant were at significantly higher risk of developing respiratory diseases (p<0.05). Therefore, environmental factors including ambient PM2.5 concentrations, the proportion of sugarcane plantation areas, and biomass power plants impact the occurrence of respiratory diseases among the elderly. Also, demographic factors and NCDs are serious issues. Systematic approaches to reducing PM2.5 levels in industrial and agricultural sectors are necessary for both the general population and vulnerable groups, including the elderly and NCD patients.

4.
Sci Total Environ ; 943: 173649, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38852865

ABSTRACT

This research builds upon a previous study that explored the potential of the modified WIBS-4+ to selectively differentiate and detect different bioaerosol classes. The current work evaluates the influence of meteorological and air quality parameters on bioaerosol concentrations, specifically pollen and fungal spore dynamics. Temperature was found to be the most influential parameter in terms of pollen production and release, showing a strong positive correlation. Wind data analysis provided insights into the potential geographic origins of pollen and fungal spore concentrations. Fungal spores were primarily shown to originate from a westerly direction, corresponding to agricultural land use, whereas pollen largely originated from a North-easterly direction, corresponding to several forests. The influence of air quality was also analysed to understand its potential impact on the WIBS fluorescent parameters investigated. Most parameters had a negative association with fungal spore concentrations, whereas several anthropogenic influences showed notable positive correlations with daily pollen concentrations. This is attributed to similar driving forces (meteorological parameters) and geographical origins. In addition, the WIBS showed a significant correlation with anthropogenic pollutants originating from combustion sources, suggesting the potential for such modified spectroscopic instruments to be utilized as air quality monitors. By combining all meteorological and pollution data along with WIBS-4+ channel data, a set of Multiple Linear Regression (MLR) analyses were completed. Successful results with R2 values ranging from 0.6 to 0.8 were recorded. The inclusion of meteorological parameters was dependent on the spore or pollen type being examined.


Subject(s)
Aerosols , Air Pollutants , Environmental Monitoring , Pollen , Spores, Fungal , Environmental Monitoring/methods , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Air Microbiology , Wind , Spectrum Analysis/methods
5.
Sensors (Basel) ; 24(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794031

ABSTRACT

This work presents the design and implementation of an operational infrastructure for the monitoring of atmospheric parameters at sea through GNSS meteorology sensors installed on liners operating in the north-west Mediterranean Sea. A measurement system, capable of operationally and continuously providing the values of surface parameters, is implemented together with software procedures based on a float-PPP approach for estimating zenith path delay (ZPD) values. The values continuously registered over a three year period (2020-2022) from this infrastructure are compared with the data from a numerical meteorological reanalysis model (MERRA-2). The results clearly prove the ability of the system to estimate the ZPD from ship-based GNSS-meteo equipment, with the accuracy evaluated in terms of correlation and root mean square error reaching values between 0.94 and 0.65 and between 18.4 and 42.9 mm, these extreme values being from the best and worst performing installations, respectively. This offers a new perspective on the operational exploitation of GNSS signals over sea areas in climate and operational meteorological applications.

6.
iScience ; 27(6): 109905, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799561

ABSTRACT

Tropical cyclone (TC) intensity change forecasting remains challenging due to the lack of understanding of the interactions between TC changes and environmental parameters, and the high uncertainties resulting from climate change. This study proposed hybrid convolutional neural networks (hybrid-CNN), which effectively combined satellite-based spatial characteristics and numerical prediction model outputs, to forecast TC intensity with lead times of 24, 48, and 72 h. The models were validated against best track data by TC category and phase and compared with the Korea Meteorological Administrator (KMA)-based TC forecasts. The hybrid-CNN-based forecasts outperformed KMA-based forecasts, exhibiting up to 22%, 110%, and 7% improvement in skill scores for the 24-, 48-, and 72-h forecasts, respectively. For rapid intensification cases, the models exhibited improvements of 62%, 87%, and 50% over KMA-based forecasts for the three lead times. Moreover, explainable deep learning demonstrated hybrid-CNN's potential in predicting TC intensity and contributing to the TC forecasting field.

7.
Heliyon ; 10(9): e30319, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711630

ABSTRACT

The COVID-19 pandemic has significantly impacted public health and necessitated urgent actions to mitigate its spread. Monitoring and predicting the outbreak's progression have become vital to devise effective strategies and allocate resources efficiently. This study presents a novel approach utilizing Multivariate Long Short-Term Memory (LSTM) to analyze and predict COVID-19 trends in Central Thailand, particularly emphasizing the multi-feature selection process. To consider a comprehensive view of the pandemic's dynamics, our research dataset encompasses epidemiological, meteorological, and particulate matter features, which were gathered from reliable sources. We propose a multi-feature selection technique to identify the most relevant and influential features that significantly impact the spread of COVID-19 in the region to enhance the model's performance. Our results highlight that relative humidity is the key factor driving COVID-19 transmission in Central Thailand. The proposed multi-feature selection technique significantly improves the model's accuracy, ensuring that only the most informative variables contribute to the predictions, avoiding the potential noise or redundancy from less relevant features. The proposed LSTM model demonstrates its capability to forecast COVID-19 cases, facilitating informed decision-making for public health authorities and policymakers.

8.
Environ Monit Assess ; 196(6): 525, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38720137

ABSTRACT

Adiyaman, a city recently affected by an earthquake, is facing significant air pollution challenges due to both anthropogenic activities and natural events. The sources of air pollution have been investigated using meteorological variables. Elevated southerly winds, especially prominent in spring and autumn, significantly contribute to dust transport, leading to a decline in local air quality as detected by the HYSPLIT model. Furthermore, using Suomi-NPP Thermal Anomaly satellite product, it is detected and analyzed for crop burning activities. Agricultural practices, including stubble burning, contribute to the exacerbation of PM10 pollution during the summer months, particularly when coupled with winds from all directions except the north. In fall and winter months, heating is identified as the primary cause of pollution. The city center located north of the station is the dominant source of pollution throughout all seasons. The study established the connection between air pollutants and meteorological variables. Furthermore, the Spearman correlation coefficients reveal associations between PM10 and SO2, indicating moderate positive correlations under pressure conditions (r = 0.35, 0.52). Conversely, a negative correlation is observed with windspeed (r = -0.35, -0.50), and temperature also exhibits a negative correlation (r = -0.39, -0.54). During atmospheric conditions with high pressure, PM10 and SO2 concentrations are respectively 41.2% and 117.2% higher. Furthermore, pollutant concentration levels are 29.2% and 53.3% higher on days with low winds. Last, practical strategies for mitigating air pollution have been thoroughly discussed and proposed. It is imperative that decision-makers engaged in city planning and renovation give careful consideration to the profound impact of air pollution on both public health and the environment, particularly in the aftermath of a recent major earthquake.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Seasons , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Particulate Matter/analysis , Meteorological Concepts , Wind , Cities , Turkey , Sulfur Dioxide/analysis , Earthquakes
9.
Environ Res ; 255: 119112, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38788786

ABSTRACT

For air quality management, while numerical tools are mainly evaluated to assess their performances on absolute concentrations, this study assesses the impact of their settings on the robustness of model responses to emission reduction strategies for the main criteria pollutants. The effect of the spatial resolution and chemistry schemes is investigated. We show that whereas the spatial resolution is not a crucial setting (except for NO2), the chemistry scheme has more impact, particularly when assessing hourly values of the absolute potential of concentrations. The analysis of model responses under the various configurations triggered an analysis of the impact of using online models, like WRF-chem or WRF-CHIMERE, which accounts for the impact of aerosol concentrations on meteorology. This study informs the air quality modeling community on what extent some model settings can affect the expected model responses to emission changes. We suggest to not activate online effects when analyzing the effect of an emission reduction strategy to avoid any confusion in the interpretation of results even if an online simulation should represent better the reality.


Subject(s)
Air Pollutants , Air Pollution , Models, Theoretical , Air Pollution/prevention & control , Air Pollution/analysis , Air Pollutants/analysis , Environmental Monitoring/methods
10.
Environ Sci Technol ; 58(23): 10185-10194, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804824

ABSTRACT

The relaxation of restrictions on Chinese Spring Festival (SF) firework displays in certain regions has raised concerns due to intensive emissions exacerbating air quality deterioration. To evaluate the impacts of fireworks on air quality, a comparative investigation was conducted in a city between 2022 (restricted fireworks) and 2023 SF (unrestricted), utilizing high time-resolution field observations of particle chemical components and air quality model simulations. We observed two severe PM2.5 pollution episodes primarily triggered by firework emissions and exacerbated by static meteorology (contributing approximately 30%) during 2023 SF, contrasting with its absence in 2022. During firework displays, freshly emitted particles containing more primary inorganics (such as chloride and metals like Al, Mg, and Ba), elemental carbon, and organic compounds (including polycyclic aromatic hydrocarbons) were predominant; subsequently, aged particles with more secondary components became prevalent and continued to worsen air quality. The primary emissions from fireworks constituted 54% of the observed high PM2.5 during the displays, contributing a peak hourly PM2.5 concentration of 188 µg/m3 and representing over 70% of the ambient PM2.5. This study underscores that caution should be exercised when igniting substantial fireworks under stable meteorological conditions, considering both the primary and potential secondary effects.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Environmental Monitoring , Holidays , Polycyclic Aromatic Hydrocarbons/analysis
11.
Environ Res ; 252(Pt 4): 119114, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729412

ABSTRACT

The high prevalence of hay fever in Europe has raised concerns about the implications of climate change-induced higher temperatures on pollen production. Our study focuses on downy birch pollen production across Europe by analyzing 456 catkins during 2019-2021 in 37 International Phenological Gardens (IPG) spanning a large geographic gradient. As IPGs rely on genetically identical plants, we were able to reduce the effects of genetic variability. We studied the potential association with masting behavior and three model specifications based on mean and quantile regression to assess the impact of meteorology (e.g., temperature and precipitation) and atmospheric gases (e.g., ozone (O3) and carbon-dioxide (CO2)) on pollen and catkin production, while controlling for tree age approximated by stem circumference. The results revealed a substantial geographic variability in mean pollen production, ranging from 1.9 to 2.5 million pollen grains per catkin. Regression analyses indicated that elevated average temperatures of the previous summer corresponded to increased pollen production, while higher O3 levels led to a reduction. Additionally, catkins number was positively influenced by preceding summer's temperature and precipitation but negatively by O3 levels. The investigation of quantile effects revealed that the impacts of mean temperature and O3 levels from the previous summer varied throughout the conditional response distribution. We found that temperature predominantly affected trees characterized by a high pollen production. We therefore suggest that birches modulate their physiological processes to optimize pollen production under varying temperature regimes. In turn, O3 levels negatively affected trees with pollen production levels exceeding the conditional median. We conclude that future temperature increase might exacerbate pollen production while other factors may modify (decrease in the case of O3 and amplify for precipitation) this effect. Our comprehensive study sheds light on potential impacts of climate change on downy birch pollen production, which is crucial for birch reproduction and human health.


Subject(s)
Betula , Climate Change , Pollen , Betula/growth & development , Europe , Ozone/analysis , Temperature , Air Pollutants/analysis
12.
Ann Sci ; : 1-15, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557277

ABSTRACT

Meteorology is not one of the most discussed topics in Paracelsus studies, although it is closely linked to both Paracelsus' medicine and cosmology. Furthermore, it appears to be at the very core of Paracelsus' famous matter theory of three chymical principles, mercury, sulphur and salt, known as the tria prima. By discussing prominent examples of Paracelsus' explanations on how the tria prima operate within the stars, this article shows how the Swiss physician conceived meteorology within his own body of knowledge, obviously constructed in opposition to the Aristotelian-scholastic tradition, how he based it on a peculiar interpretation of the Biblical creation story, and made it the proper laboratory of his chymical matter theory, applying it first systematically to the field of natural philosophy, especially to celestial phenomena, even before using it for his medical theory in his later writings.

13.
Sci Rep ; 14(1): 9739, 2024 04 28.
Article in English | MEDLINE | ID: mdl-38679612

ABSTRACT

Hemorrhagic fever with renal syndrome (HFRS) poses a major threat in Shandong. This study aimed to investigate the long- and short-term asymmetric effects of meteorological factors on HFRS and establish an early forecasting system using autoregressive distributed lag (ARDL) and nonlinear ARDL (NARDL) models. Between 2004 and 2019, HFRS exhibited a declining trend (average annual percentage change = - 9.568%, 95% CI - 16.165 to - 2.451%) with a bimodal seasonality. A long-term asymmetric influence of aggregate precipitation (AP) (Wald long-run asymmetry [WLR] = - 2.697, P = 0.008) and aggregate sunshine hours (ASH) (WLR = 2.561, P = 0.011) on HFRS was observed. Additionally, a short-term asymmetric impact of AP (Wald short-run symmetry [WSR] = - 2.419, P = 0.017), ASH (WSR = 2.075, P = 0.04), mean wind velocity (MWV) (WSR = - 4.594, P < 0.001), and mean relative humidity (MRH) (WSR = - 2.515, P = 0.013) on HFRS was identified. Also, HFRS demonstrated notable variations in response to positive and negative changes in ∆MRH(-), ∆AP(+), ∆MWV(+), and ∆ASH(-) at 0-2 month delays over the short term. In terms of forecasting, the NARDL model demonstrated lower error rates compared to ARDL. Meteorological parameters have substantial long- and short-term asymmetric and/or symmetric impacts on HFRS. Merging NARDL model with meteorological factors can enhance early warning systems and support proactive measures to mitigate the disease's impact.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Hemorrhagic Fever with Renal Syndrome/epidemiology , Humans , China/epidemiology , Nonlinear Dynamics , Seasons , Climate , Meteorological Concepts , Humidity
14.
Sci Total Environ ; 924: 171687, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38485008

ABSTRACT

We applied a three-dimensional (3-D) global chemical transport model (GEOS-Chem) to evaluate the influences of meteorology and anthropogenic emissions on the co-occurrence of ozone (O3) and fine particulate matter (PM2.5) pollution day (O3-PM2.5PD) in urban and non-urban areas of the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions during the warm season (April-October) from 2013 to 2020. The model captured the observed O3-PM2.5PD trends and spatial distributions well. From 2013 to 2020, with changes in both anthropogenic emissions and meteorology, the simulated values of O3-PM2.5PD in the urban (non-urban) areas of the BTH and YRD regions were 424.8 (330.1) and 309.3 (286.9) days, respectively, suggesting that pollution in non-urban areas also warrants attention. The trends in the simulated values of O3-PM2.5PD were -0.14 and -0.15 (+1.18 and +0.81) days yr-1 in the BTH (YRD) urban and non-urban areas, respectively. Sensitivity simulations revealed that changes in anthropogenic emissions decreased the occurrence of O3-PM2.5PD, with trends of -0.99 and -1.23 (-1.47 and -1.92) days yr-1 in the BTH (YRD) urban and non-urban areas, respectively. Conversely, meteorological conditions could exacerbate the frequency of O3-PM2.5PD, especially in the urban YRD areas, but less notably in the urban BTH areas, with trends of +2.11 and +0.30 days yr-1, respectively, owing to changes in meteorology only. The increases in T2m_max and T2m were the main meteorological factors affecting O3-PM2.5PD in most BTH and YRD areas. Furthermore, by conducting sensitivity experiments with different levels of pollutant precursor reductions in 2020, we found that volatile organic compound (VOC) reductions primarily benefited O3-PM2.5PD decreases in urban areas and that NOx reductions more notably influenced those in non-urban areas, especially in the YRD region. Simultaneously, reducing VOC and NOx emissions by 50 % resulted in considerable O3-PM2.5PD decreases (58.8-72.6 %) in the urban and non-urban areas of the BTH and YRD regions. The results of this study have important implications for the control of O3-PM2.5PD in the urban and non-urban areas of the BTH and YRD regions.

15.
Environ Monit Assess ; 196(4): 393, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520559

ABSTRACT

Tropospheric ozone is an air pollutant at the ground level and a greenhouse gas which significantly contributes to the global warming. Strong anthropogenic emissions in and around urban environments enhance surface ozone pollution impacting the human health and vegetation adversely. However, observations are often scarce and the factors driving ozone variability remain uncertain in the developing regions of the world. In this regard, here, we conducted machine learning (ML) simulations of ozone variability and comprehensively examined the governing factors over a major urban environment (Ahmedabad) in western India. Ozone precursors (NO2, NO, CO, C5H8 and CH2O) from the CAMS (Copernicus Atmosphere Monitoring Service) reanalysis and meteorological parameters from the ERA5 (European Centre for Medium-Range Weather Forecast's (ECMWF) fifth-generation reanalysis) were included as features in the ML models. Automated ML (AutoML) fitted the deep learning model optimally and simulated the daily ozone with root mean square error (RMSE) of ~2 ppbv reproducing 84-88% of variability. The model performance achieved here is comparable to widely used ML models (RF-Random Forest and XGBoost-eXtreme Gradient Boosting). Explainability of the models is discussed through different schemes of feature importance, including SAGE (Shapley Additive Global importancE) and permutation importance. The leading features are found to be different from different feature importance schemes. We show that urban ozone could be simulated well (RMSE = 2.5 ppbv and R2 = 0.78) by considering first four leading features, from different schemes, which are consistent with ozone photochemistry. Our study underscores the need to conduct science-informed analysis of feature importance from multiple schemes to infer the roles of input variables in ozone variability. AutoML-based studies, exploiting potentials of long-term observations, can strongly complement the conventional chemistry-transport modelling and can also help in accurate simulation and forecast of urban ozone.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Humans , Ozone/analysis , Air Pollution/analysis , Environmental Monitoring , Air Pollutants/analysis , Machine Learning
16.
Sci Total Environ ; 926: 171951, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38537836

ABSTRACT

A remarkable progress has been made toward the air quality improvements over the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) of China from 2017 to 2020. In this study, for the first time, the emission reductions of regional control measures together with the COVID-19 pandemic were considered simultaneously into the development of the GBA's emission inventories for the years of 2017 and 2020. Based on these collective emission inventories, the impacts of control measures, meteorological variations together with temporary COVID-19 lockdowns on the five major air quality index pollutants (SO2, NO2, PM2.5, PM10, and O3, excluding CO) were evaluated using the WRF-CMAQ and SMAT-CE model attainment assessment tool over the GBA region. Our results revealed that control measures in the Pearl River Delta (PRD) region affected significantly the GBA, resulting in pollutant reductions ranging from 48 % to 64 %. In contrast, control measures in Hong Kong and Macao contributed to pollutant reductions up to 10 %. In PRD emission sectors, stationary combustion, on-road, industrial processes and dust sectors stand out as the primary contributors to overall air quality improvements. Moreover, the COVID-19 pandemic during period I (Jan 23-Feb 23) led to a reduction of NO2 concentration by 7.4 %, resulting in a negative contribution (disbenefit) for O3 with an increase by 2.4 %. Our findings highlight the significance of PRD control measures for the air quality improvements over the GBA, emphasizing the necessity of implementing more refined and feasible manageable joint prevention and control policies.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , Air Pollutants/analysis , Air Pollution/prevention & control , Air Pollution/analysis , Particulate Matter/analysis , Quality Improvement , Nitrogen Dioxide , Pandemics/prevention & control , Environmental Monitoring/methods , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , China/epidemiology
17.
Sci Total Environ ; 920: 170777, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38331278

ABSTRACT

Quantitative assessment of the drivers behind the variation of six criteria pollutants, namely fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter (PM10), and carbon monoxide (CO), in the warming climate will be critical for subsequent decision-making. Here, a novel hybrid model of multi-task oriented CNN-BiLSTM-Attention was proposed and performed in Taiyuan during 2015-2020 to synchronously and quickly quantify the impact of anthropogenic and meteorological factors on the six criteria pollutants variations. Empirical results revealed the residential and transportation sectors distinctly decreased SO2 by 25 % and 22 % and CO by 12 % and 10 %. Gradual downward trends for PM2.5, PM10, and NO2 were mainly ascribed to the stringent measures implemented in transportation and power sectors as part of the Blue Sky Defense War, which were further reinforced by the COVID-19 pandemic. Nevertheless, temperature-dependent adverse meteorological effects (27 %) and anthropogenic intervention (12 %) jointly increased O3 by 39 %. The O3-driven pollution events may be inevitable or even become more prominent under climate warming. The industrial (5 %) and transportation sectors (6 %) were mainly responsible for the anthropogenic-driven increase of O3 and precursor NO2, respectively. Synergistic reduction of precursors (VOCs and NOx) from industrial and transportation sectors requires coordination with climate actions to mitigate the temperature-dependent O3-driven pollution, thereby improving regional air quality. Meanwhile, the proposed model is expected to be applied flexibly in various regions to quantify the drivers of the pollutant variations in a warming climate, with the potential to offer valuable insights for improving regional air quality in near future.

18.
Sci Total Environ ; 920: 170963, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38367732

ABSTRACT

The recent La-Nina phase of the El Nino Southern Oscillation (ENSO) phenomenon unusually lasted for third consecutive year, has disturbed global weather and linked to Indian monsoon. However, our understanding on the linkages of such changes to regional air quality is poor. We hereby provide a mechanism that beyond just influencing the meteorology, the interactions between the ocean and the atmosphere during the retreating phase of the La-Niña produced secondary results that significantly influenced the normal distribution of air quality over India through disturbed large-scale wind patterns. The winter of 2022-23 that coincided with retreating phase of the unprecedented triple dip La-Niña, was marred by a mysterious trend in air quality in different climatological regions of India, not observed in recent decades. The unusually worst air quality over South-Western India, whereas relatively cleaner air over the highly polluted North India, where levels of most toxic pollutant (PM2.5) deviating up to about ±30 % from earlier years. The dominance of higher northerly wind in the transport level forces influx and relatively slower winds near the surface, trapping pollutants in peninsular India, thereby notably increasing PM2.5 concentration. In contrast, too feeble western disturbances, and unique wind patterns with the absence of rain and clouds and faster ventilation led to a significant improvement in air quality in the North. The observed findings are validated by the chemical-transport model when forced with the climatology of the previous year. The novelty of present research is that it provides an association of air quality with climate change. We demonstrate that the modulated large-scale wind patterns linked to climatic changes may have far-reaching consequences even at a local scale leading to unusual changes in the distribution of air pollutants, suggesting ever-stringent emission control actions.

19.
Sci Total Environ ; 922: 171295, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38417501

ABSTRACT

Megacity Hangzhou, located in eastern China, has experienced severe O3 pollution in recent years, thereby clarifying the key drivers of the formation is essential to suppress O3 deterioration. In this study, the ensemble machine learning model (EML) coupled with Shapley additive explanations (SHAP), and positive matrix factorization were used to explore the impact of various factors (including meteorology, chemical components, sources) on O3 formation during the whole period, pollution days, and typical persistent pollution events from April to October in 2021-2022. The EML model achieved better performance than the single model, with R2 values of 0.91. SHAP analysis revealed that meteorological conditions had the greatest effects on O3 variability with the contribution of 57 %-60 % for different pollution levels, and the main drivers were relative humidity and radiation. The effects of chemical factors on O3 formation presented a positive response to volatile organic compounds (VOCs) and fine particulate matter (PM2.5), and a negative response to nitrogen oxides (NOx). Oxygenated compounds (OVOCs), alkenes, and aromatic of VOCs subgroups had higher contribution; additionally, the effects of PM2.5 and NOx were also important and increased with the O3 deterioration. The impact of seven emission sources on O3 formation in Hangzhou indicated that vehicle exhaust (35 %), biomass combustion (16 %), and biogenic emissions (12 %) were the dominant drivers. However, for the O3 pollution days, the effects of biomass combustion and biogenic emissions increased. Especially in persistent pollution events with highest O3 concentrations, the magnitude of biogenic emission effect elevated significantly by 156 % compared to the whole situations. Our finding revealed that the combination of the EML model and SHAP analysis could provide a reliable method for rapid diagnosis of the cause of O3 pollution at different event scales, supporting the formulation of control measures.

20.
BMC Infect Dis ; 24(1): 76, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212685

ABSTRACT

BACKGROUND: Brucellosis poses a significant public health concern. This study explores the spatial and temporal dynamic evolution of human brucellosis in China and analyses the spatial heterogeneity of the influencing factors related to the incidence of human brucellosis at the provincial level. METHODS: The Join-point model, centre of gravity migration model and spatial autocorrelation analysis were employed to evaluate potential changes in the spatial and temporal distribution of human brucellosis in mainland China from 2005 to 2021. Ordinary Least Squares (OLS), Geographically Weighted Regression (GWR), and Multi-scale Geographically Weighted Regression (MGWR) models were constructed to analyze the spatial and temporal correlation between the incidence rate of human brucellosis and meteorological and social factors. RESULTS: From 2005 to 2021, human brucellosis in China showed a consistent upward trend. The incidence rate rose more rapidly in South, Central, and Southwest China, leading to a shift in the center of gravity from the North to the Southwest, as illustrated in the migration trajectory diagram. Strong spatial aggregation was observed. The MGWR model outperformed others. Spatio-temporal plots indicated that lower mean annual temperatures and increased beef, mutton, and milk production significantly correlated with higher brucellosis incidence. Cities like Guangxi and Guangdong were more affected by low temperatures, while Xinjiang and Tibet were influenced more by beef and milk production. Inner Mongolia and Heilongjiang were more affected by mutton production. Importantly, an increase in regional GDP and health expenditure exerted a notable protective effect against human brucellosis incidence. CONCLUSIONS: Human brucellosis remains a pervasive challenge. Meteorological and social factors significantly influence its incidence in a spatiotemporally specific manner. Tailored prevention strategies should be region-specific, providing valuable insights for effective brucellosis control measures.


Subject(s)
Brucellosis , Animals , Cattle , Humans , China/epidemiology , Spatial Analysis , Brucellosis/epidemiology , Spatial Regression , Cities , Incidence , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...