Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Int J Toxicol ; : 10915818241261624, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897602

ABSTRACT

Organophosphate pesticides are widely used; however, their use is limited due to neurotoxicity and, to a lesser extent, cardiotoxicity in humans. Given the high energy demands of cardiac muscle, which is characterized by a dense population of mitochondria, any damage to these organelles can exacerbate cardiotoxicity. This study aims to elucidate whether the cardiotoxic effects of organophosphate pesticides originate from mitochondrial dysfunction. To investigate this, in silico toxicogenomic analyses were performed using various tools, such as the Comparative Toxicogenomic Database, GeneMANIA, STRING, and Cytoscape. Results revealed that 11 out of the 13 WHO-recommended Class Ia organophosphate pesticides target genes associated with cardiotoxicity. Notably, three of these genes were mitochondrial, with catalase (CAT) being the common differentially expressed gene among parathion, methyl parathion, and phorate. Furthermore, protein-protein interaction analysis indicated a strong association between CAT and superoxide dismutase 2, mitochondrial (SOD2). Subsequently, isolated heart mitochondria were utilized to assess CAT and superoxide dismutase (SOD) activities in vitro. The findings demonstrated that at a concentration of 7.5 ng/µL, both methyl parathion and phorate significantly decreased CAT activity by approximately 35%. Moreover, phorate reduced total SOD and SOD2 activities by 17% and 19%, respectively, at the same concentration. In contrast, none of the three organophosphate pesticides induced the opening of the mitochondrial permeability transition pore. These results suggest that the reduction in CAT and SOD2 activities, critical antioxidant enzymes, leads to the accumulation of reactive oxygen species within mitochondria, ultimately resulting in mitochondrial damage. This mechanism likely underlies the observed cardiotoxicity induced by these organophosphate pesticides.

2.
Food Chem ; 450: 139152, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38653046

ABSTRACT

The development of a robust electrocatalyst for the electrochemical sensor for hazardous pesticides will reduce its effects on the ecosystem. Herein, we synthesized the robust manganese cobalt phosphide (MnCoP) - Core-shell as an electrochemical sensor for the determination of hazardous pesticide methyl parathion (MP). The MnCoP- Core-shell was prepared with the sustainable self-template route can help with the larger surface area. The Core-shell structure of MnCoP possesses a higher active surface area which increases the electrocatalytic performance and is utilized to improve the electrochemical MP reduction with the synergism of the core and shell structure. Remarkably, it realizes the higher sensitivity (0.014 µA µM-1 cm-2) of MnCoP- Core-shell/GCE achieves towards MP with lower limit of detection (LoD 50 nM) and exceptional recovery rate of MP in vegetable samples are achieved with the differential pulse voltammetry (DPV) technique. The MnCoP- Core-shell electrode reserved their superior electrochemical performances with high reproducibility and repeatability. This prominent activity of the MnCoP core-shell towards the MP in real sample analysis, makes it a promising electrochemical sensor for the detection of MP.


Subject(s)
Cobalt , Electrochemical Techniques , Food Contamination , Manganese , Methyl Parathion , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Cobalt/chemistry , Cobalt/analysis , Methyl Parathion/analysis , Food Contamination/analysis , Manganese/chemistry , Manganese/analysis , Limit of Detection , Phosphines/chemistry , Phosphines/analysis , Vegetables/chemistry , Electrodes , Pesticides/analysis , Pesticides/chemistry
3.
Food Chem ; 442: 138389, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38219569

ABSTRACT

In this study, a cascade nanobioreactor was developed for the highly sensitive detection of methyl parathion (MP) in food samples. The simultaneous encapsulation of acetylcholinesterase (AChE) and choline oxidase (CHO) in a zeolitic imidazole ester backbone (ZIF-8) effectively improved the stability and cascade catalytic efficiency of the enzymes. In addition, glutathione-stabilized gold nanoclusters (GSH-AuNCs) were encapsulated in ZIF-8 by ligand self-assembly, conferring excellent fluorescence properties. Acetylcholine (ATCh) is catalyzed by a cascade of AChE/CHO@ZIF-8 as well as Fe(II) to generate hydroxyl radicals (·OH) with strong oxidizing properties. The ·OH radicals then oxidize Au(0) in GSH-AuNCs@ZIF-8 to Au(I), resulting in fluorescence quenching. MP, as an inhibitor of AChE, hinders the cascade reaction and thus restores the fluorescence emission, enabling its quantitative detection. The limit of detection of the constructed nanobioreactor for MP was 0.23 µg/L. This MOF-based cascade nanobioreactor has great potential for the detection of trace hazards.


Subject(s)
Metal Nanoparticles , Metal-Organic Frameworks , Methyl Parathion , Acetylcholinesterase , Acetylcholine , Gold , Limit of Detection
4.
Food Chem ; 441: 138345, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38185049

ABSTRACT

Advances in flexible SERS substrates has made it possible to approach the ultimate goal of rapid in-situ monitoring of fruit and vegetable safety, but its vulnerability under laser ablation results in low utilization. In order to solve this problem, a 3D framework of TiO2-doped PVDF\PVP polymer was utilized to self-assemble gold-silver core-shell nanorods (Au@Ag NRs) to prepare a flexible SERS substrate with good physical stability and self-cleaning properties. This substrate showed excellent detection limit and recyclability after the detection of three pesticide residues in apple peel. The LOD of methyl-parathion (MP) was as low as 0.037 ng/cm2, with an RSD of 5.61 % for 5 cycle-detection. The recoveries of two additional pesticides thiram (TMTD) and chlorpyrifos (CPF) were 86.32 %-112.47 %. We hoped that this research will contribute to providing a recyclable and facile method for in-situ analysis of fruit and vegetable surface residues and functional manufacture of flexible SERS substrates.


Subject(s)
Malus , Metal Nanoparticles , Pesticide Residues , Pesticides , Malus/chemistry , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Pesticides/analysis , Pesticide Residues/analysis , Thiram/analysis , Vegetables/chemistry , Gold/chemistry
5.
Proteins ; 92(1): 96-105, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37646471

ABSTRACT

Methyl parathion hydrolase (MPH) is an enzyme of the metallo-ß-lactamase superfamily, which hydrolyses a wide range of organophosphates (OPs). Recently, MPH has attracted attention as a promising enzymatic bioremediator. The crystal structure of MPH enzyme shows a dimeric form, with each subunit containing a binuclear metal ion center. MPH also demonstrates metal ion-dependent selectivity patterns. The origins of these patterns remain unclear but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. We aimed to investigate and compare the binding of different OP pesticides to MPH with cobalt(II) metal ions. In this study, MPH was modeled from Ochrobactrum sp. with different OP pesticides bound, including methyl paraoxon and dichlorvos and profenofos. The docked structures for each substrate optimized by DFT calculation were selected and subjected to atomistic molecular dynamics simulations for 500 ns. It was found that alpha metal ions did not coordinate with all the pesticides. Rather, the pesticides coordinated with less buried beta metal ions. It was also observed that the coordination of beta metal ions was perturbed to accommodate the pesticides. The binding free energy calculations and structure-based pharmacophore model revealed that all the three substrates could bind well at the active site. However, profenofos exhibit a stronger binding affinity to MPH in comparison to the other two substrates. Therefore, our findings provide molecular insight on the binding of different OP pesticides which could help us design the enzyme for OP pesticides degradation.


Subject(s)
Methyl Parathion , Ochrobactrum , Pesticides , Methyl Parathion/metabolism , Organophosphates/chemistry , Organophosphates/metabolism , Hydrolases , Ochrobactrum/metabolism , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Metals/chemistry , Ions
6.
Chemosphere ; 346: 140597, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37925025

ABSTRACT

This article presents a novel and highly efficient electrocatalytic degradation method for two significant organophosphorus pesticides, fenitrothion (FEN), and methyl parathion (MPN), using a Ti/ß-PbO2-CeO2 modified anode (indirect oxidation). A comprehensive electrochemical investigation was also carried out to gain new insight into the redox behavior and destruction pathway of these pesticides (direct oxidation). The study also explores the effects of various operating parameters, such as initial solution pH, applied current density, and initial pesticides concentration, on the conversion-paired electrocatalytic removal process. To further enhance the degradation efficiency, a new configuration of the electrochemical cell was designed, employing two types of electrodes and two independent power supply devices. The conversion paired electrocatalytic degradation process of these pesticides involves first the direct reduction of FEN (or MPN) on a graphite cathode and then the indirect oxidation of reduced FEN (or MPN) by hydroxyl radicals electro generated on the Ti/ß-PbO2-CeO2 anode. The synergism of these two processes together will effectively lead to FEN (or MPN) degradation. The degradation percentages of 98% for FEN and 95% for MPN at the optimal conditions for the electrochemical degradation of these pesticides were achieved at pH = 7, initial concentration 50 mg L-1, with a current density of 90 mA cm-2 for direct reduction and 11 mA cm-2 for indirect oxidation. Overall, this study presents a promising and efficient approach for the remediation of organophosphorus pesticide-contaminated environments, offering valuable insights into the electrochemical degradation process and highlighting the potential for practical application in wastewater treatment and environmental protection.


Subject(s)
Methyl Parathion , Pesticides , Water Pollutants, Chemical , Organophosphorus Compounds , Oxides , Oxidation-Reduction , Electrodes , Titanium , Water Pollutants, Chemical/analysis
7.
Water Res ; 250: 121051, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38157605

ABSTRACT

Rapid and precise quantification of organophosphorus pesticides (OPPs) in environmental water bodies is crucial for evaluating ecological risks and safeguarding human health. Traditional instrumental methods are complex, time-consuming, and expensive, while enzyme-based biosensors suffer from instability and require a constant supply of substrates. Hence, there is an urgent need for a fast, simple, and sensitive biosensor for OPPs. In this study, we developed a novel non-enzymatic biosensor for the detection of methyl parathion (MP) by employing the bioluminescence resonance energy transfer (BRET) Q-body strategy. Optimizing the spacer arm and screening fluorescent dyes identified the R6G BRET MP Q-body sensor with the best performance. Key parameters affecting the sensor's detection performance were optimized by using single-factor experiments. Under optimal conditions, the detection exhibited a detection limit of 5.09 ng·mL-1 and a linear range of 16.21-848.81 ng·mL-1. The sensor's accuracy was validated using standard recovery experiments, yielding a recovery rate of 84.47 %-102.08 % with a standard deviation of 1.93 %-9.25 %. The detection results of actual water samples demonstrate that this fast, simple, and highly sensitive BRET Q-body sensor holds great promise for practical water quality monitoring.


Subject(s)
Biosensing Techniques , Methyl Parathion , Pesticides , Humans , Pesticides/analysis , Organophosphorus Compounds , Energy Transfer , Biosensing Techniques/methods
8.
Luminescence ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38148625

ABSTRACT

It is of great significance to develop an effective method for methyl parathion (MP) detection. Herein, a novel nitrogen-doped titanium carbide quantum dots (N-Ti3 C2 QDs) was prepared and used to construct a simple and sensitive fluorescence sensing platform of MP by making use of inner filter effect (IFE). The prepared N-Ti3 C2 QDs can exhibit strong blue fluorescence at 434 nm. Meanwhile, MP could hydrolyze to produce p-nitrophenol (p-NP) under alkaline conditions, which showed a characteristic ultraviolet-visible (UV-visible) absorption peak at 405 nm, resulting in the fluorescence of N-Ti3 C2 QDs is effectively quenched by p-NP. In addition, the investigation of time-resolved fluorescence decays indicated that the corresponding quenching mechanism of p-NP on N-Ti3 C2 QDs is due to the IFE. After optimizing the conditions, the as-developed fluorescence sensing platform displayed wide detection range (0.1-30 µg mL-1 ) and low detection limit (0.036 µg mL-1 ) for MP, and it was also successfully applied for MP analysis in real water samples, thus it is expected that this simple, sensitive and enzyme-free sensing platform shows great applications.

9.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2706-2718, 2023 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-37584126

ABSTRACT

The evaluation of the bioavailability of pollutants in soil is crucial to accurately assess the pollution risk, and whole-cell biosensor is one of the important tools for such evaluation. This study aimed to develop a novel whole-cell biosensor for the detection of methyl parathion in soil using. First, a whole-cell biosensor was constructed by the screened methyl parathion hydrolase mpd gene, the existing specific induction element pobR, and the pUC19 plasmid skeleton. Then, the detection method of methyl parathion in soil extracts was established using 96-well microtiter plate as carrier and five whole-cell biosensors as indicator. The method was applied in the detection of methyl parathion in tested and field soil extracts. Taking E. coli DH5α/pMP-AmilCP with the best detection performance as an example, this biosensor had a detection limit of 6.21-6.66 µg/L and a linear range of 10-10 000 µg/L for methyl parathion in four soil extracts. E. coli DH5α/pMP-RFP and E. coli DH5α/pMP-AmilCP methods have good detection performance for the analysis of methyl parathion in soil extract samples. This biosensor method can help to quickly assess the bioavailability of methyl parathion in soil, and thus help to understand the risk of soil pollution caused by organophosphorus pesticide methyl parathion.


Subject(s)
Biosensing Techniques , Methyl Parathion , Pesticides , Methyl Parathion/analysis , Pesticides/analysis , Organophosphorus Compounds , Escherichia coli/genetics , Soil , Farms
10.
Foods ; 12(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569249

ABSTRACT

In this study, a colorimetric sensor was developed for the detection of organophosphorus pesticides (OPs) using a heterogeneous nanozyme with phosphatase-like activity. Herein, this heterogeneous nanozyme (Au-pCeO2) was obtained by the modification of gold nanoparticles on porous cerium oxide nanorods, resulting in synergistic hydrolysis performance for OPs. Taking methyl parathion (MP) as the target pesticide, the catalytic performance and mechanism of Au-pCeO2 were investigated. Based on the phosphatase-like Au-pCeO2, a dual-mode colorimetric sensor for MP was put forward by the analysis of the hydrolysis product via a UV-visible spectrophotometer and a smartphone. Under optimum conditions, this dual-mode strategy can be used for the on-site analysis of MP with concentrations of 5 to 200 µM. Additionally, it can be applied for MP detection in pear and lettuce samples with recoveries ranging from 85.27% to 115.87% and relative standard deviations (RSDs) not exceeding 6.20%, which can provide a simple and convenient method for OP detection in agricultural products.

11.
Chemosphere ; 320: 138054, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739984

ABSTRACT

Methyl parathion (MP) is a typical organophosphorus pesticide that is widely used worldwide, and hydrolysis, oxidation and reduction are the main abiotic degradation processes. Manganese dioxide (MnO2) and organic acid can participate in various geochemical processes of pollutants, a reaction system was constructed to degrade MP using δ-MnO2 and oxalic acid. The δ-MnO2/oxalic acid reaction system could efficiently degrade MP, and the removal rate of MP (20 µM) reached 67.83% within 30 h under the optimized conditions (pH 5, [δ-MnO2] = 2 mM, [oxalic acid] = 100 mM). MP was hydrolyzed by substitution reactions of SN@P and SN@C, and reduced by conversion of the nitro groups (-NO2) in MP and its hydrolysates to amino groups (-NH2). The primary active substance produced in the reaction system was the complexes dominated by Mn(III)-oxalic acid. This study provides a scientific basis for the degradation of organophosphorus pesticides using MnO2 and an organic acid. The results have important theoretical significance and application value for pollution control and remediation of organophosphorus pesticides.


Subject(s)
Methyl Parathion , Pesticides , Methyl Parathion/chemistry , Oxides/chemistry , Organophosphorus Compounds , Pesticides/analysis , Oxalic Acid , Manganese Compounds/chemistry , Oxidation-Reduction , Kinetics
12.
Food Chem ; 413: 135679, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36796262

ABSTRACT

A highly sensitive fluorescent sensing system of novel carbon quantum dots nano-fluorescent probe based on corn stalks was established for the determination of methyl parathion by alkaline catalytic hydrolysis and inner filter effect mechanism. The carbon quantum dots nano-fluorescent probe was prepared from corn stalks using an optimized one-step hydrothermal method. The detection mechanism of methyl parathion was revealed. The reaction conditions were optimized. The linear range, sensitivity and selectivity of the method were evaluated. Under the optimal conditions, the carbon quantum dots nano-fluorescent probe exhibited high selectivity and sensitivity to methyl parathion, achieving a linear range of 0.005-14 µg/mL. The fluorescence sensing platform was applied to the detection of methyl parathion in rice samples, and the results showed that the recoveries range from 91.64 to 104.28 %, and the relative standard deviations were less than 4.17 %. The detection limit for methyl parathion in rice samples was 1.22 µg/kg, and the limit of quantitation (LOQ) was 4.07 µg/kg, which was very satisfactory.


Subject(s)
Methyl Parathion , Oryza , Quantum Dots , Carbon , Limit of Detection , Spectrometry, Fluorescence/methods , Fluorescent Dyes
13.
Toxics ; 11(1)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36668810

ABSTRACT

Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.

14.
J Hazard Mater ; 447: 130777, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36689901

ABSTRACT

Developing electrode materials with excellent electrocatalytic properties for detecting pesticide residues plays a vital role in the safety of agricultural products and environmental applications. Herein, we designed a new electrochemical sensor on the basis of N-doped carbon hollow nanospheres modified with Sn/MoC Schottky junction (Sn/MoC@NC) for methyl parathion (MP) detection. The Sn/MoC@NC was prepared by self-assembled polymerization-anchoring strategy and high-temperature carbonization design. Sn/MoC Schottky junction and hollow nanosphere structure endow Sn/MoC@NC with a larger surface area, more active sites, and faster electron transfer, which is beneficial to enhancing its electrocatalytic performance. The structural characterizations and physicochemical properties of Sn/MoC@NC were explored through various microscopy, spectroscopic and electrochemical techniques. The experimental results confirmed that the calibration curve for current and MP concentration (0.05-10 µg/mL) was available under optimized conditions, and the sensitivity and detection limit were respectively determined to be 9.02 µA µM1 cm2 and 8.9 ng/mL. Furthermore, the constructed sensor displayed excellent selectivity, repeatability, and stability, which qualified it for use in detecting MP in grapes and tap water with satisfactory recovery. This work may provide some interesting prospects for constructing high-performance electrocatalysts for MP detection.

15.
Anal Chim Acta ; 1241: 340780, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36657878

ABSTRACT

An aptamer-based electrochemical sensor for methyl parathion (MP) detection is herein reported. The modified magnetic beads-systematic evolution of ligands by enrichment (MB-SELEX) was used to select the MP aptamer. After 14 rounds of selection, the aptamer (MPapta-6) with high affinity for MP was obtained, and its dissociation constant (Kd) was 39.66 ± 14.73 µM. Using the MPapta-6, the ultra-sensitive electrochemical sensor based on PLL-BP and AuNPs was constructed. The linear range of MP was 1-105 pM and detection limit (LOD) was as low as 0.49 pM. In addition, the application of the sensor in water samples was verified, and the recovery rate was 96.6%-103.5%. The results from this study showed that this strategy could be applied in practical detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Methyl Parathion , Gold , SELEX Aptamer Technique , DNA , Limit of Detection , Biosensing Techniques/methods , Electrochemical Techniques/methods
16.
Chinese Journal of Biotechnology ; (12): 2706-2718, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-981227

ABSTRACT

The evaluation of the bioavailability of pollutants in soil is crucial to accurately assess the pollution risk, and whole-cell biosensor is one of the important tools for such evaluation. This study aimed to develop a novel whole-cell biosensor for the detection of methyl parathion in soil using. First, a whole-cell biosensor was constructed by the screened methyl parathion hydrolase mpd gene, the existing specific induction element pobR, and the pUC19 plasmid skeleton. Then, the detection method of methyl parathion in soil extracts was established using 96-well microtiter plate as carrier and five whole-cell biosensors as indicator. The method was applied in the detection of methyl parathion in tested and field soil extracts. Taking E. coli DH5α/pMP-AmilCP with the best detection performance as an example, this biosensor had a detection limit of 6.21-6.66 µg/L and a linear range of 10-10 000 µg/L for methyl parathion in four soil extracts. E. coli DH5α/pMP-RFP and E. coli DH5α/pMP-AmilCP methods have good detection performance for the analysis of methyl parathion in soil extract samples. This biosensor method can help to quickly assess the bioavailability of methyl parathion in soil, and thus help to understand the risk of soil pollution caused by organophosphorus pesticide methyl parathion.


Subject(s)
Methyl Parathion/analysis , Pesticides/analysis , Organophosphorus Compounds , Escherichia coli/genetics , Soil , Farms , Biosensing Techniques
17.
Sensors (Basel) ; 22(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36560305

ABSTRACT

In this study, nanostructured gold was successfully prepared on a bare Au electrode using the electrochemical deposition method. Nanostructured gold provided more exposed active sites to facilitate the ion and electron transfer during the electrocatalytic reaction of organophosphorus pesticide (methyl parathion). The morphological and structural characterization of nanostructured gold was conducted using field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), which was further carried out to evaluate the electrocatalytic activity towards methyl parathion sensing. The electrochemical performance of nanostructured gold was investigated by electrochemical measurements (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)). The proposed nanostructured gold-modified electrode exhibited prominent electrochemical methyl parathion sensing performance (including two linear concentration ranges from 0.01 to 0.5 ppm (R2 = 0.993) and from 0.5 to 4 ppm (R2 = 0.996), limit of detection of 5.9 ppb, excellent selectivity and stability), and excellent capability in determination of pesticide residue in real fruit and vegetable samples (bok choy and strawberry). The study demonstrated that the presented approach to fabricate a nanostructured gold-modified electrode could be practically applied to detect pesticide residue in agricultural products via integrating the electrochemical and gas chromatography coupled with mass spectrometry (GC/MS-MS) analysis.


Subject(s)
Metal Nanoparticles , Methyl Parathion , Nanocomposites , Pesticide Residues , Pesticides , Methyl Parathion/analysis , Pesticides/analysis , Organophosphorus Compounds/analysis , Gold/chemistry , Pesticide Residues/analysis , Nanocomposites/chemistry , Electrodes , Electrochemical Techniques/methods , Limit of Detection , Metal Nanoparticles/chemistry
18.
J Agric Food Chem ; 70(45): 14522-14530, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36342188

ABSTRACT

Methyl parathion (MP) residues have aroused extensive attention on account of their significant threat to the environment and food safety. Currently reported fluorescent methods used for MP sensing largely depend upon an enzyme. Designing a facile and specific enzyme-free MP fluorescent sensor is in great demand, which remains a challenge. Here, negatively charged Cu nanoclusters (CuNCs) anchored on positively charged melamine-formaldehyde (MF) microspheres (MF@CuNCs) through an electrostatic interaction were prepared. MF microspheres triggered aggregation-induced emission (AIE) of CuNCs and successfully circumvented the shortcomings of poor stability and low luminescence of CuNCs. The fluorescence intensity of MF@CuNCs can be quenched by p-nitrophenol produced by MP under alkaline conditions. Accordingly, a specific enzyme-free MP sensing method was constructed with MF@CuNCs. In combination with a smartphone, visually quantitative analysis of MP in a fast and portable way was also achieved. For the first time, AIE of CuNCs used for enzyme-free MP sensing was successfully explored in this work, and it is believed that this method will open a new pathway for AIE of CuNCs to be applied in various applications.


Subject(s)
Metal Nanoparticles , Methyl Parathion , Copper/chemistry , Microspheres , Formaldehyde , Metal Nanoparticles/chemistry , Spectrometry, Fluorescence/methods
19.
Mikrochim Acta ; 189(12): 461, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36416997

ABSTRACT

A highly sensitive electrochemical sensor using a calix[6]arene/bismuth ferrite/multiwall carbon nanotube-modified fluorine-doped tin oxide electrode (CA6/BFO/MWCNTs/FTO) was fabricated for the detection of methyl parathion. The MWCNTs, BFO, and CA6 were consecutively cast onto the FTO electrode surface to enhance the surface area, electron transfer, and selectivity of sensors. The electrochemical behavior of CA6/BFO/MWCNTs/FTO was studied via cyclic voltammetry and electrochemical impedance spectroscopy. MP was detected via cyclic voltammetry in a phosphate buffer solution at pH 7.0. The working principle of the sensor involves a linear decrease in the anodic peak current of BFO with increasing MP concentration. The linear working ranges are 0.005-0.05 nM and 0.07-1.5 nM. The CA6/BFO/MWCNTs/FTO sensor provides a low detection limit (S/N = 3) of 5 pM and a high electrochemical sensitivity of 1.23 A µM-1 cm-2. The fabricated sensor was successfully applied to assess the presence and amount of MP in vegetables and fruits (recoveries of 82.0-106.8%), with results comparable to high-performance liquid chromatography.


Subject(s)
Biosensing Techniques , Methyl Parathion , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Fluorine , Electrochemical Techniques , Bismuth , Biosensing Techniques/methods , Electrodes , Fluorides
20.
Anal Sci ; 38(12): 1513-1522, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36071334

ABSTRACT

The present work describes a simple and rapid synthesis method of gold nanoparticles and graphdiyne (AuNPs@GDY) nanocomposites including porous structure. Moreover, the synthesized AuNPs@GDY material was decorated on the glassy carbon electrode (GCE) with a drop coating method to construct a non-enzymatic electrochemical pesticides sensor. The micro-morphology and elemental composition of the materials were characterized by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The electrocatalysis and conductivity of the material were studied with cyclic voltammetry (CV) and impedance method, respectively. The properties of the sensor were investigated by CV and differential pulse voltammetry (DPV). The results showed that AuNPs@GDY exhibited excellent electrocatalytic ability for methyl parathion in a wide linear range (from 0.25 ng/mL to 24.43 µg/mL) and low limit of detection value (6.2 pg/mL). Furthermore, the DPV method used in this paper was accurate and sensitive, and could be used for routine quality control of methyl parathion in kiwi fruit and tomato samples.


Subject(s)
Metal Nanoparticles , Methyl Parathion , Nanocomposites , Gold/chemistry , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Electrodes , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...