Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Thorac Dis ; 16(5): 3450-3460, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38883616

ABSTRACT

Background and Objective: Theophylline has been used for decades in human medicine for its psychostimulant, anti-inflammatory, and bronchodilator effects. Historically, in pulmonary medicine, theophylline has been used in the treatment of obstructive pulmonary diseases such as bronchial asthma (BA) or chronic obstructive pulmonary disease (COPD). This review aims to determine whether theophylline still has its place in the therapy of obstructive pulmonary diseases or whether we can even extend its use to other diagnoses such as atropine-resistant cardiac arrests, apnea of prematurity, or others. Moreover, we also aim to determine if there is a rationale for using low-dose theophylline due to its immunomodulatory and anti-inflammatory effect, or if the future of methylxanthines lies in newly synthesized derivates of theophylline such as bamifylline, or doxofylline. Methods: The narrative review is based on a literature search of the articles indexed in the PubMed database in 2023. We searched the database since the year 2009 using the MeSH terms "theophylline", "aminophylline", and "methylxanthines" and we included original articles in the English language. Key Content and Findings: Theophylline has a number of adverse drug reactions (ADRs), the most serious of which is its effect on the cardiovascular system. It can cause severe arrhythmias or even cardiac arrest when overdosed. On the other hand, there is still a substantial amount of its applications in current clinical practice. Conclusions: There is considerable controversy associated with its use in current medicine, which can be attributed both to its narrow therapeutic range and its mentioned cardiotoxic effect. Herein, we summarize the current state-of-art of theophylline and its use in human medicine.

2.
J Diet Suppl ; : 1-25, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745415

ABSTRACT

This study investigated if paraxanthine (PX) impacts energy expenditure, lipolysis and perceptual responses. In a randomized, double-blind, placebo-controlled, crossover fashion, 21 adults (13 M, 8 F; 26.0 ± 6.4 years, 174.9 ± 11.5 cm, 81.0 ± 15.7 kg body mass, 26.3 ± 3.4 kg/m2) consumed a placebo (PLA), 100 mg (PX100), 200 mg (PX200), and 300 mg of PX (PX300, enfinity®, Ingenious Ingredients, L.P. Lewisville, TX, USA). Venous blood was collected 0, 30, 60, 90, 120 and 180 min (min) after ingestion and analyzed for glycerol and free fatty acids. Resting hemodynamics, metabolic rate and perceptual indicators of hunger, appetite and anxiety were evaluated. Mixed factorial analysis of variance were used to evaluate changes time within and between groups. Heart rate decreased in PX100 compared to PLA 60 (p = .022) and 180 min (p = .001). Blood pressure did not change. Hunger ratings in PLA increased 30 (p = .05), 60 (p = .04), 90 (p = .02), and 180 min (p = .05) after ingestion when compared to PX200. PX200 increased energy expenditure (all p < .05) when compared to PLA. Rates of fat oxidation tended to increase 90 (p = .056) and 120 min (p = .066) in PX200 compared to PLA. Free fatty acids increased in PX300 compared to PLA (p = .002). Glycerol did not change. Ingestion of PX200 augmented energy expenditure and hunger ratings when compared to PLA without impacting hemodynamics or lipolysis.

3.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38549434

ABSTRACT

With increasing global consumption of caffeine-rich products, such as coffee, tea, and energy drinks, there is also an increase in urban and processing waste full of residual caffeine with limited disposal options. This waste caffeine has been found to leach into the surrounding environment where it poses a threat to microorganisms, insects, small animals, and entire ecosystems. Growing interest in harnessing this environmental contaminant has led to the discovery of 79 bacterial strains, eight yeast strains, and 32 fungal strains capable of metabolizing caffeine by N-demethylation and/or C-8 oxidation. Recently observed promiscuity of caffeine-degrading enzymes in vivo has opened up the possibility of engineering bacterial strains capable of producing a wide variety of caffeine derivatives from a renewable resource. These engineered strains can be used to reduce the negative environmental impact of leached caffeine-rich waste through bioremediation efforts supplemented by our increasing understanding of new techniques such as cell immobilization. Here, we compile all of the known caffeine-degrading microbial strains, discuss their metabolism and related enzymology, and investigate their potential application in bioremediation.


Subject(s)
Bacteria , Biodegradation, Environmental , Caffeine , Fungi , Caffeine/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Fungi/metabolism , Fungi/genetics , Yeasts/metabolism , Yeasts/genetics
4.
Int J Mol Sci ; 24(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139396

ABSTRACT

Experimental studies reveal that caffeine (trimethylxanthine) at subconvulsive doses, distinctly reduced the anticonvulsant activity of numerous antiseizure medications (ASMs) in rodents, oxcarbazepine, tiagabine and lamotrigine being the exceptions. Clinical data based on low numbers of patients support the experimental results by showing that caffeine (ingested in high quantities) may sharply increase seizure frequency, considerably reducing the quality of patients' lives. In contrast, this obviously negative activity of caffeine was not found in clinical studies involving much higher numbers of patients. ASMs vulnerable to caffeine in experimental models of seizures encompass carbamazepine, phenobarbital, phenytoin, valproate, gabapentin, levetiracetam, pregabalin and topiramate. An inhibition of R-calcium channels by lamotrigine and oxcarbazepine may account for their resistance to the trimethylxanthine. This assumption, however, is complicated by the fact that topiramate also seems to be a blocker of R-calcium channels. A question arises why large clinical studies failed to confirm the results of experimental and case-report studies. A possibility exists that the proportion of patients taking ASMs resistant to caffeine may be significant and such patients may be sufficiently protected against the negative activity of caffeine.


Subject(s)
Anticonvulsants , Caffeine , Humans , Lamotrigine/pharmacology , Lamotrigine/therapeutic use , Oxcarbazepine/therapeutic use , Caffeine/pharmacology , Caffeine/therapeutic use , Topiramate/therapeutic use , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Seizures/drug therapy , Calcium Channels
5.
Semin Fetal Neonatal Med ; 28(5): 101490, 2023 10.
Article in English | MEDLINE | ID: mdl-38030435

ABSTRACT

This chapter focuses on the pharmacological management of newborn infants in the peri-extubation period to reduce the risk of re-intubation and prolonged mechanical ventilation. Drugs used to promote respiratory drive, reduce the risk of apnoea, reduce lung inflammation and avoid bronchospasm are critically assessed. When available, Cochrane reviews and randomised trials are used as the primary sources of evidence. Methylxanthines, particularly caffeine, are well studied and there is accumulating evidence to guide clinicians on the timing and dosage that may be used. Efficacy and safety for doxapram, steroids, adrenaline and salbutamol are summarised. Management of term infants, extubation following surgery, accidental and complicated extubation and the use of cuffed endotracheal tubes are presented. Overall, caffeine is the only drug with a substantial evidence base, proven to increase the likelihood of successful extubation in preterm infants; no drugs are needed to facilitate extubation in most term infants. Future studies might further define the role of caffeine in late preterm infants and evaluate medications for post-extubation stridor, bronchospasm or apnoea not responsive to methylxanthines.


Subject(s)
Bronchial Spasm , Infant, Premature , Infant, Newborn , Humans , Caffeine/therapeutic use , Apnea/drug therapy , Ventilator Weaning , Bronchial Spasm/drug therapy , Intermittent Positive-Pressure Ventilation , Airway Extubation
6.
Mol Cell Pediatr ; 10(1): 13, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37718322

ABSTRACT

OBJECTIVE: Scientific scrutiny has proved the safety and benefits of caffeine to treat apnoea of prematurity (AOP). However, there is no consensus on the effects of this treatment on sleep, especially considering the key role of adenosine and early brain development for sleep maturation. We systematically reviewed studies with sleep as a primary and/or secondary outcome or any mention of sleep parameters in the context of caffeine treatment for AOP. METHODS: We performed a systematic search of PubMed, Web of Science and the Virtual Health Library from inception to 7 September 2022 to identify studies investigating the short- and long-term effects of caffeine to treat AOP on sleep parameters. We used the PIC strategy considering preterm infants as the Population, caffeine for apnoea as the Intervention and no or other intervention other than caffeine as the Comparison. We registered the protocol on PROSPERO (CRD42021282536). RESULTS: Of 4019 studies, we deemed 20, including randomised controlled trials and follow-up and observational studies, to be eligible for our systematic review. The analysed sleep parameters, the evaluation phase and the instruments for sleep assessment varied considerably among the studies. The main findings can be summarised as follows: (i) most of the eligible studies in this systematic review indicate that caffeine used to treat AOP seems to have no effect on key sleep parameters and (ii) the effects on sleep when caffeine is administered earlier, at higher doses or for longer periods than the most common protocol have not been investigated. There is a possible correlation between the caffeine concentration and period of exposure and negative sleep quality, but the sleep assessment protocols used in the included studies did not have high-quality standards and could not provide good evidence. CONCLUSIONS AND IMPLICATIONS: Sleep quality is an important determinant of health, and better investments in research with adequate sleep assessment tools are necessary to guarantee the ideal management of children who were born preterm.

7.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446053

ABSTRACT

Uric acid lithiasis accounts for about 10% of all types of renal lithiasis. The most common causes of uric acid lithiasis are low urinary pH, followed by high concentration of urinary uric acid, and low diuresis. Treatment of patients consists of alkalinization of urine, reducing the consumption of purine-rich foods, and administration of xanthine oxidase inhibitors, because there are no established therapeutic inhibitors of uric acid crystallization. We recently found that theobromine inhibited uric acid crystallization in vitro, and that the increased urinary level of theobromine following its oral consumption was associated with the prevention of uric acid crystallization. In this study, we evaluated the inhibitory effects of theobromine metabolites and other methylxanthine-related compounds on uric acid crystallization. We also measured the urinary concentrations of theobromine and its metabolites in samples from healthy individuals and patients with uric acid stones and compared the extent of uric acid supersaturation and uric acid crystal formation in these different samples. Theobromine and other methylxanthines that lacked a substituent at position 1 inhibited uric acid crystallization, but other methylxanthines did not have this effect. Individuals with clinical parameters that favored uric acid crystallization did not develop uric acid crystals when theobromine and its metabolites were in the urine at high levels. Thus, theobromine and its metabolites reduced the risk of uric acid lithiasis.


Subject(s)
Lithiasis , Nephrolithiasis , Humans , Uric Acid/chemistry , Theobromine , Pharmaceutical Preparations
8.
Pharmacol Biochem Behav ; 229: 173601, 2023 08.
Article in English | MEDLINE | ID: mdl-37414364

ABSTRACT

RATIONALE: The opioid epidemic remains a pressing public health crisis in the United States. Most of these overdose deaths are a result of lethal respiratory depression. In recent years the increasing incidence of opioid-involved overdose deaths has been driven by fentanyl, which is more resistant to adequate reversal by naloxone (NARCAN ®) than semi-synthetic or classical morphinan predecessors like oxycodone and heroin. For this and other reasons (e.g., precipitating withdrawal) non-opioidergic pharmacotherapies to reverse opioid-depressed respiration are needed. Methylxanthines are a class of stimulant drugs including caffeine and theophylline which exert their effects primarily via adenosine receptor antagonism. Evidence suggests methylxanthines can stimulate respiration by enhancing neural activity in respiratory nuclei in the pons and medulla independent of opioid receptors. This study aimed to determine whether caffeine and theophylline can stimulate respiration in mice when depressed by fentanyl and oxycodone. METHODS: Whole-body plethysmography was used to characterize fentanyl and oxycodone's effects on respiration and their reversal by naloxone in male Swiss Webster mice. Next, caffeine and theophylline were tested for their effects on basal respiration. Finally, each methylxanthine was evaluated for its ability to reverse similar levels of respiratory depression induced by fentanyl or oxycodone. RESULTS AND CONCLUSIONS: Oxycodone and fentanyl dose-dependently reduced respiratory minute volume (ml/min; MVb) that was reversible by naloxone. Caffeine and theophylline each significantly increased basal MVb. Theophylline, but not caffeine, completely reversed oxycodone-depressed respiration. In contrast, neither methylxanthine elevated fentanyl-depressed respiration at the doses tested. Despite their limited efficacy for reversing opioid-depressed respiration when administered alone, the methylxanthines safety, duration, and mechanism of action supports further evaluation in combination with naloxone to augment its reversal of opioid-depressed respiration.


Subject(s)
Analgesics, Opioid , Respiratory Insufficiency , Male , Animals , Mice , Analgesics, Opioid/adverse effects , Theophylline/pharmacology , Oxycodone/adverse effects , Caffeine/adverse effects , Fentanyl/adverse effects , Naloxone/pharmacology , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/drug therapy , Narcotic Antagonists/therapeutic use
9.
Microbiol Spectr ; 11(4): e0372722, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37272789

ABSTRACT

In Neurospora crassa, caffeine and other methylxanthines are known to inhibit phosphodiesterase (PDE) activity, leading to augmented cAMP levels. In this organism, it has also been shown that the addition of these drugs significantly lengthens the circadian period, as seen by conidiation rhythms. Utilizing in vivo bioluminescence reporters, pharmacological inhibitors, and cAMP analogs, we revisited the effect of methylxanthines and the role of cAMP signaling in the Neurospora clockworks. We observed that caffeine, like all tested methylxanthines, led to significant period lengthening, visualized with both core-clock transcriptional and translational reporters. Remarkably, this phenotype is still observed when phosphodiesterase (PDE) activity is genetically or chemically (via 3-isobutyl-1-methylxanthine) abrogated. Likewise, methylxanthines still exert a period effect in several cAMP signaling pathway mutants, including adenylate cyclase (cr-1) and protein kinase A (PKA) (Δpkac-1) mutants, suggesting that these drugs lead to circadian phenotypes through mechanisms different from the canonical PDE-cAMP-PKA signaling axis. Thus, this study highlights the strong impact of methylxanthines on circadian period in Neurospora, albeit the exact mechanisms somehow remain elusive. IMPORTANCE Evidence from diverse organisms show that caffeine causes changes in the circadian clock, causing period lengthening. The fungus Neurospora crassa is no exception; here, several methylxanthines such as caffeine, theophylline, and aminophylline cause period lengthening in a concentration-dependent manner. Although methylxanthines are expected to inhibit phosphodiesterase activity, we were able to show by genetic and pharmacological means that these drugs exert their effects through a different mechanism. Moreover, our results indicate that increases in cAMP levels and changes in PKA activity do not impact the circadian period and therefore are not part of underlying effects of methylxanthine. These results set the stage for future analyses dissecting the molecular mechanisms by which these drugs dramatically modify the circadian period.


Subject(s)
Caffeine , Neurospora crassa , Neurospora crassa/drug effects , Neurospora crassa/physiology , Circadian Rhythm/drug effects , Cyclic AMP/metabolism , Caffeine/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , 1-Methyl-3-isobutylxanthine , Protein Kinases/metabolism , Signal Transduction
10.
Antioxidants (Basel) ; 12(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37237894

ABSTRACT

Cocoa bean shell (CBS) is one of the main solid wastes derived from the chocolate industry. This residual biomass could be an interesting source of nutrients and bioactive compounds due to its high content in dietary fibres, polyphenols and methylxanthines. Specifically, CBS can be employed as a raw material for the recovery of, for example, antioxidants, antivirals and/or antimicrobials. Additionally, it can be used as a substrate to obtain biofuels (bioethanol or biomethane), as an additive in food processing, as an adsorbent and, even, as a corrosion-inhibiting agent. Together with the research on obtaining and characterising different compounds of interest from CBS, some works have focused on the employment of novel sustainable extraction methods and others on the possible use of the whole CBS or some derived products. This review provides insight into the different alternatives of CBS valorisation, including the most recent innovations, trends and challenges for the biotechnological application of this interesting and underused by-product.

11.
Antioxidants (Basel) ; 12(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36978964

ABSTRACT

Cocoa, the main derivative of the seeds of Theobroma cacao L., has been recognized to have several effects on human health including antioxidant and neuro- and cardio-protective effects, among others. These effects have been attributed mainly to its bioactive compounds. In this context, the aim of this work is to evaluate the nutritional composition, bioactive compounds (i.e., phenolic compounds, procyanidins and methylxanthines) and the antioxidant activity of seven different cocoas (alkalized and non-alkalized) from different origins (Peru, Venezuela, Ivory Coast, Dominican Republic, and West Africa). It represents the first stage of a larger project aiming to find high polyphenol cocoa-based nutritional strategies and related biomarkers that may potentiate brain plasticity and cognitive function. Cocoa powders were extracted by ultrasound-assisted technology, and the total phenolic content (TPC) was measured by Folin-Ciocalteu. Methylxanthines (caffeine and theobromine) and procyanidin contents were determined by HPLC-FLD-DAD, and the antioxidant activity was assessed through DPPH, ABTS and FRAP assays. Non-alkalized cocoas showed higher phenolic and procyanidin contents and higher antioxidant activity compared to the alkalized ones. A strongly significant (p < 0.05) positive correlation between the antioxidant activity and the TPC, especially with the total procyanidin content, but not with methylxanthines was found. In conclusion, the non-alkalized cocoas, especially the one from Peru, were the best candidates in terms of bioactive compounds. The cocoa from Peru had a TPC of 57.4 ± 14.4 mg of gallic acid equivalent/g d.w., 28,575.06 ± 62.37 µg of catechin equivalents/g d.w., and 39.15 ± 2.12 mg/g of methylxanthines. Further studies should be undertaken to evaluate its effect on brain plasticity and cognitive function.

12.
Nat Prod Res ; 37(18): 3103-3108, 2023.
Article in English | MEDLINE | ID: mdl-36370059

ABSTRACT

Many biological activities have been reported for the Ilex genus. However, few studies in the literature have reported on guayusa. To address this gap in our knowledge, chemical analysis of guayusa leaves was made. Extracts were obtained by applying Soxhlet, maceration, supercritical CO2 and pressurised liquid extraction techniques, using water and ethanol as solvent/cosolvent. Extracts were evaluated for their phenolic content and antioxidant capacity. The chemical profile was obtained from HPLC. In raw guayusa leaves were identified caffeine (2.27 ± 0.05%), protein (15.31 ± 0.07%) and lipids (11.81 ± 0.14%). Extracts presented the highest phenolic content (156.56 ± 1.32 mg GAE g-1) and the best antioxidant activity (EC50= 61.85 ± 0.21 µg mL-1) when water was used as solvent/cosolvent. Through HPLC, three main substances were determined and quantified in the extracts: caffeine, theobromine and 5-caffeoylquinic acid. Based on these results, guayusa may be considered a natural source of compounds with potential application in the food and pharmaceutical industries.

13.
Biotechnol Appl Biochem ; 70(1): 22-27, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35196743

ABSTRACT

Tea is a worldwide consumed herbal beverage and it was aimed in this study to reveal the major fractions of green and black tea in order to enlighten the in vitro inhibition potency on the well-known drug metabolizing enzyme CYP2D6 activity. Methylxanthine fractions were extracted from green and black tea and a yield of 0.265 g (1.06%) for 25 g of dried black tea and 0.302 g (1.2%) for 25 g of green tea was calculated. High-performance liquid chromatography analysis represented that the major components of the methylxanthine fractions were caffeine, theobromine, and theophylline. Methylxanthine content of black tea was 368.25 ± 4.6 µg/ml caffeine, 89.30 ± 2.3 µg/ml theobromine, and 3.40 ± 0.5 µg/ml theophylline, whereas that of green tea was 176.50 ± 3.7 µg/ml caffeine, 53.85 ± 1.4 µg/ml theobromine, and 2.06 ± 0.7 µg/ml theophylline. The results of concentration-dependent inhibition studies were 76% green tea, 75% black tea, and 55% caffeine at concentration of 10 mg/ml. The inhibition rates of green and black tea on CYP2D6 activity were 76% and 75%, respectively, where that of quinidine, the well-known inhibitor of CYP2D6, was 82%. Our results indicate that green and black tea is very likely to modify the CYP2D6 enzyme activity.


Subject(s)
Camellia sinensis , Camellia sinensis/chemistry , Caffeine/pharmacology , Caffeine/analysis , Theophylline/pharmacology , Theophylline/analysis , Cytochrome P-450 CYP2D6 , Theobromine/pharmacology , Theobromine/analysis , Turkey , Tea/chemistry
14.
Food Res Int ; 162(Pt B): 112117, 2022 12.
Article in English | MEDLINE | ID: mdl-36461351

ABSTRACT

The objective of this study was to assess how in vitro gastrointestinal digestion influenced the bioaccessibility and potential bioavailability of phenolic compounds and methylxanthines in thecocoa shell (CS) in the form of flour (CSF) and aqueous extract (CSE). To comprehend how these phytochemicals behaved during gastrointestinal digestion, we also modeled in silico the colonic microbial biotransformation of the phenolic compounds in the CS. Different groups of phenolic compounds (mainly gallic andprotocatechuic acids, and catechin) and methylxanthines (theobromine and caffeine)could be found in the CS. Methylxanthines and phenolic compounds were released differently during gastrointestinal digestion. Whereas digestion triggered the release of hydroxybenzoic acids (67-73%) and flavan-3-ols (73-88%) during the intestinal phase, it also caused the degradation of flavonols and flavones. Besides, the release of phytochemicals was significantly influenced by the CS matrix type. Phenolic compounds were protected by the CSF matrix. Phenolic acids from CSF were more bioaccessible in the intestinal (1.2-fold, p < 0.05) and colonic (1.3-fold, p < 0.05) phases than those from the CSE. Methylxanthines were also more bioaccessible in the intestinal (1.8-fold, p < 0.01) and colonic phases (1.3-fold, p < 0.001) and bioavailable (1.8-fold, p < 0.001) in the CSF. Colonic metabolism demonstrated that the gut microbiota could biotransform non-absorbed phenolic compounds into other lower molecular weight and more bioavailable metabolites. These findings support the CS's potential as a source of bioaccessible, bioavailable, and active phytochemicals.


Subject(s)
Gastrointestinal Microbiome , Phenols , Biological Availability , Polyphenols , Colon , Gallic Acid
15.
Molecules ; 27(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36557921

ABSTRACT

Xanthine derivatives have been a great area of interest for the development of potent bioactive agents. Thirty-eight methylxanthine derivatives as acetylcholinesterase inhibitors (AChE) were designed and synthesized. Suzuki-Miyaura cross-coupling reactions of 8-chlorocaffeine with aryl(hetaryl)boronic acids, the CuAAC reaction of 8-ethynylcaffeine with several azides, and the copper(I) catalyzed one-pot three-component reaction (A3-coupling) of 8-ethynylcaffeine, 1-(prop-2-ynyl)-, or 7-(prop-2-ynyl)-dimethylxanthines with formaldehyde and secondary amines were the main approaches for the synthesis of substituted methylxanthine derivatives (yield 53-96%). The bioactivity of all new compounds was evaluated by Ellman's method, and the results showed that most of the synthesized compounds displayed good and moderate acetylcholinesterase (AChE) inhibitory activities in vitro. The structure-activity relationships were also discussed. The data revealed that compounds 53, 59, 65, 66, and 69 exhibited the most potent inhibitory activity against AChE with IC50 of 0.25, 0.552, 0.089, 0.746, and 0.121 µM, respectively. The binding conformation and simultaneous interaction modes were further clarified by molecular docking studies.


Subject(s)
Acetylcholinesterase , Cholinesterase Inhibitors , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Xanthines/pharmacology , Structure-Activity Relationship , Molecular Structure
16.
Bol. latinoam. Caribe plantas med. aromát ; 21(4): 548-560, jul. 2022. ilus, tab, graf
Article in English | LILACS | ID: biblio-1527072

ABSTRACT

Yerba mate ( Ilex paraguariensis ) produces several secondary metabolites of interest to the phar maceutical industry, such as chlorogenic acids and methylxanthines. These compounds have been produced in vitro by callus culture from different species. However, for I. paraguariensis , no studies upon the production of these compounds in vitro have been p erformed to date. In this work, we show that the concentration of secondary metabolites from I. paraguariensis callus is possible and highly dependent on the callus growth phase. We observed that the best phase for the production of secondary compounds in calli of yerba mate is the stationary growth phase on both genotypes tested. In this phase, higher levels of phenolic compounds, chlorogenic acid and 3,5 - dicaffeoylquinic acid and greater antioxidant activity were observed. Chlorogenic acid and 3,5 - dicaffe oylquinic acid presented positive correlation with antioxidant activity. For the first time, secondary compounds were reported in yerba mate calli cultivated in vitro .


La yerba mate ( Ilex paraguariensis ) produce varios metabolitos secundarios de interés para la industria farmacéutica, como los ácidos clorogénicos y las metilxantinas. Estos compuestos se han producido in vitro mediante cultivo de ca llos de diferentes especies. Sin embargo, para I. paraguariensis , hasta la fecha no se han realizado estudios sobre la producción de estos compuestos in vitro . En este trabajo, mostramos que la concentración de metabolitos secundarios desde callos de I. pa raguariensis es posible y altamente dependiente de la fase de crecimiento del callo. Observamos que la mejor fase para la producción de compuestos secundarios en callos de yerba mate es la fase de crecimiento estacionario en ambos genotipos probados. En es ta fase se observaron niveles más altos de compuestos fenólicos, ácido clorogénico y ácido 3,5 - dicafeoilquínico y una mayor actividad antioxidante. El ácido clorogénico y el ácido 3,5 - dicafeoilquínico presentaron correlación positiva con la actividad antio xidante. Por primera vez, se reportaron compuestos secundarios en callos de yerba mate cultivados in vitro .


Subject(s)
Ilex paraguariensis , Genotype , Antioxidants
17.
Nutrients ; 14(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35683994

ABSTRACT

This study aimed to assess the content of caffeine and its metabolites-paraxanthine, theophylline, and theobromine-in breast milk according to selected factors. Samples of human milk were collected from 100 women living in the east-northeast region of Poland. Information on the consumption of beverages and foods containing caffeine was collected using a 3 day food record. The determination of caffeine and its metabolite content was performed using liquid chromatography-mass spectrometry (LC-MS/MS). This study research showed that more caffeine was found in the milk of women living in cities, with secondary education, aged 34-43, and also in milk from the 3rd and 4th lactation periods (p ≤ 0.05). Factors such as place of residence, level of education, age, and stage of lactation influenced the nutritional choices of breastfeeding women, which had an impact on the level of caffeine and its metabolites in breast milk. A positive correlation was found between the consumption of caffeine with food and drinks and its level in human milk.


Subject(s)
Theobromine , Theophylline , Caffeine/analysis , Chromatography, Liquid , Female , Humans , Milk, Human/chemistry , Tandem Mass Spectrometry
18.
Heliyon ; 8(5): e09402, 2022 May.
Article in English | MEDLINE | ID: mdl-35600450

ABSTRACT

The International Cocoa Organization recognized Colombian cocoa as "fine aroma," but in recent years, clone CCN 51 has grown in popularity, widely due to its high yield. The Tolima department is the fourth producer of cacao in Colombia, but there is a lack of knowledge of the chemical properties of regional cocoa genotypes. The aim of this study was to evaluate the morphological, antioxidant activity, total polyphenol content and the methylxanthines ratio of four regional genotypes (UTLP02, UTVE01, UTGC01 and UTLM02) of Theobroma cacao L. from Tolima, Colombia. The universal clone of CCN51 was used as control. The highest values for the qualitative descriptors were obtained by the variants UTVE01 and CCN51 with FRAP and TPC ranging from 44.51 ± 0.90 to 106.77 ± 5.21 mg GAE/g and 27.13 ± 0.14 to 52.12 ± 4.71 mmol TE/g respectively. The genotypes with the highest values for FRAP and TPC were UTGC01 and CCN51. According to the methylxanthine ratio, UTVE01 was classified as Criollo, while UTLM02, UTGC01 and UTLP02, CCN51 are Trinitario and Forastero, respectively. Although CCN51 is considered a remarkable material in terms of productivity, the genotypes evaluated present good yields and interesting values of TPC and antioxidant activity, making them promising trees in local breeding programs.

19.
Molecules ; 27(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408468

ABSTRACT

The aim of this study was to evaluate the levels of chemical markers in raw cacao beans in two clones (introduced and regional) in Colombia over several years. Multivariate statistical methods were used to analyze the flavanol monomers (epicatechin and catechin), flavanol oligomers (procyanidins) and methylxanthine alkaloids (caffeine and theobromine) of cocoa samples. The results identified genotype as the main factor contributing to cacao chemistry, although significant differences were not observed between universal and regional clones in PCA. The univariate analysis allowed us to establish that EET-96 had the highest contents of both flavanol monomers (13.12 ± 2.30 mg/g) and procyanidins (7.56 ± 4.59 mg/g). In addition, the geographic origin, the harvest conditions of each region and the year of harvest may contribute to major discrepancies between results. Turbo cocoa samples are notable for their higher flavanol monomer content, Chigorodó cocoa samples for the presence of both types of polyphenol (monomer and procyanidin contents) and the Northeast cocoa samples for the higher methylxanthine content. We hope that knowledge of the heterogeneity of the metabolites of interest in each clone will contribute to the generation of added value in the cocoa production chain and its sustainability.


Subject(s)
Cacao , Catechin , Proanthocyanidins , Cacao/chemistry , Catechin/chemistry , Colombia , Crops, Agricultural , Flavonoids/analysis , Genotype , Polyphenols/analysis , Proanthocyanidins/analysis , Xanthines
20.
Nutrients ; 14(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35276769

ABSTRACT

Different cocoa populations have demonstrated a protective role in a rat model of allergic asthma by attenuating the immunoglobulin (Ig) E synthesis and partially protecting against anaphylactic response. The aim of this study was to ascertain the effect of diets containing two native Peruvian cocoa populations ("Amazonas Peru" or APC, and "Criollo de Montaña" or CMC) and an ordinary cocoa (OC) on the bronchial compartment and the systemic and mucosal immune system in the same rat model of allergic asthma. Among other variables, cells and IgA content in the bronchoalveolar lavage fluid (BALF) and serum anti-allergen antibody response were analyzed. The three cocoa populations prevented the increase of the serum specific IgG1 (T helper 2 isotype). The three cocoa diets decreased asthma-induced granulocyte increase in the BALF, which was mainly due to the reduction in the proportion of eosinophils. Moreover, both the OC and CMC diets were able to prevent the leukocyte infiltration caused by asthma induction in both the trachea and nasal cavity and decreased the IgA in both fecal and BALF samples. Overall, these results highlight the potential of different cocoa populations in the prevention of allergic asthma.


Subject(s)
Asthma , Cacao , Chocolate , Animals , Immunity , Peru , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...