Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
J Transl Med ; 22(1): 469, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760791

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) remains a major global health challenge, with high incidence and mortality rates. The role of long noncoding RNAs (lncRNAs) in cancer progression has received considerable attention. The present study aimed to investigate the function and mechanisms underlying the role of lncRNA RP11-197K6.1, microRNA-135a-5p (hsa-miR-135a-5p), and DLX5 in CRC development. METHODS: We analyzed RNA sequencing data from The Cancer Genome Atlas Colorectal Cancer dataset to identify the association between lncRNA RP11-197K6.1 and CRC progression. The expression levels of lncRNA RP11-197K6.1 and DLX5 in CRC samples and cell lines were determined by real-time quantitative PCR and western blotting assays. Fluorescence in situ hybridization was used to confirm the cellular localization of lncRNA RP11-197K6.1. Cell migration capabilities were assessed by Transwell and wound healing assays, and flow cytometry was performed to analyze apoptosis. The interaction between lncRNA RP11-197K6.1 and miR-135a-5p and its effect on DLX5 expression were investigated by the dual-luciferase reporter assay. Additionally, a xenograft mouse model was used to study the in vivo effects of lncRNA RP11-197K6.1 on tumor growth, and an immunohistochemical assay was performed to assess DLX5 expression in tumor tissues. RESULTS: lncRNA RP11-197K6.1 was significantly upregulated in CRC tissues and cell lines as compared to that in normal tissues, and its expression was inversely correlated with patient survival. It promoted the migration and metastasis of CRC cells by interacting with miR-135a-5p, alleviated suppression of DLX5 expression, and facilitated tumor growth. CONCLUSION: This study demonstrated the regulatory network and mechanism of action of the lncRNA RP11-197K6.1/miR-135a-5p/DLX5 axis in CRC development. These findings provided insights into the molecular pathology of CRC and suggested potential therapeutic targets for more effective treatment of patients with CRC.


Subject(s)
Cell Movement , Colorectal Neoplasms , Disease Progression , Gene Expression Regulation, Neoplastic , Homeodomain Proteins , Mice, Nude , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Male , Female , Apoptosis/genetics , Cell Proliferation/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Base Sequence , Mice, Inbred BALB C , Middle Aged , Mice , RNA, Competitive Endogenous
2.
Technol Cancer Res Treat ; 23: 15330338241248576, 2024.
Article in English | MEDLINE | ID: mdl-38693824

ABSTRACT

Background: Acute myeloid leukemia (AML) is a type of blood cancer characterized by excessive growth of immature myeloid cells. Unfortunately, the prognosis of pediatric AML remains unfavorable. It is imperative to further our understanding of the mechanisms underlying leukemogenesis and explore innovative therapeutic approaches to enhance overall disease outcomes for patients with this condition. Methods: Quantitative reverse-transcription PCR was used to quantify the expression levels of microRNA (miR)-133a and miR-135a in 68 samples from 59 pediatric patients with AML. Dual-luciferase reporter transfection assay, Cell Counting Kit-8 assay, and western blot analysis were used to investigate the functions of miR-133a and miR-135a. Results: Our study found that all-trans-retinoic acid (ATRA) promoted the expression of miR-133a and miR-135a in AML cells, inhibited caudal type homeobox 2 (CDX2) expression, and subsequently inhibited the proliferation of AML cells. Additionally, miR-133a and miR-135a were highly expressed in patients with complete remission and those with better survival. Conclusions: miR-133a and miR-135a may play an antioncogenic role in pediatric AML through the ATRA-miRNA133a/135a-CDX2 pathway. They hold promise as potentially favorable prognostic indicators and novel therapeutic targets for pediatric AML.


Subject(s)
Biomarkers, Tumor , Leukemia, Myeloid, Acute , MicroRNAs , Tretinoin , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Biomarkers, Tumor/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Leukemic/drug effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , MicroRNAs/genetics , Prognosis , Tretinoin/pharmacology , Tretinoin/therapeutic use
3.
PeerJ ; 12: e16967, 2024.
Article in English | MEDLINE | ID: mdl-38680890

ABSTRACT

Background: Ovarian cancer (OC) is the most lethal malignancy in women owing to its diagnosis only at the advanced stage. Elucidation of its molecular pathogenesis may help identify new tumor markers and targets for therapy. Circular RNAs (circRNAs) are stable, conserved, and functional biomolecules that can be used as effective biomarkers for various cancers. Methods: In this study, a potential circRNA related to early diagnosis of OC, circMAN1A2, was analyzed. Overexpression/knockdown of circMAN1A2 in OC cells was used to decipher its effects on cell proliferation with a Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine (EdU), cell cycle, clone formation, and wound healing assay. RNA pull-down and Dual luciferase assay were used to explain the underlying mechanism by which circMAN1A2 regulates OC cell proliferation. In vivo, the effect of circMAN1A2 in OC was evaluated using nude mouse xenograft experiments. Results: CircMAN1A2 was highly expressed in OC and promoted proliferation, clone formation, and tumorigenicity of OC cells. In addition, we found that circMAN1A2 acted as a sponge for microRNA (miR)-135a-3p; miR-135a-3p directly targeted the 3' untranslated region of interleukin 1 receptor accessory protein (IL1RAP) in OC cells, thereby regulating the phosphorylation of transforming growth factor-beta activated kinase 1 (TAK1), which resulted in promotion of OC cell growth. Conclusions: CircMAN1A2 promotes OC cell proliferation by inhibiting the miR-135a-3p/IL1RAP/TAK1 axis. In conclusion, circMAN1A2 may be a biomarker for early detection of OC and a target for subsequent therapy.


Subject(s)
Mannosidases , MicroRNAs , Ovarian Neoplasms , RNA, Circular , Signal Transduction , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction/genetics , Mannosidases/genetics
4.
Neuroscience ; 545: 185-195, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38522660

ABSTRACT

Post-stroke cognitive impairment is a significant challenge with limited treatment options. Electroacupuncture (EA) has shown promise in improving cognitive function after stroke. Our study explores the underlying mechanism of EA in alleviating cognitive impairment through the inhibition of autophagy. We utilized a rat model of stroke induced by middle cerebral artery occlusion (MCAO) to evaluate the efficacy of EA. Treatment with EA was observed to markedly improve cognitive function and reduce inflammation in MCAO rats, as evidenced by decreased neurological deficit scores, shorter latencies in the water maze test, and diminished infarct volumes. EA also attenuated tissue damage in the hippocampus and lowered the levels of pro-inflammatory cytokines and oxidative stress markers. Although autophagy was upregulated in MCAO rats, EA treatment suppressed this process, indicated by a reduction in autophagosome formation and alteration of autophagy-related protein expression. The protective effects of EA were reversed by the autophagy activator rapamycin. EA treatment elevated the levels of microRNA (miR)-135a-5p expression, and suppression of this elevation attenuated the remedial efficacy of EA in addressing cognitive impairment and inflammation. MiR-135a-5p targeted mammalian target of rapamycin (mTOR)/NOD-like receptor protein 3 (NLRP3) signaling to repress autophagy. EA treatment inhibits autophagy and alleviates cognitive impairment in post-stroke rats. It exerts its beneficial effects by upregulating miR-135a-5p and targeting the mTOR/NLRP3 axis.


Subject(s)
Autophagy , Cognitive Dysfunction , Electroacupuncture , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , TOR Serine-Threonine Kinases , Animals , Male , Rats , Autophagy/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Cognitive Dysfunction/metabolism , Disease Models, Animal , Electroacupuncture/methods , Hippocampus/metabolism , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/metabolism , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Signal Transduction/physiology , Stroke/metabolism , Stroke/complications , Stroke/therapy , TOR Serine-Threonine Kinases/metabolism
5.
J Cell Commun Signal ; 18(1): e12016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38545258

ABSTRACT

Long noncoding RNAs (lncRNAs) are involved in regulatory processes in laryngeal squamous cell carcinoma (LSCC) at posttranscriptional epigenetic modification level. Yet, the function and underlying mechanism behind lncRNA AC004943.2 in LSCC is still obscure. Therefore, the potential role of AC004943.2 in LSCC progression was investigated. The expression of gene or protein was tested by real-time quantitative polymerase chain reaction and western blot. MTT, colony formation, wound healing, and transwell experiments were applied to detect LSCC cell viability, proliferation, migration and invasion, respectively. The interaction among AC004943.2, miR-135a-5p, and protein tyrosine kinase 2 (PTK2) were analyzed by bioinformatics prediction and luciferase assay. AC004943.2 was highly expressed in LSCC cells compared with normal human bronchial epithelial cells, while miR-135a-5p was lowly expressed. AC004943.2 knockdown or miR-135a-5p overexpression inhibited LSCC cell viability, proliferation, migration and invasion. Mechanistically, AC004943.2 increased PTK2 expression in LSCC cells by sponging miR-135a-5p. Furthermore, miR-135a-5p knockdown inverted the inhibitory effect of AC004943.2 silencing on LSCC cell malignant behaviors. MiR-135a-5p upregulation attenuated the PTK2/PI3K pathway to inhibit progression of LSCC. AC004943.2 facilitated the cancerous phenotypes of LSCC cells by activating the PTK2/PI3K pathway through targeting miR-135a-5p, which furnished a therapeutic candidate for LSCC treatment.

6.
Mol Biol Rep ; 51(1): 282, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324210

ABSTRACT

BACKGROUND: Sepsis is a life-threatening condition where early diagnosis and prognostic awareness provide guidance for selecting the appropriate treatment strategies. A wide variety of biomarker-based studies in clinical medicine provide new insights into personalized medicine for sepsis patients. MiRNAs are endogenous non-coding RNA molecules that have been acting as great potential diagnostic, prognostic and therapeutic biomarkers in various diseases. METHODS AND RESULTS: In the present study, the expression levels of two selected miRNAs, including miR-135a and miR-193, were evaluated for their prognostic potential in patients with sepsis. The circulating levels of miRNAs were quantified by quantitative PCR (qPCR) in patients with sepsis (n = 100) and age- and sex-matched healthy controls (n = 100). Statistical findings confirmed the valuable prognostic potential of miR-135a in patients with sepsis, while no significant difference was found between the miR-193 expression level in the patients with sepsis and the controls. CONCLUSIONS: Circulating levels of miRNA-135a can serve a the prognostic biomarker for patients with sepsis. These findings highlight the importance of miRNAs as signatures in the personalized managements of sepsis.


Subject(s)
MicroRNAs , Sepsis , Humans , Precision Medicine , Biomarkers
7.
J Cancer ; 15(4): 999-1008, 2024.
Article in English | MEDLINE | ID: mdl-38230208

ABSTRACT

Background: Kidney cancer is a frequently occurring malignant tumor in the urinary system, with rising morbidity and mortality rates in recent times. Developing new biomarkers and therapeutic targets is essential to improve the prognosis of patients affected by kidney cancer. In recent years, miRNAs' role in tumorigenesis and development has received growing attention. miRNAs constitute a group of small non-coding RNA molecules that regulate gene expression, affecting various biological processes, including cell proliferation, differentiation, and apoptosis. Of the many miRNAs, miR-135a plays a pivotal role in several cancers. Nevertheless, the precise mechanisms and functions concerning miR-135a in renal cancer remain incompletely understood. Therefore, this study aims to analyze the effects of miR-135a on renal cancer replication and migration and its possible mechanisms, and to provide new strategies for the diagnosis and treatment of renal cancer. Methods: Renal cell lines (ACHN, A498) with stable hyperexpression of miR-135a and reduced expression of miR-135a were constructed by lentivirus packaging. The changes of replication, clone formation and migration ability of overexpressed miR-135a and overexpressed miR-135a in ACHN and A498 renal cell lines were detected. The possible mechanism of miR-135a affecting the replication of kidney cancer was analyzed by target gene prediction, double luciferase test, Western blotting and subcutaneous tumorigenicity assay in nude mice. Results: Hyperexpression of miR-135a can inhibit kidney cancer replication, whereas miR-135a knockdown potentially enhances replication. However, neither hyperexpression nor knockdown of miR-135a affects the migration ability of kidney cancer cells. The protein expression of PP2A-B56-γ, PP2A-Cα and PP2A-Cß in renal cell line decreased after hyperexpression of miR-135a, while the protein expression of PP2A-B56-γ, PP2A-Cα and PP2A-Cß increased after knockdown of miR-135a. In addition, the protein expression of p-Akt and p-ERK1/2 proteins in kidney cancer cells after hyperexpression of miR-135a were down-regulated, while the protein expression of p-Akt and p-ERK1/2 were up-regulated in kidney cancer cells after knockdown of miR-135a. In subcutaneous tumor formation experiments in nude mice, tumor size within nude mice in the miR-135a group was significantly smaller than in the control group. Conclusion: MiR-135a could suppress the replication of kidney cancer by modulating PP2A and AKT, ERK1/2 signaling pathways.

8.
J Gene Med ; 26(1): e3664, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282143

ABSTRACT

BACKGROUND: The primary reason for tumor-related deaths worldwide is lung adenocarcinoma (LUAD). The oncogene IQ motif-containing GTPase activating protein 3 (IQGAP3) is crucial for contributing to tumor initiation and progression. However, the precise function and molecular mechanism of IQGAP3 in LUAD remain unknown. The present study aimed to investigate the expression, prognosis, mechanism and tumor immunity associated with IQGAP3 in LUAD. METHODS: The relationship between IQGAP3 and the poor prognosis of LUAD was analyzed using The Cancer Genome Atlas (TCGA) database. This analysis was further validated on lung cancer tissues and cell lines. The function of IQGAP3 was investigated by silencing it in LUAD cell lines. To predict microRNA (miRNA) and long non-coding RNA associated with IQGAP3, the starBase database was utilized, and the predictions were verified by enhancing the function of miRNA. Finally, the relationship between IQGAP3 and tumor immunity was evaluated using Spearman's correlation analysis. RESULTS: TCGA database revealed that higher levels of IQGAP3 were associated with advanced tumor stage, N stage and poor prognosis in LUAD patients. To confirm that, we conducted experiments on lung cancer tissues and cell lines and found that silencing IQGAP3 significantly inhibited tumor cell proliferation and migration. The expression of IQGAP3 showed a negative correlation with has-miR-101-3p and has-miR-135a-5p, whereas it showed a positive correlation with GSEC, AC005034.3 and TYMSOS. Furthermore, the introduction of miRNA-mimics into lung cancer cell resulted in a significant inhibition of cancer cell growth and migration. Following that, the level of IQGAP3 showed a positive correlation with the infiltration of immune cells in tumors. CONCLUSIONS: These results reveal that IQGAP3 significantly promotes LUAD progression and could serve as a prognostic biomarker for LUAD. Furthermore, IQGAP3 is most likely regulated by the GSEC/TYMSOS-hsa-miR-101-3p axis and the AC005034.3-hsa-miR-135a-5p axis in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Adenocarcinoma of Lung/genetics , MicroRNAs/genetics , Lung Neoplasms/genetics , Cell Line , Cell Proliferation/genetics , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , GTPase-Activating Proteins
9.
Cardiology ; 149(3): 286-296, 2024.
Article in English | MEDLINE | ID: mdl-38228115

ABSTRACT

INTRODUCTION: This study aimed to explore the function of miR-135a in the progress of atrial fibrosis and the mechanism of miR-135a/SIRT1 (sirtuin 1) in human cardiac fibroblasts and mouse cardiac fibroblasts (MCFs) mediating the regulation of atrial fibrosis by mitochondrial oxidative respiration function. METHODS: Using Ang II (angiotensin II) to induce fibrosis in HCFs (human corneal fibroblasts) and MCF (Michigan Cancer Foundation, MCF) cells in vitro, the miRNA-seq results of previous studies were validated. Proliferative and invasive ability of HCFs and MCFs was detected by Cell Counting Kit-8 assay (CCK-8) and scratch experiment after overexpressing miR-135a in HCFs and MCF cells. Protein and mRNA expression was tested using Western blot and qPCR. The target of miR-135a was verified as SIRT1 by a luciferase reporter assay and the activities of the mitochondrial respiratory enzyme complexes I, II, III, and IV were determined colorimetrically. The activities of malondialdehyde, reactive oxygen species, and superoxide dismutase in cells were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS: miR-135a expression was elevated in HCFs and MCFs cells in the Ang II group than control group. Overexpression of miR-135a could promote the proliferation, migration, oxidative stress, as well as fibrosis of cardiac fibroblasts and suppresses mitochondrial activity. In addition, we found SIRT1 was a target gene of miR-135a. What is more, the findings showed miR-135a promoted fibrosis in HCFs and MCFs cells acting through regulation of SIRT1. CONCLUSIONS: miR-135a mediates mitochondrial oxidative respiratory function through SIRT1 to regulate atrial fibrosis.


Subject(s)
Fibroblasts , Fibrosis , Heart Atria , MicroRNAs , Sirtuin 1 , MicroRNAs/metabolism , MicroRNAs/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Humans , Mice , Animals , Fibroblasts/metabolism , Heart Atria/pathology , Heart Atria/metabolism , Cell Proliferation/genetics , Angiotensin II , Oxidative Stress , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Cells, Cultured
10.
Aging (Albany NY) ; 15(23): 13680-13692, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38048212

ABSTRACT

Pyroptosis, a newly discovered programmed cell death process, is characterized by NLRP3 inflammasome activation and pro-inflammatory mediator release. Nucleus pulposus (NP) cell pyroptosis is an important cause of intervertebral disc degeneration (IDD). Adiponectin (APN) is an adipokine and has an anti-inflammatory effect. However, whether and how APN protects against NP cell pyroptosis remains unexplored. Our results showed that human degenerated NP tissue displayed a significant increase in the protein levels of NLRP3, caspase-1 and GSDMD-N. APN expression was down-regulated in human degenerated NP tissue and NP cells challenged with lipopolysaccharide (LPS). Lentivirus-mediated overexpression of APN increased miR-135a-5p levels, decreased thioredoxin-interacting protein (TXNIP) expression and its interaction with NLRP3, and inhibited pyroptosis in human NP cells stimulated with LPS. TXNIP was identified as a direct target of miR-135a-5p. The inhibitory effects of APN on pyroptosis were reversed by pretreatment with miR-135a-5p inhibitor or lentiviral vector expressing TXNIP in LPS-treated human NP cells. In summary, these data suggest that APN restrains LPS-induced pyroptosis through the miR-135a-5p/TXNIP signaling pathway in human NP cells. Increasing APN levels could be a new approach to retard IDD.


Subject(s)
Intervertebral Disc Degeneration , MicroRNAs , Nucleus Pulposus , Humans , Adiponectin/genetics , Adiponectin/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleus Pulposus/metabolism , Pyroptosis , Signal Transduction
11.
BMC Cancer ; 23(1): 977, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833621

ABSTRACT

This study surveyed circular RNA CCT3 in bladder cancer (BCa). We recruited 85 BCa patients and 40 normal controls (Normal) and collected clinical specimens for analysis. circRNA CCT3 expression was analyzed by RT-qPCR, diagnostic accuracy was calculated by ROC curves, and survival outcomes were evaluated by survival curves. CircRNA CCT3 was overexpressed or knocked down in cells, thereafter to observe the changes in cell malignant phenotypes. The downstream molecules of circRNA CCT3 were detected. Our data suggest that circRNA CCT3 was upregulated in human BCa and was associated with poor survival outcomes of BCa patients. In cell experiments, overexpressing circRNA CCT3 promoted BCa cell malignancy, whereas silencing circRNA CCT3 did the opposite. In addition, circRNA CCT3 modulated PP2A expression by miR-135a-5p. This study demonstrates that circRNA CCT3 is a diagnostic and prognostic biomarker in BCa patients and is a tumor promoter in BCa.


Subject(s)
MicroRNAs , Urinary Bladder Neoplasms , Humans , RNA, Circular/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , MicroRNAs/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Movement/genetics , Chaperonin Containing TCP-1/genetics , Chaperonin Containing TCP-1/metabolism
12.
J Cell Mol Med ; 27(23): 3729-3743, 2023 12.
Article in English | MEDLINE | ID: mdl-37667545

ABSTRACT

Most people are aware of gestational diabetes mellitus (GDM), a dangerous pregnancy complication in which pregnant women who have never been diagnosed with diabetes develop chronic hyperglycaemia. Exosomal microRNA (miRNA) dysregulation has been shown to be a key player in the pathophysiology of GDM. In this study, we looked into how placental exosomes and their miRNAs may contribute to GDM. When compared to exosomes from healthy pregnant women, it was discovered that miR-135a-5p was elevated in placenta-derived exosomes that were isolated from the maternal peripheral plasma of GDM women. Additionally, we discovered that miR-135a-5p encouraged HTR-8/SVneo cell growth, invasion and migration. Further research revealed that miR-135a-5p activates HTR-8/SVneo cells' proliferation, invasion and migration by promoting PI3K/AKT pathway activity via Sirtuin 1 (SIRT1). The transfer of exosomal miR-135a-5p generated from the placenta could be viewed as a promising agent for targeting genes and pertinent pathways involved in GDM, according to our findings.


Subject(s)
Diabetes, Gestational , MicroRNAs , Female , Humans , Pregnancy , Cell Proliferation/genetics , Diabetes, Gestational/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Placenta/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sirtuin 1/genetics
13.
Funct Integr Genomics ; 23(3): 248, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474836

ABSTRACT

Long noncoding RNAs play important roles in the occurrence and development of many malignant cancers. This study focuses on the effects of LINC01087 on gastric cancer and its underlying mechanism. In the present study, LINC01087 and CAAP1 were found to be upregulated, and miR-135a-5p was diminished in gastric cancer specimens and cells. Inhibition of LINC01087 resulted in cell proliferation inhibition and induced cell apoptosis through the intrinsic apoptosis signaling pathway, as evidenced by the activation of caspase-3 and caspase-9. An investigation of the signaling pathway revealed that the effects on proliferation and apoptosis following LINC01087 knockdown were mediated by suppression of CAAP1. Furthermore, application of a miR-135a-5p inhibitor or overexpression of CAAP1 could attenuate the apoptotic effect achieved by LINC01087 inhibition, confirming the involvement of miR-135a-5p/CAAP1 signaling in the occurrence of gastric cancer. In conclusion, the LINC01087/miR-135a-5p/CAAP1 axis modulates gastric cancer tumorigenesis and pathogenesis and presents new insight into gastric cancer targeted therapy.


Subject(s)
MicroRNAs , Stomach Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Stomach Neoplasms/genetics , Apoptosis/genetics , Carcinogenesis , Signal Transduction , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
14.
Mutat Res ; 827: 111833, 2023.
Article in English | MEDLINE | ID: mdl-37480811

ABSTRACT

BACKGROUND: Neuropathic pain (NPP) is known as a common neurological disease with high incidence rate. The present work focused on the roles of long non-coding RNA urothelial carcinoma antigen 1(LncRNA UCA1) in NPP and the possible underlying mechanism. METHODS: NPP rat model has been established and the levels of UCA1 NPP as well as the group has been determined by RT-PCR method. Next, NPP rats were treated by UCA1 over-expression plasmid and the behaviors, as well as expression of inflammatory cytokines have been examined. Furthermore, target miRNA of UCA1, miR-135a-5p, has been predicted by bioinformatic method, and further verified with the dual-luciferase reporter assay. Finally, the effects of UCA1/ miR-135a-5p axis have been further evaluated. RESULTS: Expressions of UCA1 were markedly decreased and miR-135a-5p were significantly increased in NPP rats in comparison with the control rats. Over-expression of UCA1 alleviated the inflammatory condition in NPP model by decreasing expression of inflammatory cytokines. miR-135a-5p was confirmed to be a target microRNA of UCA1, and UCA1 may regulate the progress of NPP via targeting miR-135a-5p. CONCLUSION: UCA1 could regulate NPP via affecting miR-135a-5p expression.


Subject(s)
Carcinoma, Transitional Cell , MicroRNAs , Neuralgia , RNA, Long Noncoding , Urinary Bladder Neoplasms , Rats , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , Cytokines/genetics , Neuralgia/genetics , Cell Proliferation/genetics
15.
Acta Trop ; 243: 106927, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37080266

ABSTRACT

Cryptosporidium spp. are protozoan parasites that mainly inhabit intestinal epithelial cells, causing diarrheal diseases in humans and a great number of animals. Cryptosporidium parvum is the most common zoonotic species, responsible for nearly 45% of human cryptosporidiosis worldwide. Understanding the interaction mechanisms between C. parvum and host gastrointestinal epithelial cells has significant implications to control cryptosporidiosis. One up-regulated circRNA ciRS-7 was found previously by our group to promote in vitro propagation of C. parvum in HCT-8 cells. In the present study, miR-135a-5p, was found to be a miRNA target of ciRS-7. Cryptosporidium parvum infection induced significantly down-regulation of miR-135a-5p and dramatic up-regulation of its potential target stat1 gene at mRNA and protein levels. Dual luciferase reporter assays validated the physical interactions between miR-135a-5p and stat1, and between ciRS-7 and miR-135a-5p. Further study revealed that ciRS-7 could sponge miR-135a-5p to positively regulate the protein levels of STAT1 and phosphorylated STAT1 (p-STAT1) and thus promote C. parvum propagation in HCT-8 cells. Our findings further reveal the mystery of regulatory roles of host circRNAs during Cryptosporidium infection, and provide a novel insight to develop strategies to control cryptosporidiosis.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , MicroRNAs , Animals , Humans , Cell Line, Tumor , Cryptosporidiosis/genetics , Cryptosporidium/genetics , Cryptosporidium parvum/genetics , MicroRNAs/genetics , RNA, Circular/genetics , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
16.
Thorac Cancer ; 14(11): 1012-1020, 2023 04.
Article in English | MEDLINE | ID: mdl-36869643

ABSTRACT

BACKGROUND: Despite therapeutic advances, lung cancer prognosis remains poor. Loss of heterozygosity (LOH) in the 3p21 region is well documented in lung cancer, but the specific causative genes have not been identified. MATERIALS AND METHODS: Here, we aimed to examine the clinical impact of miR-135a, located in the 3p21 region, in lung cancer. miR-135a expression was assessed using quantitative real-time polymerase chain reaction. LOH was analyzed at microsatellite loci D3S1076 and D3S1478, and promoter methylation status was determined by pyrosequencing of resected samples of primary non-small-cell lung cancer (NSCLC). The regulation of telomerase reverse transcriptase (TERT) was evaluated in lung cancer cells H1299 by luciferase report assays after treatment with miR-135a mimics. RESULTS: miR-135a was significantly downregulated in squamous cell cancer (SCC) tumor tissues compared to normal tissues (p = 0.001). Low miR-135a expression was more frequent in patients with SCC (p = 2.9 × 10-4 ) and smokers (p = 0.01). LOH and hypermethylation were detected in 27.8% (37/133) and 17.3% (23/133) of the tumors, respectively. Overall, 36.8% (49/133) of the NSCLC cases harbored either miR-135a LOH or promoter hypermethylation. The frequencies of LOH and hypermethylation were significantly associated with SCCs (p = 2 × 10-4 ) and late-stage (p = 0.04), respectively. MiR-135a inhibited the relative luciferase activity of psiCHECK2-TERT-3'UTR. CONCLUSION: These results suggest that miR-135a may act as a tumor suppressor to play an important role in lung cancer carcinogenesis, which will provide a new insight into the translational value of miR-135a. Further large-scale studies are required to confirm these findings.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , MicroRNAs , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Genes, Tumor Suppressor , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism
17.
Neuroscience ; 515: 12-24, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36764602

ABSTRACT

Following spinal cord injury (SCI), astrocyte activation and proliferation result in the development of glial scars, which impede axonal growth and neurological recovery. Dysregulation of microRNAs (miRNAs) during SCI results in altered expression of downstream genes. Our previous study has revealed that miR-135a-5p regulates neuronal apoptosis and axonal growth by targeting specificity protein 1 (SP1). This study attempted to investigate whether the miR-135a-5p/SP1 axis has regulatory effect on astrocytes. Herein, lipopolysaccharide (LPS) reduced miR-135a-5p expression in astrocytes. miR-135a-5p overexpression in astrocytes resulted in a decrease in CyclinD1, MMP9, GFAP, and vimentin proteins, and thus attenuated LPS-induced proliferation and migration of astrocytes. Moreover, miR-135a-5p overexpression decreased astrocyte size and the total quantity of cell protrusions, suggesting a role for miR-135a-5p in regulating astrocyte morphology. SP1 silencing also decreased astrocyte proliferation and migration by LPS. SP1 silencing could significantly reverse the promoting effect of miR-135a-5p inhibition on astrocyte proliferation and migration. In summary, the miR-135a-5p/SP1 axis regulates astrocyte proliferation and migration after SCI. This finding benefits for the development of novel ways in treating SCI effectively.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Humans , Astrocytes/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis , Cell Proliferation , Spinal Cord Injuries/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism
18.
Transl Cancer Res ; 12(1): 135-149, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36760373

ABSTRACT

Background: The incidence of hepatocellular carcinoma (HCC) in patients with hepatitis B virus (HBV) is extremely high. MicroRNAs (miRNAs) are a type of endogenous non-coding small RNA with novel molecular therapeutic mechanisms that plays an important role in the occurrence and development of cancers. This study aimed to explore the regulation mechanism of miR-135a and HOXA10 in the proliferation, invasion, and apoptosis of HCC cells. Methods: Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis was used to detect the expression level of miR-135a. Overexpression of miR-135a was used to measure the roles of miR-135a in the proliferation, invasion, and apoptosis of HCC cells. A dual luciferase experiment was performed to assess the relationship between HOXA10 and miR-135a. Western blot was applied to observe the protein levels of p-p38, p-ERK, and p-JNK. Results: The expression levels of miR-135a were significantly decreased in HCC tissues and cells. Overexpression of miR-135a inhibited the proliferation and invasion but promoted the apoptosis of HCC cells. Importantly, our results confirmed that HOXA10 was a direct target of miR-135a. Under HBV infection, silencing of HOXA10 significantly blocked the proliferation and invasion and promoted the apoptosis of HCC cells. In addition, miR-135a/HOXA10 regulated the expressions of p-p38, p-ERK, and p-JNK through the miR-135a/HOXA10 axis, thereby inhibiting the activation of the MAPK pathway. Conclusions: HBV promoted the proliferation and invasion, and inhibited the apoptosis of HCC cells by regulating the miR-135a/HOXA10 pathway. These findings provide a theoretical basis for improving the treatment of HBV-infected HCC patients.

19.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675068

ABSTRACT

Stress is a key risk factor in the onset of neuropsychiatric disorders. The study of the mechanisms underlying stress response is important to understand the etiopathogenetic mechanisms and identify new putative therapeutic targets. In this context, microRNAs (miRNAs) have emerged as key regulators of the complex patterns of gene/protein expression changes in the brain, where they have a crucial role in the regulation of neuroplasticity, neurogenesis, and neuronal differentiation. Among them, miR-135a-5p has been associated with stress response, synaptic plasticity, and the antidepressant effect in different brain areas. Here, we used acute unavoidable foot-shock stress (FS) and chronic mild stress (CMS) on male rats to study whether miR-135a-5p was involved in stress-induced changes in the prefrontal cortex (PFC). Both acute and chronic stress decreased miR-135a-5p levels in the PFC, although after CMS the reduction was induced only in animals vulnerable to CMS, according to a sucrose preference test. MiR-135a-5p downregulation in the primary neurons reduced dendritic spine density, while its overexpression exerted the opposite effect. Two bioinformatically predicted target genes, Kif5c and Cplx1/2, were increased in FS rats 24 h after stress. Altogether, we found that miR-135a-5p might play a role in stress response in PFC involving synaptic mechanisms.


Subject(s)
MicroRNAs , Prefrontal Cortex , Stress, Physiological , Stress, Psychological , Animals , Male , Rats , Down-Regulation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Neurons/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/physiology , Acute Disease/psychology , Chronic Disease/psychology , Stress, Physiological/genetics , Stress, Psychological/genetics , Stress, Psychological/psychology , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Dendritic Spines/genetics , Dendritic Spines/metabolism , Dendritic Spines/pathology
20.
Environ Toxicol ; 38(4): 883-898, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36637163

ABSTRACT

Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer with a high incidence and mortality. Circular RNAs (circRNAs) exert vital functions in various cancers by acting as a sponge of miRNAs to abolish their inhibitory effect on target genes. This study aims to explore the biological function of circRNA NEDD4 binding protein 2 like 2 (circ-N4BP2L2) in NSCLC. We found that circ-N4BP2L2 was upregulated in NSCLC tissues and cells by using RT-qPCR. A549 cells were transfected with pcDNA-circN4BP2L2 or sh-circN4BP2L2 to obtain circN4BP2L2-overexpressed or -silenced cells, and then cell proliferation, invasion and apoptosis were determined. The results showed that knockdown of circ-N4BP2L2 repressed cell proliferation, invasion as well as mitochondrial function, and promoted cell apoptosis; while overexpression of circ-N4BP2L2 resulted in the opposite results. Mechanistically, the targeting correlations between miR-135a-5p and circ-N4BP2L2 or ADP-ribosylation factorlike 5B (ARL5B) were confirmed by using dual luciferase reporter, RNA pull-down and RNA immunoprecipitation assays. In addition, we found that circ-N4BP2L2 could promote the expression of ARL5B by serving as a sponge of miR-135a-5p. Moreover, rescue assays revealed that silencing miR-135a-5p or overexpressing ARL5B was able to abate the effects of circ-N4BP2L2 knockdown on malignant phenotypes and mitochondrial function of A549 cells. Finally, tumorigenicity assay demonstrated that circ-N4BP2L2 facilitated NSCLC tumor growth in vivo. Taken together, circ-N4BP2L2 enhanced NSCLC progression via the miR-135a-5p/ARL5B axis, which may provide a novel therapeutic target of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , A549 Cells , Cell Proliferation , Mitochondria , RNA, Circular , Cell Line, Tumor , ADP-Ribosylation Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...