Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Biosens Bioelectron ; 261: 116520, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38924812

ABSTRACT

Sensitive, reliable, and specific detection of microRNAs (miRNAs) is a key objective for disease diagnosis and prognosis. Here, a ratiometric fluorescent/electrochemiluminescent (FL/ECL) sensor was designed for the dual-mode detection of miRNA-122, a hepatocellular carcinoma biomarker. The strong ECL emission was achieved from imine-linked covalent organic framework (COF-LZU1) accelerator enriched Ru(bpy)32+ molecules (Ru@COF-LZU1), which was applied as a delimited reaction micro-reactor to enhance ECL emission. Impressively, to construct an efficient sensing platform, self-feedback circuit was grafted at the vertex of DNA tetrahedral scaffold (DTS), which could provide a solution-phase-like environment and transform miRNA-122 into abundant single-stranded DNAs on the disposable electrode. Simultaneously, the carboxyfluorescein (FAM) tagged DNA segment was cleaved and released into the reaction solution, bringing in the recovery of FL response (FL on). Finally, the introduction of glucose oxidase (GOD) could generate H2O2 by in situ catalyzing GOD to glucose, resulting in the decrease of ECL signal (ECL off). Relying on FL/ECL ratio value, miRNA-122 was quantified with high sensitivity, well selectivity, stability and favorable practicability, suggesting that the proposed biosensor hold great potential for clinical diagnosis.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , MicroRNAs , Biosensing Techniques/methods , MicroRNAs/analysis , Humans , Metal-Organic Frameworks/chemistry , Luminescent Measurements , Electrochemical Techniques/methods , Ruthenium/chemistry , Limit of Detection , Glucose Oxidase/chemistry , DNA/chemistry , Hydrogen Peroxide/chemistry , Liver Neoplasms/diagnosis , Carcinoma, Hepatocellular/diagnosis
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124192, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38552541

ABSTRACT

Catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) can achieve the high sensitivity and rapid reaction rate in detecting miRNA. However, the amplification efficiency by these methods are limited. Herein, an enzyme-free and label-free hyperbranched DNA network structure (HDNS) was designed, in which localized catalytic hairpin assembly (LCHA) and hybridization chain reaction occurred in the horizontal axis and longitudinal axis, respectively, exhibiting intensive signal dual-amplification. miRNA-122 was selected as the target on behalf of miRNA to design the HDNS sensor. The fluorescence signal change of HDNS showed good linearity for detecting miRNA-122 in the concentration range from 0.1 nM to 60 nM with a limit of detection (LOD) at 37 pM which was lower than those of the sensors based on separate CHA or HCR. Afterwards, the HDNS sensor was applied to detect miRNA-122 in serum samples with the recovery rate in the range of 97.2 %-107 %. The sensor could distinguish different kinds of miRNAs, even the family members with high sequence homology, exhibiting excellent selectivity. This method provided a novel design strategy for improving the sensitivity and selectivity of DNA sensor for miRNA detection.


Subject(s)
Biosensing Techniques , MicroRNAs , MicroRNAs/genetics , Biosensing Techniques/methods , DNA/chemistry , Nucleic Acid Hybridization/methods , Limit of Detection
3.
Int Immunopharmacol ; 127: 111325, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38070468

ABSTRACT

Dapagliflozin (DPG) is a sodium-glucose co-transporter 2 inhibitor that is commonly used in the treatment of type 2 diabetes. However, studies have shown that DPG has a protective effect under a variety of experimental conditions through its antioxidative and anti-inflammatory properties. DPG's effect on experimental hepatotoxicity caused by arsenic trioxide (ATO) has yet to be investigated. The purpose of this study was to investigate the protective effect of DPG in preventing hepatic damage caused by ATO and discover the underlying mechanisms. The effect of DPG (1 mg/kg, orally) on ATO (5 mg/kg, i.p.)-induced hepatic injury was evaluated in rats. Serum liver function parameters, as well as oxidative stress biomarkers and inflammatory cytokine levels were assessed. Histopathological changes in the liver were detected using H&E staining. Using Western blotting and PCR techniques, the molecular mechanisms of DPG in ameliorating hepatic injury were investigated. DPG improved liver function by inhibiting histopathological changes, decreasing levels of hepatic function and toxicity parameters measured in both serum and tissues, and exhibiting antioxidant and anti-inflammatory effects, according to the findings. Consistent with the PCR results, DPG also decreased the expression of LC3-II, micro-RNA-122, and micro-RNA-21 while increased the expression of SOCS3. Furthermore, according to western blotting results, DPG was able to reduce the protein expression of AKT, mTOR, PI3K, and STAT3. Although further clinical research is necessary, this study highlights the potential of DPG in preventing liver damage in a rat model of hepatotoxicity induced by ATO.


Subject(s)
Arsenicals , Benzhydryl Compounds , Chemical and Drug Induced Liver Injury , Diabetes Mellitus, Type 2 , Glucosides , MicroRNAs , Rats , Animals , Arsenic Trioxide/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tumor Suppressor Protein p53/metabolism , MicroRNAs/genetics , MicroRNAs/pharmacology , Arsenicals/adverse effects , Arsenicals/metabolism , Oxides , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Antioxidants/therapeutic use , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Apoptosis
4.
Plant Sci ; 339: 111930, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38007196

ABSTRACT

Switchgrass (Panicum virgatum L.) plays a pivotal role as a bioenergy feedstock in the production of cellulosic ethanol and contributes significantly to enhancing ecological grasslands and soil quality. The utilization of non-coding RNAs (ncRNAs) has gained momentum in deciphering the intricate genetic responses to abiotic stress in various plant species. Nevertheless, the current research landscape lacks a comprehensive exploration of the responses of diverse ncRNAs, including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), to drought stress in switchgrass. In this study, we employed whole transcriptome sequencing to comprehensively characterize the expression profiles of both mRNA and ncRNAs during episodes of drought stress in switchgrass. Our analysis identified a total of 12,511 mRNAs, 59 miRNAs, 38 circRNAs, and 368 lncRNAs that exhibited significant differential expression between normal and drought-treated switchgrass leaves. Notably, the majority of up-regulated mRNAs displayed pronounced enrichment within the starch and sucrose metabolism pathway, as validated through KEGG analysis. Co-expression analysis illuminated that differentially expressed (DE) lncRNAs conceivably regulated 1308 protein-coding genes in trans and 7110 protein-coding genes in cis. Furthermore, both cis- and trans-target mRNAs of DE lncRNAs exhibited enrichment in four common KEGG pathways. The intricate interplay between lncRNAs and circRNAs with miRNAs via miRNA response elements was explored within the competitive endogenous RNA (ceRNA) network framework. As a result, we constructed elaborate regulatory networks, including lncRNA-novel_miRNA480-mRNA, lncRNA-novel_miRNA304-mRNA, lncRNA/circRNA-novel_miRNA122-PvSS4, and lncRNA/circRNA-novel_miRNA14-PvSS4, and subsequently validated the functionality of the target gene, starch synthase 4 (PvSS4). Furthermore, through the overexpression of PvSS4, we ascertained its capacity to enhance drought tolerance in yeast. However, it is noteworthy that PvSS4 did not exhibit any discernible impact under salt stress conditions. These findings, as presented herein, not only contribute substantively to our understanding of ceRNA networks but also offer a basis for further investigations into their potential functions in response to drought stress in switchgrass.


Subject(s)
MicroRNAs , Panicum , RNA, Long Noncoding , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Panicum/genetics , Panicum/metabolism , RNA, Long Noncoding/genetics , Droughts , Gene Expression Profiling , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Regulatory Networks
5.
Biomolecules ; 13(11)2023 11 17.
Article in English | MEDLINE | ID: mdl-38002345

ABSTRACT

BACKGROUND: Despite patients undergoing chronic hemodialysis (HD) being notoriously prone to adverse cardiovascular (CV) events, risk prediction in this population remains challenging. miRNA 122-5p, a short, non-coding RNA predominantly involved in lipid and carbohydrate metabolism, has recently been related to the onset and progression of CV disease. METHODS: We run a pilot, multicenter, longitudinal, observational study to evaluate the clinical significance and prognostic usefulness of circulating miRNA 122-5p in a multicentric cohort of 74 individuals on maintenance HD. RESULTS: Patients displayed lower circulating miRNA 122-5p as compared to healthy controls (p = 0.004). At correlation analyses, ALT (ß = 0.333; p = 0.02), E/e' (ß = 0.265; p = 0.02) and CRP (ß = -0.219; p = 0.041) were independent predictors of miRNA 122-5p levels. During a median follow-up of 22 months (range of 1-24), 30 subjects (40.5%) experienced a composite endpoint of all-cause mortality and fatal/non-fatal CV events. Baseline circulating miRNA 122-5p was higher in these subjects (p = 0.01) and it predicted a significantly higher risk of endpoint occurrence (Kaplan-Meier crude HR 3.192; 95% CI 1.529-6.663; p = 0.002; Cox regression adjusted HR 1.115; 95% CI 1.009-1.232; p = 0.03). CONCLUSIONS: Altered miRNA 122-5p levels in HD patients may reflect hepatic and CV damage and may impart important prognostic information for improving CV risk prediction in this particular setting.


Subject(s)
Cardiovascular Diseases , Circulating MicroRNA , MicroRNAs , Humans , Prospective Studies , Renal Dialysis/adverse effects , Cardiovascular Diseases/etiology , MicroRNAs/genetics
6.
Biosensors (Basel) ; 13(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37754088

ABSTRACT

At present, a large number of studies have demonstrated that miRNAs can be used as biological indicators for the diagnosis and treatment of diseases such as tumours and cancer, so it is important to develop a new miRNA detection platform. In this work, miRNA-122 is used as the basis for targeting detection agents. We have designed an unlabelled DNA1 that undergoes partial hybridisation and has a 20 T base long strand. The fluorescent signal in this experiment is derived from copper nanoclusters (CuNCs) generated on the circular T-long strand of DNA1. At the same time, DNA1 is able to react with miRNA-122 and achieve hydrolysis of the part bound to miRNA-122 via the action of nucleic acid exonuclease III (Exo III), leaving a part of the DNA, called DNA3, while releasing miRNA-122 to participate in the next reaction, thus achieving circular amplification. DNA3 is able to react with DNA2, which is bound to streptavidin magnetic beads (SIBs) and separated from the reaction solution via the application of a magnetic field. Overall, this is a fluorescence signal reduction experiment, and the strength of the fluorescence signal from the copper nanoclusters can determine whether the target miRNA-122 is present or not. The degree of fluorescence reduction indicates how much DNA1, and thus the amount of target miRNA-122, has been hydrolysed. By evaluating the variations in the fluorescence signal under optimised conditions, we discovered that this method has good sensitivity, with a detection limit as low as 0.46 nM, better than many other previous works on fluorescence signal-based biosensors for miRNA detection. This technique offers high discrimination and selectivity and can serve as a persuasive reference for early diagnosis.


Subject(s)
Copper , MicroRNAs , Staining and Labeling , Hydrolysis , Magnetic Fields
7.
Clinics (Sao Paulo) ; 78: 100199, 2023.
Article in English | MEDLINE | ID: mdl-37119591

ABSTRACT

OBJECTIVE: To analyze the value of serum miRNA-122 expression in the diagnosis, severity, and prognosis of Acute Cerebral Infarction (ACI) and the correlation mechanism of serum miRNA-122 on the proliferation and apoptosis of vascular endothelial cells in ACI. METHOD: A total of 60 patients with ACI who were admitted to the emergency department of the Taizhou People's Hospital from January 1, 2019, to December 30, 2019, and 30 healthy controls during the same period were selected. General clinical data of all patients at admission were collected. Including age, sex, medical history, and inflammatory factors (C-Reactive Protein [CRP], Interleukin-6 [IL-6], Procalcitonin [PCT], Neutrophil Gelatinase-Associated Lipid carrier protein [NGAL]). The National Institutes of Health Stroke Scale (NIHSS) score at admission and short-term prognosis (the Modified Rankin Score [mRS]) score at 3 months after onset were recorded. The expression level of miRNA-122 in the serum of patients with ACI and normal controls was detected by reverse-transcription quantitative Real-Time Polymerase Chain Reaction (RT-QPCR), and the correlation between the expression level of miRNA-122 in the serum of patients with ACI and the level of inflammatory factors, NIHSS and mRS scores were analyzed. The expression levels of miRNA-122 in the serum of patients with ACI, normal people, and Human Umbilical cord Endothelial Cells (HUVECs) cultured in a blank control group were detected by RT-QPCR and statistically analyzed. MTT and flow cytometry was used to compare the proliferation and apoptosis of vascular endothelial cells in the miRNA-122 mimics and inhibitors transfection groups and the corresponding negative control group. The mRNA and protein levels of apoptosis-related factors Bax, Bcl-2, Caspase-3, and angiogenesis-related proteins Hes1, Notch1, Vascular Endothelial Growth Factors (VEGF), and CCNG1 were detected by RT-QPCR and Western blot. Bioinformatics methods predicted CCNG1 to be the target of miRNA-122, and the direct targeting relationship between CCNG1 and miRNA-122 was verified by a dual-luciferase reporting assay. RESULT: Serum miRNA-122 expression in patients with ACI was significantly higher than that in healthy controls, with an area under the receiver operating characteristic curve of 0.929, 95% Confidence Interval of 0.875‒0.983, and an optimal cut-off value of 1.397. The expression levels of CRP, IL-6, and NGAL in patients with ACI were higher than those in healthy control groups, p < 0.05; miRNA-122 was positively correlated with CPR, IL-6, NIHSS score, and mRS score. At 48h and 72h, the proliferation rate of HUVECs cells in the miRNA-122 mimics group decreased and the apoptosis rate increased. Cell proliferation rate increased, and apoptosis rate decreased significantly in the groups transfected with miRNA-122 inhibitors. The mRNA and protein levels of pro-apoptotic factors Bax and caspase-3 were significantly increased in the miRNA-122 mimics transfection group, while those of anti-apoptotic factor Bcl-2 were significantly decreased compared to those of the control group. The expression of Bax and Caspase-3 decreased, and the expression of anti-apoptotic factor Bcl-2 increased in the transfected miRNA-122 inhibitors group. mRNA expression levels of Hes1, Notch1, VEGF, and CCNG1 in the miRNA-122 mimic transfected group were significantly decreased, while mRNA expression levels in the miRNA-122 inhibitors transfected group were significantly increased. Bioinformatics showed that there was a miRNA-122 binding site in the 3'UTR region of CCNG1, and dual luciferase assay confirmed that CCNG1 was the target of miRNA-122. CONCLUSION: Serum miRNA-122 increased significantly after ACI, which may be a diagnostic marker of ACI. miRNA-122 may be involved in the pathological process of ACI and is related to the degree of neurological impairment and short-term prognosis in patients with ACI. miRNA-122 may play a regulatory role in ACI by inhibiting cell proliferation, increasing apoptosis, and inhibiting vascular endothelial cell regeneration through the CCNG1 channel.


Subject(s)
Brain Ischemia , MicroRNAs , Stroke , Humans , MicroRNAs/genetics , Caspase 3/metabolism , Interleukin-6 , Vascular Endothelial Growth Factor A , Lipocalin-2 , Endothelial Cells/metabolism , bcl-2-Associated X Protein/metabolism , Cerebral Infarction , Apoptosis , C-Reactive Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation , RNA, Messenger
8.
Nanomedicine ; 50: 102667, 2023 06.
Article in English | MEDLINE | ID: mdl-36948369

ABSTRACT

Liver cancer such as hepatocellular carcinoma (HCC) poorly responds to chemotherapeutics as there are no effective means to deliver the drugs to liver cancer. Here we report GalNAc decorated exosomes as cargo for targeted delivery of Paclitaxel (PTX) and miR122 to liver tumors as an effective means to inhibit the HCC. Exosomes (Exos) are nanosized extracellular vesicles that deliver a payload to cancer cells effectively. GalNAc provides Exos targeting ability by binding to the asialoglycoprotein-receptor (ASGP-R) overexpressed on the liver cancer cell surface. A 4-way junction (4WJ) RNA nanoparticle was constructed to harbor 24 copies of hydrophobic PTX and 1 copy of miR122. The 4WJ RNA-PTX complex was loaded into the Exos, and its surface was decorated with GalNAc using RNA nanotechnology to obtain specific targeting. The multi-specific Exos selectively bind and efficiently delivered the payload into the liver cancer cells and exhibited the highest cancer cell inhibition due to the multi-specific effect of miR122, PTX, GalNAc, and Exos. The same was reflected in mice xenograft studies, the liver cancer was efficiently inhibited after systemic injection of the multi-specific Exos. The required effective dose of chemical drugs carried by Exos was significantly reduced, indicating high efficiency and low toxicity. The multi-specific strategy demonstrates that Exos can serve as a natural cargo vehicle for the targeted delivery of anticancer therapeutics to treat difficult-to-treat cancers.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , MicroRNAs , Humans , Animals , Mice , Exosomes/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Ligands , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Drug Carriers/chemistry , Paclitaxel , MicroRNAs/genetics , MicroRNAs/metabolism
9.
Talanta ; 255: 124247, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36603443

ABSTRACT

Cancer is one of the leading causes of death worldwide and a crisis for global health. Breast cancer is the second most common cancer globally. In the perusal, a novel electrochemical biosensor amplified with hierarchical flower-like gold, poly (n-butyl acrylate), and MXene (AuHFGNs/PnBA-MXene) nanocomposite and activated by highly special antisense ssDNA (single-stranded DNA) provide a promising alternative for miRNA-122 detection as a biomarker of breast cancer. The biosensor presented a detection limit of 0.0035 aM (S/N = 3) with a linear range from 0.01 aM to 10 nM. The platform was tried on 20 breast cancer miRNAs extracted from actual serum specimens (10 positives and 10 negatives). Founded on the quantitatively obtained outcomes and statistic analysis (t-test, box-graph, receiver performance characteristic curve, and cut-off amount), the biosensor showed a meaningful discrepancy between the native and positive groups with 100% specificity and 100% sensitivity. While, RT-qPCR showed less specificity and sensitivity (70% specificity, 100% sensitivity) than the proposed biosensor. To assess the quantitative capacity and biosensor detection limit for clinical tests, the biosensor diagnosis performance for continually diluted miRNA extracted from patients was compared to that gained by RT-qPCR results, indicating that the biosensor detection limit was lower than RT-qPCR. ssDNA/AuHFGN/PnBA-MXene/GCE displayed little cross-reaction with other sequences and also showed desirable stability, reproducibility, and specificity and stayed stable until 32 days. As a result, the designed biosensor can perform as a hopeful method for diagnosis applications.


Subject(s)
Biosensing Techniques , Breast Neoplasms , MicroRNAs , Nanocomposites , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Reproducibility of Results , Electrochemical Techniques/methods , Biomarkers , DNA, Single-Stranded/genetics , Biosensing Techniques/methods , Gold , Limit of Detection
10.
Clinics ; 78: 100199, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1439910

ABSTRACT

Abstract Objective: To analyze the value of serum miRNA-122 expression in the diagnosis, severity, and prognosis of Acute Cerebral Infarction (ACI) and the correlation mechanism of serum miRNA-122 on the proliferation and apoptosis of vascular endothelial cells in ACI. Method: A total of 60 patients with ACI who were admitted to the emergency department of the Taizhou People's Hospital from January 1, 2019, to December 30, 2019, and 30 healthy controls during the same period were selected. General clinical data of all patients at admission were collected. Including age, sex, medical history, and inflammatory factors (C-Reactive Protein [CRP], Interleukin-6 [IL-6], Procalcitonin [PCT], Neutrophil Gelatinase-Associated Lipid carrier protein [NGAL]). The National Institutes of Health Stroke Scale (NIHSS) score at admission and short-term prognosis (the Modified Rankin Score [mRS]) score at 3 months after onset were recorded. The expression level of miRNA-122 in the serum of patients with ACI and normal controls was detected by reverse-transcription quantitative Real-Time Polymerase Chain Reaction (RT-QPCR), and the correlation between the expression level of miRNA-122 in the serum of patients with ACI and the level of inflammatory factors, NIHSS and mRS scores were analyzed. The expression levels of miRNA-122 in the serum of patients with ACI, normal people, and Human Umbilical cord Endothelial Cells (HUVECs) cultured in a blank control group were detected by RT-QPCR and statistically analyzed. MTT and flow cytometry was used to compare the proliferation and apoptosis of vascular endothelial cells in the miRNA-122 mimics and inhibitors transfection groups and the corresponding negative control group. The mRNA and protein levels of apoptosis-related factors Bax, Bcl-2, Caspase-3, and angiogenesis-related proteins Hes1, Notch1, Vascular Endothelial Growth Factors (VEGF), and CCNG1 were detected by RT-QPCR and Western blot. Bioinformatics methods predicted CCNG1 to be the target of miRNA-122, and the direct targeting relationship between CCNG1 and miRNA-122 was verified by a dual-luciferase reporting assay. Result: Serum miRNA-122 expression in patients with ACI was significantly higher than that in healthy controls, with an area under the receiver operating characteristic curve of 0.929, 95% Confidence Interval of 0.875‒0.983, and an optimal cut-off value of 1.397. The expression levels of CRP, IL-6, and NGAL in patients with ACI were higher than those in healthy control groups, p < 0.05; miRNA-122 was positively correlated with CPR, IL-6, NIHSS score, and mRS score. At 48h and 72h, the proliferation rate of HUVECs cells in the miRNA-122 mimics group decreased and the apoptosis rate increased. Cell proliferation rate increased, and apoptosis rate decreased significantly in the groups transfected with miRNA-122 inhibitors. The mRNA and protein levels of pro-apoptotic factors Bax and caspase-3 were significantly increased in the miRNA-122 mimics transfection group, while those of anti-apoptotic factor Bcl-2 were significantly decreased compared to those of the control group. The expression of Bax and Caspase-3 decreased, and the expression of anti-apoptotic factor Bcl-2 increased in the transfected miRNA-122 inhibitors group. mRNA expression levels of Hes1, Notch1, VEGF, and CCNG1 in the miRNA-122 mimic transfected group were significantly decreased, while mRNA expression levels in the miRNA-122 inhibitors transfected group were significantly increased. Bioinformatics showed that there was a miRNA-122 binding site in the 3′UTR region of CCNG1, and dual luciferase assay confirmed that CCNG1 was the target of miRNA-122.

11.
Biomolecules ; 12(11)2022 10 22.
Article in English | MEDLINE | ID: mdl-36358893

ABSTRACT

The molecular mechanism of hepatitis E virus (HEV) pathology is still unclear. The micro RNAs (miRNAs), of host or viral origin, interfere with virus replication and host environment in order to create an appropriate condition for the production of mature HEV progeny. Understanding the biogenesis and the interference of miRNAs with HEV will help to revile the mechanism of viral pathogenesis.


Subject(s)
Hepatitis E virus , Hepatitis E , MicroRNAs , Humans , Hepatitis E virus/genetics , MicroRNAs/genetics , Hepatitis E/genetics , Hepatitis E/pathology , Virus Replication/genetics
12.
Exp Ther Med ; 24(5): 652, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36168417

ABSTRACT

There are increasing numbers of studies investigating the potential link between microRNAs (miRNAs) and type 2 diabetes mellitus (T2DM) risk. Based on the prior evidence and the differentially expressed candidate plasma exosome miRNAs in our established discovery study, the current meta-analysis studied miR-126 and miR-122 specifically. The purpose of the present study was to systematically and quantitatively evaluate the relationship of miR-126 and miR-22 expression level with T2DM risk as well as related glucose metabolism parameters. Moreover, the present study was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline (PRISMA 2020 statement). PubMed, Embase, Web of Science, Cochrane and Chinese National Knowledge Infrastructure electronic databases were used to identify eligible original studies prior to May 3, 2022. The random-effects models were employed to explore the overall effect estimates [odds ratio (OR) and 95% confidence interval (CI), or correlation coefficient (r, 95% CI)]. The subgroup analyses were conducted to examine the potential sources of heterogeneity. The potential publication bias was assessed by the Begg's funnel plot and Egger's tests. A total of 46 articles were included in the present meta-analysis. The results revealed that higher exposure level of miR-126 was related to lower T2DM risk in 5 analytical epidemiological studies [OR=0.73, 95% CI: (0.55, 0.96)], lower fasting blood glucose (FBG) [N=22, r=-0.26, 95% CI: (-0.42, -0.10)], and lower homeostasis model assessment of insulin resistance (HOMA-IR) index [N=9, r=-0.28, 95% CI: (-0.52, -0.05)]. Besides, positive correlations were observed between miR-122 expression and FBG [N=10, r=0.34, 95% CI: (0.20, 0.48)], as well as HOMA-IR index [N=9, r=0.40, 95% CI: (0.16, 0.64)]. The relationship of miR-126 and miR-122 expression with T2DM risk and these glucose metabolism parameters may be influenced by study types, sample size, different source and mean age of participants. In conclusion, in the general healthy population, higher miR-126 expression was related to lower T2DM risk, FBG level and HOMA-IR index; higher miR-122 expression was closely correlated with higher FBG level and HOMA-IR index. These findings have notable clinical and public health implications for screening and control glucose metabolic disorders, insulin resistance and T2DM development.

13.
Front Mol Biosci ; 9: 864839, 2022.
Article in English | MEDLINE | ID: mdl-35651814

ABSTRACT

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related deaths worldwide with chronic hepatitis C virus (HCV) infection as a major risk factor of HCC. Circulating microRNAs are deregulated in HCC and are candidate biomarkers. The aim of this study was to explore the expression profile of miRNA-122, miR-483, and miR-335 in the serum of HCV-related hepatocellular carcinoma (HCC). 90 HCV-related hepatocellular carcinoma (HCC) patients, 90 non-malignant HCV patients, and 60 healthy controls were included. Serum microRNAs were measured by a qRT-PCR custom array. The expression levels of miR-122 and miR-483 were upregulated in HCC patients, while the miR-335 expression level was downregulated versus controls and HCV groups. Receiver-operating characteristic (ROC) curve analysis was created to examine miRNAs. miR-483 presented the best diagnostic potential because it showed the highest diagnostic accuracy for distinguishing HCV-related HCC patients from controls (AUC = 0.98) with 100% sensitivity. Moreover, there was obvious prognostic power in distinguishing HCV from HCC (AUC = 0.95) with 88% sensitivity. In conclusion, studied microRNAs (miR-122, miR-483, and miR-335) could serve as potential non-invasive early diagnostic biomarkers for HCC, and we identified a panel of three serum microRNAs with high accuracy in HCC diagnosis. Additional studies are required to confirm this panel and test its prognostic significance.

14.
J Immunoassay Immunochem ; 43(4): 347-364, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35227165

ABSTRACT

Alteration of micro-RNAs (miRNAs) expression, including miRNA-122a, -146a and -205 family members, can have profound effects on inflammatory and IFN pathways (miRNA-146a), known as hallmarks of COVID-19. SARS-CoV-2-infected patients were recruited at Policlinico Umberto I Hospital of Sapienza University of Rome (Italy). MiRNA-122a, -146a, -205 and IFI27 (Interferon Alpha Inducible Protein 27) levels were screened in SARS-CoV-2 patients (n = 14) and healthy controls (n = 10) by real-time RT-PCR assays. Then, miRNA-146a rs2910164 GC single-nucleotide polymorphism (SNP) was genotyped in a larger group of COVID-19 patients (n = 129), and its relationship with severe disease [Intensive Care Unit (ICU) support or survival/death] was assessed. SARS-CoV-2-positive patients had increased PCR, D-Dimer and Fibrinogen levels compared to healthy controls (p < .05 for all measurements). MiRNA-122a and -146a serum levels were upregulated in COVID-19 patients (miRNA-122a: p = .002; miRNA-146a: p < .001). Decreased IFI27 levels were observed in COVID-19 patients with higher miRNA-146a levels (p = .047). Moreover, miRNA-146a rs2910164 C/G genotypes distributions were similar in COVID-19 patients and in validated European healthy subjects (n = 37,214). MiRNA-146a SNP was not associated with severe COVID-19 outcome (ICU or death). MiRNA-122a and -146a levels were elevated in SARS-CoV-2 infected patients, with miRNA-146a upregulation possibly contributing to IFN pathways dysregulation (e.g., reduced IFI27 levels) observed in severe COVID-19, although there is no evidence for the involvement of rs2910164 SNP.


Subject(s)
COVID-19 , Circulating MicroRNA , MicroRNAs , Humans , Case-Control Studies , COVID-19/genetics , Genetic Predisposition to Disease , Genotype , MicroRNAs/genetics , Polymorphism, Single Nucleotide , SARS-CoV-2
15.
Tropical Biomedicine ; : 559-568, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-961867

ABSTRACT

@#Hepatocellular carcinoma (HCC) is a highly lethal malignancy and clinically validated medications have not yet been developed since there are no reliable diagnostic and prognostic biomarkers. Based on bioinformatics tools, TGF-b1 gene was the first target gene of miRNA-122, therefore this study was intended to assess the potential interconnection between TGF-b1 and miRNA-122 as a diagnostic and prognostic biomarker in the progression of HCC in patients with chronic hepatitis C (CHC) genotype (4). In this study, 100 people were included and split into two groups; group I: CHC patients without HCC that were classified into patients CHC without cirrhosis and CHC cirrhotic patients, group II: CHC patients with HCC, and healthy volunteers as control. The expression of miRNA-122 and TGF-b1 genes were analyzed using Real-Time PCR. An upregulation of miRNA-122 gene in cirrhotic and HCC patients compared to both chronic HCV non-cirrhotic, and cirrhotic patients, while, a decrease in expression of TGF-b1 was found in cirrhotic patients compared to HCV non-cirrhotic patients. Although significantly downregulated in HCC patients. Regression analysis indicated that the expression levels of miRNA-122 and TGF-b1 could be regarded as important indicators of the alterations in cirrhotic and HCC patients versus HCV non-cirrhotic patients, also with the chances of HCC versus cirrhosis patients. Our data indicated an interaction between miRNA-122 and TGF-b1, regulated gene expression and recommended the use of these parameters as noninvasive predictive biomarkers and therapeutic targets for HCV induced liver cirrhosis and HCC.

16.
Curr Med Sci ; 41(6): 1231-1238, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34939145

ABSTRACT

OBJECTIVE: MiRNAs have been recently implicated in the pathogenesis of ischemia-reperfusion (IR) injury. This study aimed to investigate the miRNA expression profiles in the early stages after lung transplantation (LT) and to study the involvement of the Toll-like receptor (TLR) signaling pathway in lung IR injury following LT. METHODS: We established the left LT model in mice and selected the miRNA-122 as a research target. The mice were injected with a miRNA-122-specific inhibitor, following which pathological changes in the lung tissue were studied using different lung injury indicators. In addition, we performed deep sequencing of transplanted lung tissues to identify differentially expressed (DE) miRNAs and their target genes. These target genes were used to further perform gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS: A total of 12 DE miRNAs were selected, and 2476 target genes were identified. The GO enrichment analysis predicted 6063 terms, and the KEGG analysis predicted 1554 biological pathways. Compared with the control group, inhibiting the expression of miRNA-122 significantly reduced the lung injury and lung wet/dry ratio (P<0.05). In addition, the activity of myeloperoxidase and the expression levels of tumor necrosis factor-alpha and TLR2/4 were decreased (P<0.05); whereas the expression of interleukin-10 was increased (P<0.05). Furthermore, the inhibition of miRNA-122 suppressed the IR injury-induced activation of the TLR signaling pathway. CONCLUSION: Our findings showed the differential expression of several miRNAs in the early inflammatory response following LT. Of these, miRNA-122 promoted IR injury following LT, whereas its inhibition prevented IR injury in a TLR-dependent manner.


Subject(s)
Lung Transplantation , MicroRNAs/metabolism , Reperfusion Injury/metabolism , Signal Transduction , Toll-Like Receptors/metabolism , Animals , Lung Injury/prevention & control , Mice , MicroRNAs/genetics , Reperfusion Injury/prevention & control
17.
J Control Release ; 330: 173-184, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33316298

ABSTRACT

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Analogous to the border customs, liver mainly functions as a filter to detoxify chemicals and metabolite administered orally or intravenously. Besides, the liver cancer cells overexpress the drug exporters which cause high drug effluxion from liver cancer cells, leading to chemoresistance and a diminished chemotherapeutic effect on liver cancer. Recently, we found that RNA nanoparticles display rubber-like property that can rapidly deliver therapeutics to tumor site efficiently and the rest of the RNA nanoparticle were cleared by renal excretion within half hour after systemic injection. Therefore, we designed a new multivalent RNA nanoparticle harboring three copies of hepatocyte targeting-ligands, one copy of miR122, and 24 copies of Paclitaxel to overcome the drug effluxion and chemoresistance thus, synergistically treating HCC. The hepatocyte targeting ligands introduce tumor specificity to the RNA nanoparticles as they selectively bind and internalize into liver cancer cells. The rubber-like RNA nanoparticles allow for enhanced targeting ability to the HCC tumors. The RNA nanoparticles carrying miR122 and PTX were delivered to the liver cancer cells efficiently due to their rubber-like property to enhance their EPR as well as the receptor-mediated endocytosis by hepatocyte targeting-ligands. The miR122 efficiently silenced the drug exporters and the oncogenic proteins. The synergistic effect between miR122 and PTX was confirmed by HSA (Highest Single Agent) synergy model. IC50 was determined to be 460 nM. In vivo studies on mice xenografts revealed that the RNA nanoparticle predominantly accumulated in HCC tumor sites and efficiently inhibited the tumor growth after multiple IV injection. This demonstrates the potential of the rubber-like multivalent RNA nanoparticles to conquest the liver cancer, a currently incurable lethal disease.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Nanoparticles , Pharmaceutical Preparations , Animals , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Drug Delivery Systems , Drug Resistance, Neoplasm , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Mice , MicroRNAs/genetics , MicroRNAs/therapeutic use , Paclitaxel/therapeutic use , Rubber/therapeutic use
18.
Aging (Albany NY) ; 12(24): 25528-25546, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33231565

ABSTRACT

Epigenetic regulators of human spermatogonia stem cells (SSCs) remain largely unknown. We found that miRNA-122-5p was upregulated in human spermatogonia from obstructive azoospermia (OA) patients compared with non-obstructive azoospermia (NOA). MiRNA-122-5p stimulated the proliferation and DNA synthesis of human SSCs, whereas it inhibited the early apoptosis of human SSCs. CBL was predicted and identified as a direct target of miRNA-122-5p in human SSCs. CBL silencing led to an enhancement of cell proliferation and DNA synthesis and neutralized the effect of miRNA-122-5p inhibitor on the DNA synthesis of human SSCs. The decrease in the early apoptosis of human SSCs was observed after CBL knockdown. By comparing the profiles of lncRNAs between OA and NOA spermatogonia, CASC7 was significantly deficient in OA spermatogonia, and it had a direct association with miRNA-122-5p. LncRNA CASC7 competed with miRNA-122-5p, and it suppressed the inhibition of CBL. Collectively, these results implicate that miRNA-122-5p enhances the proliferation and DNA synthesis and inhibits the early apoptosis of human SSCs by targeting CBL and competing with lncRNA CASC7. Therefore, this study provides novel insights into epigenetic regulation of fate determinations of human SSCs, and it offers new targets for gene therapy of male infertility that is associated with aging.


Subject(s)
Adult Germline Stem Cells/metabolism , Apoptosis/physiology , Azoospermia/metabolism , Cell Proliferation/physiology , MicroRNAs/metabolism , Proto-Oncogene Proteins c-cbl/metabolism , RNA, Long Noncoding/metabolism , Azoospermia/genetics , Gene Silencing , Humans , Male , MicroRNAs/genetics , Proto-Oncogene Proteins c-cbl/genetics , RNA, Long Noncoding/genetics
19.
Biosci Rep ; 40(12)2020 12 23.
Article in English | MEDLINE | ID: mdl-33078195

ABSTRACT

Osteosarcoma (OS) is the most common bone malignancy in both children and adolescents. In the present study, we aimed to explore the association of miRNA-122 and miRNA-96 expression with the clinical characteristics and prognosis of patients with osteosarcoma. The expression of miRNA-122 and miRNA-96 in human osteosarcoma cell lines and tissues were detected in the present study. Reverse transcriptase-PCR (RT-PCR) was used to determine the expression levels of miRNA-122 and miRNA-96 in 68 human OS samples. We found that MiRNA-122 and miRNA-96 were widely up-regulated in osteosarcoma, gastric cancer and pancreatic cancer. In HOS, Saos-2 and U2OS osteosarcoma cells, miRNA-122 and miRNA-96 were up-regulated significantly, while down-regulated in MG-63 cells. After further investigation, we found that miRNA-122 and miRNA-96 concentrations were significantly higher in the tumor tissues than those in the normal tissues (P<0.01). Moreover, the cell proliferation of LV-miRNA-122-RNAi and LV-miRNA-96-RNAi transfected SaOS2 was significantly decreased compared with the LV- miRNA-122-RNAi-CN and LV- miRNA-96-RNAi group. After adjusting for competing risk factors, we found combined high miRNA-122 and miRNA-96 expression was identified as independent predictor of overall survival.


Subject(s)
Bone Neoplasms/metabolism , Cell Movement , Cell Proliferation , MicroRNAs/metabolism , Osteosarcoma/metabolism , Adolescent , Adult , Bone Neoplasms/genetics , Bone Neoplasms/mortality , Bone Neoplasms/pathology , Cell Line, Tumor , Child , Female , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/genetics , Middle Aged , Neoplasm Invasiveness , Osteosarcoma/genetics , Osteosarcoma/mortality , Osteosarcoma/pathology , Prognosis , Signal Transduction , Young Adult
20.
Talanta ; 219: 121265, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32887156

ABSTRACT

Dynamic chemical labelling is a single-base specific method to enable detection and quantification of micro-Ribonucleic Acids in biological fluids without extraction and pre-amplification. In this study, dynamic chemical labelling was combined with the Luminex MAGPIX system to profile levels of microRNA-122 biomarker in serum from patients with Drug-Induced Liver Injury.


Subject(s)
Chemical and Drug Induced Liver Injury , MicroRNAs , Biomarkers , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...