Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 599
Filter
1.
J Colloid Interface Sci ; 674: 745-752, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38955006

ABSTRACT

The exploration of novel electrochemiluminescence (ECL) luminophores with excellent ECL properties is a current research hotspot in the ECL field. Herein, a novel high-efficiency Ru-complex-free ECL emitter PyTS-Zr-BTB-MOL has been prepared by using porous ultrathin Zr-BTB metal-organic layer (MOL) as carrier to coordinatively graft the cheap and easily available polycyclic aromatic hydrocarbon (PAH) derivative luminophore PyTS whose ECL performance has never been investigated. Gratifyingly, the ECL intensity and efficiency of PyTS-Zr-BTB-MOL were markedly enhanced compared to both PyTS monomers and PyTS aggregates. The main reason was that the distance between pyrene rings was greatly expanded after the PyTS grafting on the Zr6 clusters of Zr-BTB-MOL, which overcame the aggregation-caused quenching (ACQ) effect of PyTS and thus enhanced the ECL emission. Meanwhile, the porous nanosheet structure of PyTS-Zr-BTB-MOL could distinctly increase the exposure of PyTS luminophores and shorten the diffusion paths of coreactants and electrons/ions, which effectively promoted the electrochemical excitation of more PyTS luminophores and thus achieved a further ECL enhancement. In light of the remarkable ECL property of PyTS-Zr-BTB-MOL, it was employed as an ECL indicator to build a novel high-sensitivity ECL biosensor for microRNA-21 determination, possessing a satisfactory response range (100 aM to 100 pM) and an ultralow detection limit (10.4 aM). Overall, this work demonstrated that using MOLs to coordinatively graft the PAH derivative luminophores to eliminate the ACQ effect and increase the utilization rate of the luminophores is a promising and efficient strategy to develop high-performance Ru-complex-free ECL materials for assembling ultrasensitive ECL biosensing platforms.

2.
Anal Chim Acta ; 1316: 342827, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969404

ABSTRACT

BACKGROUND: In recent years, miRNAs have emerged as potentially valuable tumor markers, and their sensitive and accurate detection is crucial for early screening and diagnosis of tumors. However, the analysis of miRNAs faces significant challenges due to their short sequence, susceptibility to degradation, high similarity, low expression level in cells, and stringent requirements for in vitro research environments. Therefore, the development of sensitive and efficient new methods for the detection of tumor markers is crucial for the early intervention of related tumors. RESULTS: An ultrasensitive electrochemical/colorimetric dual-mode self-powered biosensor platform is established to detect microRNA-21 (miR-21) via a multi-signal amplification strategy. Gold nanoparticles (AuNPs) and VS4 nanosheets self-assembled 3D nanorods (VS4-Ns-Nrs) are prepared for constructing a superior performance enzyme biofuel cell (EBFC). The double-signal amplification strategy of Y-shaped DNA nanostructure and catalytic hairpin assembly (CHA) is adopted to further improve enhance the strength and specificity of the output signal. In addition, a capacitor is matched with EBFC to generate an instantaneous current that is amplified several times, and the output detection signal is improved once more. At the same time, electrochemical and colorimetric methods are used for dual-mode strategy to achieve the accuracy of detection. The linear range of detection is from 0.001 pg/mL to 1000 pg/mL, with a relatively low limit of detection (LOD) of 0.16 fg/mL (S/N = 3). SIGNIFICANCE: The established method enables accurate and sensitive detection of markers in patients with lung cancer, providing technical support and data reference for precise identification. It is anticipated to offer a sensitive and practical new technology and approach for early diagnosis, clinical treatment, and drug screening of cancer and other related major diseases.


Subject(s)
Biomarkers, Tumor , Biosensing Techniques , Colorimetry , Electrochemical Techniques , Gold , Lung Neoplasms , Metal Nanoparticles , MicroRNAs , Humans , Biosensing Techniques/methods , Lung Neoplasms/diagnosis , Electrochemical Techniques/methods , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Gold/chemistry , MicroRNAs/analysis , Metal Nanoparticles/chemistry , Limit of Detection
3.
Bioact Mater ; 40: 484-502, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39040569

ABSTRACT

The rate of retear after surgical repair remains high. Mesenchymal stem cells (MSCs) have been extensively employed in regenerative medicine for several decades. However, safety and ethical concerns constrain their clinical application. Tendon Stem/Progenitor Cells (TSPCs)-derived exosomes have emerged as promising cell-free therapeutic agents. Therefore, urgent studies are needed to investigate whether TSPC-Exos could enhance tendon-bone healing and elucidate the underlying mechanisms. In this study, TSPC-Exos were found to promote the proliferation, migration, and expression of fibrogenesis markers in BMSCs. Furthermore, TSPC-Exos demonstrated an ability to suppress the polarization of M1 macrophages while promoting M2 macrophage polarization. In a rat model of rotator cuff repair, TSPC-Exos modulated inflammation and improved the histological structure of the tendon-bone interface, the biomechanical properties of the repaired tendon, and the function of the joint. Mechanistically, TSPC-Exos exhibited high expression of miR-21a-5p, which regulated the expression of PDCD4. The PDCD4/AKT/mTOR axis was implicated in the therapeutic effects of TSPC-Exos on proliferation, migration, and fibrogenesis in BMSCs. This study introduces a novel approach utilizing TSPC-Exos therapy as a promising strategy for cell-free therapies, potentially benefiting patients with rotator cuff tear in the future.

4.
Noncoding RNA ; 10(3)2024 May 31.
Article in English | MEDLINE | ID: mdl-38921830

ABSTRACT

Hypertension is a chronic, multifactorial disease, leading to high cardiovascular morbidity and mortality globally. Despite the advantages of pharmaceutical treatments, natural products have gained scientific interest due to their emerging phytotherapeutic properties. Chios mastic is a natural Greek product, consisting of bioactive compounds which modify microRNAs' (small, expression-regulating molecules) expression. In this study, we investigated the antihypertensive properties of Chios mastic through the assessment of miR-21 levels. Herein, plasma samples of 57 individuals with hypertension, recruited for the purposes of the HYPER-MASTIC study, were analyzed. This was a clinical trial with Chios mastic supplements in which the patients were divided into groups receiving high and low mastic doses and placebo supplements, respectively. miR-21 was significantly upregulated in patients compared to normotensive individuals. Mean changes in miR-21 levels were statistically significant, after adjusting for sex and age, between the placebo and low-dose group and between the low- and high-dose group. Post-intervention miR-21 levels were positively associated with night-time systolic blood pressure, pulse pressure, and central systolic mean arterial pressure and negatively associated with night-time pulse wave velocity in the low-dose group. Our findings suggest a potential implication of miR-21 in the association of Chios mastic with night-time blood pressure measurements.

5.
Biomedicines ; 12(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38927442

ABSTRACT

(1) Background: This study investigates the effects of Ursodeoxycholic acid (UDCA) on NF-κB signaling, farnesoid X receptor (FXR) singling, and microRNA-21 in HepG2 cells. (2) Methods: HepG2 cells were treated with lipopolysaccharide (LPS) to simulate hepatic inflammation. The investigation focused on the expression of NF-κB activation, which was analyzed using Western blot, confocal microscopy, and Electrophoretic Mobility-shift Assays (EMSA). Additionally, NF-κB and farnesoid X receptor (FXR) singling expressions of micro-RNA-21, COX-2, TNF-α, IL-6, cyp7A1, and shp were assessed by RT-PCR. (3) Results: UDCA effectively downregulated LPS-induced expressions of NF-κB/65, p65 phosphorylation, and also downregulated FXR activity by Western blot. Confocal microscopy and EMSA results confirmed UDCA's role in modulating NF-κB signaling. UDCA reduced the expressions of LPS-induced COX-2, TNF-α, and IL-6, which were related to NF-κB signaling. UDCA downregulated LPS-induced cyp7A1 gene expression and upregulated shp gene expression, demonstrating selective gene regulation via FXR. UDCA also significantly decreased micro-RNA 21 levels. (4) Conclusions: This study demonstrates UDCA's potent anti-inflammatory effects on NF-κB and FXR signaling pathways, and thus its potential to modulate hepatic inflammation and carcinogenesis through interactions with NF-κB and FXR. The decrease in micro-RNA 21 expression further underscores its therapeutic potential.

6.
Aging (Albany NY) ; 16(12): 10539-10545, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38935941

ABSTRACT

OBJECTIVE: The primary objective of this study was to assess the diagnostic potential of galectin-3 (Gal-3), fractalkine (FKN), interleukin (IL)-6, microRNA(miR)-21, and cardiac troponin I (cTnI) in patients with ischemic cardiomyopathy (ICM). METHOD: A total of 78 ICM patients (Case group) and 80 healthy volunteers (Control group) admitted to our hospital for treatment or physical examination from Aug. 2018 to Feb. 2020 were included in the current study. The serum concentration of Gal-3, FKN, IL-6, miR-21, and plasma expression of cTnI of both groups were determined. The severity of ICM was classified using New York Heart Association (NYHA) scale. RESULTS: When compared with the control group, the case group had a significantly high blood concentration of Gal-3, FKN, IL-6, miR-21, and cTnI (P < 0.001). NYHA class II patients had lower blood levels of Gal-3, FKN, IL-6, miR-21, and cTnI than that in patients of NYHA class III and IV without statistical significance (P > 0.05). However, statistical significance could be achieved when comparing the above-analyzed markers in patients classified between class III and IV. Correlation analysis also revealed that serum levels of Gal-3, FKN, IL-6, miR-21, and cTnI were positively correlated with NYHA classification (R = 0.564, 0.621, 0.792, 0.981, P < 0.05). CONCLUSION: Our study revealed that up-regulated serum Gal-3, FKN, IL-6, miR-21, and cTnI levels were closely related to the progression of ICM. This association implies that these biomarkers have diagnostic potential, offering a promising avenue for early detection and monitoring of ICM progression.


Subject(s)
Biomarkers , Chemokine CX3CL1 , Galectin 3 , Interleukin-6 , MicroRNAs , Myocardial Ischemia , Troponin I , Humans , Female , Male , Troponin I/blood , Interleukin-6/blood , MicroRNAs/blood , Chemokine CX3CL1/blood , Chemokine CX3CL1/genetics , Middle Aged , Galectin 3/blood , Galectin 3/genetics , Biomarkers/blood , Aged , Myocardial Ischemia/blood , Myocardial Ischemia/diagnosis , Cardiomyopathies/blood , Cardiomyopathies/diagnosis , Case-Control Studies , Galectins/blood , Blood Proteins/analysis
7.
Am J Cancer Res ; 14(4): 1501-1522, 2024.
Article in English | MEDLINE | ID: mdl-38726265

ABSTRACT

Considering the limited research and the prevailing evidence of STAT4's tumor-suppressing role in breast carcinoma (BC) or in breast radiotherapy (RT) sensitivity requires more in-depth exploration. Our study delves into how STAT4, a transcription factor, affects BC cell resistance to radiotherapy by regulating the MALAT1/miR-21-5p/THRB axis. Bioinformatics analysis was performed to predict the regulatory mechanisms associated with STAT4 in BC. Subsequently, we identified the expression profiles of STAT4, MALAT1, miR-21-5p, and THRB in various tissues and cell lines, exploring their interactions and impact on RT resistance in BC cells. Moreover, animal models were established with X-ray irradiation for further validation. We discovered that STAT4, which is found to be minimally expressed in breast carcinoma (BC) tissues and cell lines, has been associated with a poorer prognosis. In vitro cellular assays indicated that STAT4 could mitigate radiotherapy resistance in BC cells by transcriptional activation of MALAT1. Additionally, MALAT1 up-regulated THRB expression by adsorbing miR-21-5p. As demonstrated in vitro and in vivo, overexpressing STAT4 inhibited miR-21-5p and enhanced THRB levels through transcriptional activation of MALAT1, which ultimately contributes to the reversal of radiotherapy resistance in BC cells and the suppression of tumor formation in nude mice. Collectively, STAT4 could inhibit miR-21-5p and up-regulate THRB expression through transcriptional activation of MALAT1, thereby mitigating BC cell resistance to radiotherapy and ultimately preventing BC development and progression.

8.
Kaohsiung J Med Sci ; 40(7): 660-670, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801488

ABSTRACT

Bladder cancer (BC) poses high morbidity and mortality, with urinary exosomal microRNA (miR)-21 showing potential value in its diagnosis and prognosis, and we probed its specific role. We prospectively selected 116 BC patients and 116 healthy volunteers as the BC and control groups, respectively. BC urinary exosomal miR-146a-5p, miR-93-5p, miR-663b, miR-21, and miR-4454 relative expression levels were assessed. The correlations between clinical indexes and urinary exosomal miR-21, prognostic value of miR-21, and diagnostic value of the five candidate miRNAs, urine cytology, and miRNA joint diagnostic panel for BC and urinary exosomal miR-21, miR-4454, and urine cytology for Ta-T1 and T2-T4 stage BC were analyzed. Urinary exosomal miR-146a-5p, miR-93-5p, miR-663b, miR-21, and miR-4454 were highly expressed in BC patients. miR-146a-5p, miR-93-5p, miR-663b, miR-21, miR-4454, miRNA combined diagnostic panel, and urine cytology had certain diagnostic value for BC, with miR-21, miR-4454, and miRNA co-diagnostic panel showing the highest diagnostic value. Collectively, urinary exosomal miR-21 was closely related to Tumor-Node-Metastasis staging and grading in BC patients. Urinary exosomal miR-21 had high diagnostic value for BC and Ta-T1 and T2-T4 stage BC, and had high predictive value for BC poor prognosis, providing an effective indicator for the occurrence, development, and prognostic assessment of BC.


Subject(s)
Exosomes , MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/urine , MicroRNAs/genetics , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/urine , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Female , Exosomes/genetics , Exosomes/metabolism , Male , Middle Aged , Prognosis , Aged , Biomarkers, Tumor/urine , Biomarkers, Tumor/genetics , Early Detection of Cancer , Gene Expression Regulation, Neoplastic , Case-Control Studies , Neoplasm Staging
9.
Ther Adv Cardiovasc Dis ; 18: 17539447241253134, 2024.
Article in English | MEDLINE | ID: mdl-38819836

ABSTRACT

Cardiac fibrosis is a pivotal cardiovascular disease (CVD) process and represents a notable health concern worldwide. While the complex mechanisms underlying CVD have been widely investigated, recent research has highlighted microRNA-21's (miR-21) role in cardiac fibrosis pathogenesis. In this narrative review, we explore the molecular interactions, focusing on the role of miR-21 in contributing to cardiac fibrosis. Various signaling pathways, such as the RAAS, TGF-ß, IL-6, IL-1, ERK, PI3K-Akt, and PTEN pathways, besides dysregulation in fibroblast activity, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs cause cardiac fibrosis. Besides, miR-21 in growth factor secretion, apoptosis, and endothelial-to-mesenchymal transition play crucial roles. miR-21 capacity regulatory function presents promising insights for cardiac fibrosis. Moreover, this review discusses numerous approaches to control miR-21 expression, including antisense oligonucleotides, anti-miR-21 compounds, and Notch signaling modulation, all novel methods of cardiac fibrosis inhibition. In summary, this narrative review aims to assess the molecular mechanisms of cardiac fibrosis and its essential miR-21 function.


Unraveling cardiac fibrosis: insights into microRNA-21's key role and promising approaches for controlCardiac fibrosis poses a significant global health threat and plays a central role in cardiovascular diseases. This examination delves into recent research revealing the participation of microRNA-21 (MiR-21) in the progression of cardiac fibrosis, providing insight into its critical function in this process. The investigation explores diverse molecular interactions, underscoring MiR-21's contribution to the development of cardiac fibrosis. Various signaling pathways, including the Renin-Angiotensin-Aldosterone System, TGF-ß, IL-6, IL-1, ERK, PI3K-Akt, and PTEN pathways, coupled with disturbances in fibroblast activity, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs), contribute to cardiac fibrosis. MiR-21's influence on growth factor secretion, apoptosis, and endothelial-to-mesenchymal transition further emphasizes its crucial role. What adds promise to MiR-21 is its capacity for regulation, providing potential insights into controlling cardiac fibrosis. The review also investigates various methods to modulate MiR-21 expression, such as antisense oligonucleotides, anti-miR-21 compounds, and Notch signaling modulation ­ innovative approaches showing potential in inhibiting cardiac fibrosis. In summary, this narrative review aims to dissect the complex molecular mechanisms behind cardiac fibrosis, explicitly emphasizing the indispensable role of MiR-21. By comprehending these mechanisms, researchers can lay the groundwork for inventive interventions and therapeutic strategies to hinder cardiac fibrosis, ultimately contributing to advancing cardiovascular health.


Subject(s)
Fibrosis , MicroRNAs , Signal Transduction , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Animals , Myocardium/pathology , Myocardium/metabolism , Heart Diseases/genetics , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology
10.
Chembiochem ; 25(12): e202400239, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38623847

ABSTRACT

Glucose transporter protein-1 (Glut1), is highly expressed in many cancer types and plays a crucial role in cancer progression through enhanced glucose transport. Its overexpression is associated with aggressive tumor behavior and poor prognosis. Herein, the nucleic acids modified gold nanoparticles (AuNPs) was synthesized to deliver small interfering RNA (siRNA) against Glut1 by microRNA 21 (miR-21) triggers toehold-mediated strand displacement reaction for lung cancer starvation therapy. Overexpression of miR-21 triggers toehold-mediated strand displacement, releasing the siRNA to knockdown of Glut1 in cancer cell instead of normal cell. Furthermore, the glucose oxidase-like activity of the AuNPs accelerates intracellular glucose consumption, promoting cancer cell starvation. The engineered AuNPs@anti-miR-21/siGlut1 complex inhibits cancer cell proliferation, xenograft tumor growth and promotes apoptosis through glucose starvation and ROS cascade signaling, underscoring its potential as an effective therapeutic strategy for lung cancer.


Subject(s)
Cell Proliferation , Glucose Transporter Type 1 , Glucose , Gold , Lung Neoplasms , Metal Nanoparticles , MicroRNAs , RNA, Small Interfering , Gold/chemistry , Humans , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/antagonists & inhibitors , Glucose Transporter Type 1/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Glucose/metabolism , Metal Nanoparticles/chemistry , RNA, Small Interfering/metabolism , RNA, Small Interfering/chemistry , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Cell Proliferation/drug effects , Mice , Apoptosis/drug effects , Mice, Nude , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C
11.
Indian J Clin Biochem ; 39(2): 214-220, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577141

ABSTRACT

Breast cancer is the most frequent type of cancer in women, many patients experience recurrences and metastasis. miR-21 (microRNA-21) as biomarker is under investigation for breast cancer. At present, there is very limited information available regarding effect of chemotherapy on miR-21 expression in breast cancer and its correlation with the clinical improvement. Hence, this study was planned to evaluate the effect of chemotherapy on miR-21 in metastatic breast cancer and its relationship with the clinical outcome. Females, aged-18-90 years diagnosed with Invasive Ductal Carcinoma of breast and candidate of neoadjuvant chemotherapy including Adriamycin (60 mg/m2), Cyclophosphamide (600 mg/m2) with or without Taxane (75-175 mg/m2) were included in the study. Before and after 42 days of staring of chemotherapy sample was collected for circulatory miR-21 and RECIST 1.1 criteria was applied to assess the clinical status. Blood samples for routine clinical biomarkers including liver function test and renal function tests was also collected. miR-21 expression before and after chemotherapy was assessed using standard method based on real time PCR. Expression of miR-21, RECIST criteria and other liver and kidney related biomarkers were compared before and after chemotherapy. After neoadjuvant chemotherapy expression of miR-21 was significantly increased by 5.65-fold. There was significant improvement in clinical scores based on RECIST criteria (0.046). No significant correlation was observed between miR-21 expression and difference in RECIST score (r = - 0.122, p = 0.570). Neoadjuvant chemotherapy causes clinical improvement in breast cancer patients however it is not correlated with the miR-21 expression which significantly increased after chemotherapy.

12.
Anal Bioanal Chem ; 416(14): 3401-3413, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630279

ABSTRACT

The point-of-care testing (POCT) of miRNA has significant application in medical diagnosis, yet presents challenges due to their characteristics of high homology, low abundance, and short length, which hinders the achievement of quick detection with high specificity and sensitivity. In this study, a lateral flow assay based on the CRISPR/Cas13a system and MnO2 nanozyme was developed for highly sensitive detection of microRNA-21 (miR-21). The CRISPR/Cas13a cleavage system exhibits the ability to recognize the specific oligonucleotide sequence, where two-base mismatches significantly impact the cleavage activity of the Cas13a. Upon binding of the target to crRNA, the cleavage activity of Cas13a is activated, resulting in the unlocking of the sequence and initiating strand displacement, thereby enabling signal amplification to produce a new sequence P1. When applying the reaction solution to the lateral flow test strip, P1 mediates the capture of MnO2 nanosheets (MnO2 NSs) on the T zone, which catalyzes the oxidation of the pre-immobilized colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) on the T zone and generates the blue-green product (ox-TMB). The change in gray value is directly proportional to the concentration of miR-21, allowing for qualitative detection through visual inspection and quantitative measurement using ImageJ software. This method achieves the detection of miR-21 within a rapid 10-min timeframe, and the limit of detection (LOD) is 0.33 pM. With the advantages of high specificity, simplicity, and sensitivity, the lateral flow test strip and the design strategy hold great potential for the early diagnosis of related diseases.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Limit of Detection , Manganese Compounds , MicroRNAs , Nanostructures , Oxides , Manganese Compounds/chemistry , Oxides/chemistry , MicroRNAs/analysis , Humans , Biosensing Techniques/methods , Nanostructures/chemistry
13.
J Ovarian Res ; 17(1): 75, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575997

ABSTRACT

Umbilical cord-derived mesenchymal stem cell (UCMSC) transplantation has been deeply explored for premature ovarian insufficiency (POI) disease. However, the associated mechanism remains to be researched. To explore whether and how the microRNA 21 (miR-21) functions in POI mice with UCMSCs transplantation, the autoimmune-induced POI mice model was built up, transplanted with or without UCMSCs transfect with the LV-hsa-miR-21-5p/LV-hsa-miR-21-5p-inhibition, with the transfection efficiency analyzed by QRT-PCR. Mice hormone secretion and the anti-Zona pellucida antibody (AZPAb) levels were analyzed, the ovarian morphological changes and folliculogenesis were observed, and the ovarian apoptosis cells were detected to evaluate ovarian function. The expression and localization of the PTEN/Akt/FOXO3a signal pathway-related cytokines were analyzed in mice ovaries.Additionally, the spleen levels of CD8 + CD28-T cells were tested and qualified with its significant secretory factor, interleukin 10 (IL-10). We found that with the LV-hsa-miR-21-5p-inhibition-UCMSCs transplantation, the mice ovarian function can be hardly recovered than mice with LV-NC-UCMSCs transplantation, and the PTEN/Akt/FOXO3a signal pathway was activated. The expression levels of the CD8 + CD28-T cells were decreased, with the decreased levels of the IL-10 expression. In contrast, in mice with the LV-hsa-miR-21-5p-UCMSCs transplantation, the injured ovarian function can be reversed, and the PTEN/AKT/FOXO3a signal pathway was detected activated, with the increased levels of the CD8 + CD28-T cells, and the increased serum levels of IL-10. In conclusion, miR-21 improves the ovarian function recovery of POI mice with UCMSCs transplantation, and the mechanisms may be through suppressing the PTEN/AKT/FOXO3a signal pathway and up-regulating the circulating of the CD8 + CD28-T cells.


Subject(s)
Menopause, Premature , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , Primary Ovarian Insufficiency , Animals , Female , Mice , CD28 Antigens , Interleukin-10/genetics , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/chemically induced , Proto-Oncogene Proteins c-akt
14.
Article in English | MEDLINE | ID: mdl-38664244

ABSTRACT

Acute lung injury (ALI) is a common disease with complex pathogenesis. However, the treatment is mainly symptomatic with limited clinical options. Asiaticoside (AS), a Chinese herbal extract, has protective effects against LPS-induced ALI in mice and inhibits nitric oxide and prostaglandin E2 synthesis; however, the specific mechanism of AS in the prevention and treatment of LPS-induced ALI needs further study. Sema4D/CD72 pathway, mitochondrial dysfunction, and miRNA-21 are closely associated with inflammation. Therefore, the present study aimed to explore whether AS exerts its therapeutic effect on ALI by influencing Sema4D/CD72 pathway and mitochondrial dysfunction, restoring the balance of inflammatory factors, and influencing miRNA-21 expression. Cell and animal experiments were performed to investigate the effect of AS on ALI. Lipopolysaccharide (LPS) was used to establish the ALI model. CCK8 and flow cytometry were used to detect the cell viability and apoptosis rate. HE staining and wet-to-dry weight ratio (W/D) of lung tissue were determined. The expressions of Sema4D, CD72, NF-κB p65, Bax, Bcl2, and caspase 3 in RAW264.7 cells and lung tissues were detected by western blot, and the levels of IL-10 and IL-1ß induced by LPS in supernatant of RAW264.7 cells and BALF were measured by ELISA. And the expression of miRNA-21 in cells and lung tissues was detected by fluorescence quantitative PCR. The result shows that AS treatment suppressed LPS-induced cell damage and lung injury in mice. AS treatment could alleviate the pathological changes such as inflammatory infiltration and histopathological changes in the lungs caused by LPS, and reduce the ratio of W/D. AS significantly alleviated the decrease of mitochondrial membrane potential induced by LPS, inhibited the increase of ROS production, and reduced the expression of mitochondrial fission proteins Drp1 and Fis1. The high-dose AS group significantly downregulated the expression of Sema4D, CD72, phosphorylated NF-κB p65, and apoptosis-related proteins, decreased the pro-inflammatory factor IL-1ß, and enhanced the level of anti-inflammatory factor IL-10. In addition, AS promoted miRNA-21 expression. These effects inhibited apoptosis and restored the balance between anti- and pro-inflammatory factors. This represents the inaugural report elucidating the mechanism by which AS inhibits the Sema4D/CD72 signaling pathway. These findings offer novel insights into the potential application of AS in both preventing and treating ALI.

15.
Talanta ; 272: 125838, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38430866

ABSTRACT

In this study, a novel integrated liposome-based microfluidic platform combined with a smartphone was designed for the rapid colorimetric detection of microRNA-21 (miRNA-21) in real samples. The flowing surface-functionalized liposomes were first captured by nucleic acid-functionalized Au nanoparticles in the microfluidic chip. In the presence of miRNA-21, the DNA strand modified on the surface of Au nanoparticles hybridized with the target to form double-stranded products and was cleaved by duplex-specific nuclease (DSN) enzyme, causing the liposomes to be re-released. Then, as the liposomes in the colorimetric module were lysed and the "cellular" contents were released, a step-by-step "glucose-glucose oxidase-3,3',5,5'-tetramethylbenzidine (TMB)" colorimetric reaction process catalyzed by the G-quadruplex/hemin was triggered. The grayscale values were recorded and recognized by the smartphone camera for miRNA-21 analysis. The advantages of the present strategy included the portability of smartphone-based colorimetric assay, the encapsulation and transport of reactants by liposomes and the low solvent usage of microfluidic chip. Under optimal conditions, this assay exhibited a wide linear range from 1 pM to 1 nM (r2 = 0.9981), and the limit of detection of miRNA-21 was as low as 0.27 pM. Moreover, the high specificity of this strategy allowed its successful application to the rapid analysis of miRNA-21 in real blood serum samples of people with type 2 diabetes.


Subject(s)
Biosensing Techniques , Diabetes Mellitus, Type 2 , Metal Nanoparticles , MicroRNAs , Humans , MicroRNAs/analysis , Liposomes , Colorimetry , Microfluidics , Gold , Limit of Detection
16.
Mol Med Rep ; 29(5)2024 05.
Article in English | MEDLINE | ID: mdl-38516774

ABSTRACT

Acute liver failure (ALF) is a complex syndrome characterized by overactivation of innate immunity, and the recruitment and differentiation of immune cells at inflammatory sites. The present study aimed to explore the role of microRNA (miRNA/miR)­21 and its potential mechanisms underlying inflammatory responses in ALF. Baseline serum miR­21 was analyzed in patients with ALF and healthy controls. In addition, miR­21 antagomir was injected via the tail vein into C57BL/6 mice, and lipopolysaccharide/D­galactosamine (LPS/GalN) was injected into mice after 48 h. The expression levels of miR­21, Krüppel­like­factor­6 (KLF6), autophagy­related proteins and interleukin (IL)­23, and hepatic pathology were then assessed in the liver tissue. Furthermore, THP­1­derived macrophages were transfected with a miRNA negative control, miR­21 inhibitor, miR­21 mimics or KLF6 overexpression plasmid, followed by treatment with or without rapamycin, and the expression levels of miR­21, KLF6, autophagy­related proteins and IL­23 were evaluated. The results revealed that baseline serum miR­21 levels were significantly upregulated in patients with ALF. In addition, LPS/GalN­induced ALF was attenuated in the antagomir­21 mouse group. KLF6 was identified as a target of miR­21­5p with one putative seed match site identified by TargetScan. A subsequent luciferase activity assay demonstrated a direct interaction between miR­21­5p and the 3'­UTR of KLF6 mRNA. Further experiments suggested that miR­21 promoted the expression of IL­23 via inhibiting KLF6, which regulated autophagy. In conclusion, in the present study, baseline serum miR­21 levels were highly upregulated in patients with ALF, antagomir­21 attenuated LPS/GalN­induced ALF in a mouse model, and miR­21 could promote the expression of IL­23 via inhibiting KLF6.


Subject(s)
Liver Failure, Acute , MicroRNAs , Animals , Humans , Mice , Antagomirs , Autophagy/genetics , Autophagy-Related Proteins , Interleukin-23/genetics , Interleukin-23/metabolism , Kruppel-Like Factor 6/genetics , Kruppel-Like Factor 6/metabolism , Lipopolysaccharides/toxicity , Liver Failure, Acute/chemically induced , Liver Failure, Acute/genetics , Liver Failure, Acute/metabolism , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction
17.
JBRA Assist Reprod ; 28(2): 289-294, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38530760

ABSTRACT

OBJECTIVE: Today, researchers have succeeded in achieving oocyte-like cells through the in vitro differentiation of stem cells. MicroRNAs are key regulators of oocyte development. In this study we decided to evaluate the expression pattern of microRNA-21, microRNA-15a, and microRNA-372 in oocyte-like cells, to determine the maturation stage of oocyte-like cells. METHODS: Human follicular fluid samples were collected and centrifuged, and their cells were divided into 3 groups; day 7 as control group, days 14 and 21. During this period, the cells were evaluated for their morphological appearance and viability by inverted microscopy. RNA isolation was performed and cDNA was reversely transcribed by specific stem-loop RT primers. Real-time RT-PCR was used to detect microRNA expression. RESULTS: The relative expression of microRNA-21 and microRNA-15a on day 21 was significantly down-regulated compared to the control group (day 7), but microRNA-372 did not show a significant difference. Also, on day 14 compared to the control group (day 7), microRNA-21 did not show a significant difference; but microRNA-15a and microRNA-372 were significantly down-regulated. MicroRNA-21 and microRNA-15a on day 21 compared to day 14 revealed down-regulated levels, but microRNA-372 revealed up-regulated levels. CONCLUSIONS: Our results showed significant decreases in the expression of microRNA-21 and microRNA-15a in oocyte-like cells, as well as in oocytes, which may lead to cytoplasmic maturation, germinal vesicle break down and the completion of meiosis І. In addition, down-regulation expression of microRNA-372 maybe a confirmation that mesenchymal stem cells have differentiated into germ cells, and these cells were differentiated into oocyte-like cells.


Subject(s)
Follicular Fluid , MicroRNAs , Oocytes , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Female , Oocytes/metabolism , Follicular Fluid/metabolism , Follicular Fluid/cytology , Cell Differentiation , Stem Cells/metabolism , Stem Cells/cytology , Adult , Cells, Cultured
18.
Int J Neurosci ; : 1-12, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512134

ABSTRACT

OBJECTIVE: To evaluate the variations in serum levels of microRNA-21 (miR-21) and S-100B protein in neonates with hypoxic-ischemic encephalopathy (HIE) after receiving hypothermia therapy and explore the correlation of these biomarkers with the neurodevelopmental prognosis of the infants. METHODS: This retrospective analysis included 90 neonatal HIE patients diagnosed and treated between January 2019 and December 2022. Real-time quantitative PCR and enzyme-linked immunosorbent assay (ELISA) methods were used to measure miR-21 and S-100B protein levels. Neurodevelopmental assessments were conducted at one year, and follow-up was performed using the Bayley Scales of Infant and Toddler Development third edition. Statistical analysis was carried out using SPSS software, with t-tests for continuous variables, chi-square tests for categorical data, Pearson correlation coefficient for correlation analysis, and multivariate regression analysis to adjust for confounding factors. RESULTS: After hypothermia therapy, the observation group showed a significant decrease in miR-21 and S-100B protein levels (P < 0.001), and neurodevelopmental scores were significantly higher than the control group (P < 0.05). Correlation analysis indicated a negative correlation between miR-21 and neurodevelopmental scores (r=-0.62, P < 0.001), as well as a negative correlation between S-100B protein levels (r=-0.76, P < 0.001). Multivariate regression analysis demonstrated that miR-21 levels and S-100B protein levels maintained independent negative correlations with neurodevelopmental scores (P < 0.001). CONCLUSION: Hypothermia therapy significantly reduces serum levels of miR-21 and S-100B protein in neonatal HIE patients and may be associated with better prognosis. miR-21 and S-100B serve as prognostic biomarkers, aiding in predicting and improving the treatment outcomes and long-term prognosis of neonatal HIE.

19.
Anal Chim Acta ; 1295: 342321, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38355235

ABSTRACT

Enhancing electrochemiluminescence (ECL) properties of luminophores is a hot direction in the current ECL field. Herein, we found that covalent rigidification of the aggregation-induced emission luminogens (AIEgens) TABE (TABE = tetra-(4-aldehyde-(1,1-biphenyl))ethylene) into covalent organic framework nanosheets (TABE-PZ-CON, PZ = piperazine) could result in stronger ECL emission than those of TABE aggregates and TABE monomers. We termed the interesting phenomenon "covalent rigidification-triggered electrochemiluminescence (CRT-ECL) enhancement". The superior ECL performance of TABE-PZ-CON not only because massive TABE luminogens were covalently assembled into the rigid TABE-PZ-CON network, which limited the intramolecular motions of TABE and hampered the radiationless transition, but also because the ultrathin porous TABE-PZ-CON significantly reduced the transportation distance of ions, electrons, and coreactants, which enabled the electrochemical excitation of more TABE luminogens and thus enhanced the ECL efficiency. Bearing in mind the exceptional ECL performance of TABE-PZ-CON, it was utilized as a high-efficient ECL indicator in combination with the DNA walker and duplex-specific nuclease-assisted target recycling amplification strategies to design an "off-on" ECL biosensor for the ultrasensitive assay of microRNA-21, exhibiting a favorable response range (100 aM-1 nM) with an ultralow detection limit of 17.9 aM. Overall, this work offers a valid way to inhibit the intramolecular motions of AIEgens for ECL enhancement, which gives a new vision for building high-performance AIEgen-based ECL materials, thus offering more chances for assembling hypersensitive ECL biosensors.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , MicroRNAs , Metal-Organic Frameworks/chemistry , Luminescent Measurements , Electrochemical Techniques , Photometry , MicroRNAs/chemistry , Limit of Detection
20.
Int J Fertil Steril ; 18(2): 94-99, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38368510

ABSTRACT

Some failures in ovary function, like folliculogenesis and oogenesis, can give rise to various infertility-associated problems, including polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). PCOS influences 8 to 20% of women; while POI occurs in at least 1% of all women. Regrettably, the current therapies for these diseases have not sufficiently been effective, and finding a suitable strategy is still a puzzle. One of the helpful strategies for managing and treating these disorders is understanding the contributing pathogenesis and mechanisms. Recently, it has been declared that abnormal expression of microRNAs (miRNAs), as a subset of non-coding RNAs, is involved in the pathogenesis of reproductive diseases. Among the miRNAs, the roles of miRNA-21 in the pathogenesis of PCOS and POI have been highlighted in some documents; hence, the purpose of this mini-review was to summarize the evidences in conjunction with the functions of this miRNA and other effective microRNAs in the normal or abnormal functions of the ovary (i.e., PCOS and POI) with a mechanistic insight.

SELECTION OF CITATIONS
SEARCH DETAIL
...