Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Animal ; 18(8): 101221, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-39013331

ABSTRACT

Silkworms have been farmed for their silk since ancient times. After silk reeling, their chrysalides are consumed as food in several Asian countries. Despite the long rearing tradition of this insect, few studies have investigated the silkworm's microbiological safety all along the life cycle, focusing on detecting silkworm pathogens or on the safety of the dried chrysalis for food consumption. However, the in-farm rearing process, which takes around forty days, may affect the microbial load of the silkworm and of the rearing environment, as well as the quality of fresh cocoon and other performance parameters. No data is available on how microbial contamination changes during the rearing period and between different farmers. Furthermore, in light of the possible use of the chrysalis as food, it is crucial to understand how its microbial load varies according to the water content. To address these specific questions, we conducted an investigation involving the analysis of specific microbial indicators commonly used in the food chain. We collected environmental and silkworm samples from several farms. The examination covered the entire life cycle of silkworms, beginning with the first instar larvae and concluding with the scrutiny of both freshly harvested and dried pupae. Silkworm farms in Northeast Italy proved to be an appropriate model system for carrying out the experimentation. Additionally, an evaluation of rearing performance was conducted, with a focus on the quality of fresh cocoons and the survival rate of the insects.

2.
J Arthroplasty ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909853

ABSTRACT

BACKGROUND: Infection is a leading cause of total joint arthroplasty failure. In previous studies, we found correlations between the level of contamination, concentrations of airborne particles, and the number of staff present. In this study, we focused on the apparel of nonscrubbed operating room (OR) staff to elucidate their contribution to the airborne microbial load. METHODS: We compared hospital-laundered scrubs to disposable coveralls using 2 methods. (1) Participants entered an isolation chamber with a controlled environment and completed tasks for 1 hour wearing both the approved and alternative OR attire. Settle plates collected viable contaminants that were shed by the participants during testing. (2) Lab members conducted standardized maneuvers in a functional OR that simulated typical movements of the nurse, anesthesiologist, implant representative, and entering/exiting staff. An airborne particle counter and settle plates were positioned throughout the OR. After 1 hour, the staff changed apparel and repeated the test. Each session of both phases consisted of 2 tests by the same individuals on the same day. RESULTS: There was approximately a 10-fold difference in the settlement rate of viable particles between groups when employing the isolation chamber. The settle rate for scrubs was 5,519 ± 1,381 colony forming units (CFUs)/m2/h, while the settle rate for coveralls was 505 ± 55 CFUs/m2/h (P = .008). During testing in the OR, 218.7 ± 35 CFUs/m2/h were captured for scrubs, compared with 50.5 ± 13 CFUs/m2/h for the coverall (P < .01). The concentration of airborne particles collected for scrubs was 4,952.1 ± 495 particles/m3 and 1,065 ± 53 particles/m3 for the coveralls (P < .01). This was a 77% and 79% reduction for both measures, respectively. CONCLUSIONS: The open nature of standard scrubs allows contaminated particles to escape into the OR environment, whereas the one-piece design of the coveralls restricts pathways of escape. The results of this study may be helpful when developing hospital infection prevention policies.

3.
Heliyon ; 10(10): e30882, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813194

ABSTRACT

The demand for cowhide (ponmo) is currently very high, particularly in Nigeria, due to rising commodity prices, including animal proteins, which has forced a larger percentage of the population who cannot afford meat, chicken, turkey or eggs to rely on other meat products such as "ponmo," "kundi," and "tinko" as an alternative source of protein. This research aims to identify microorganisms associated with ponmo, determine the antibiogram of the isolates, and assess the nutritional value of ponmo marketed in Ilishan-Remo central market. Six ponmo vendors were sampled for Dry White Ponmo (DWP), Wet White Ponmo (WWP), Wet Brown Ponmo (WBP) and Brown Ponmo Water (BPW) and transported in sterile containers to the Laboratory for analysis to determine the microbial load, sensitivity, and proximate analysis using standardized methods. For microbiological analysis, samples were tested in triplicate. All samples analyzed had a high microbial load count (from 1.1 x 106 to 1.4 x 107). The organisms isolated were Escherichia coli (34.21 %), Staphylococcus aureus (26.31 %), Klebsiella spp. (18.42 %), Pseudomonas spp. (13.15 %) and Coagulase-negative staphylococci (7.89 %). All the isolates were multidrug-resistant (MDR). Septrin had the highest resistivity (86.84 %) while gentamicin had the lowest resistance (7.89 %). Pefloxacin sensitivity was observed in 37 of the 38 isolates (97.37 % sensitivity). Ciprofloxacin and gentamicin came second and third (84.2 % and 73.68 % sensitivity) respectively. According to the proximate analysis, the WWP has more protein, fat, and fiber, whereas the WBP has more moisture. Food handlers should follow Good Hygiene Practices and take a Food Handlers Test regularly.

4.
Foodborne Pathog Dis ; 21(7): 440-446, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38597592

ABSTRACT

Salmonella spp. and Citrobacter spp. are among the microorganisms causing important foodborne outbreaks. In this study, it was tried to determine the presence and rate of Salmonella spp. and Citrobacter spp. in salad samples collected from certain regions of province of Isparta in Türkiye. A total of 50 salad samples were analyzed. Classical culture technique was used for microbiological analysis of salad samples. Suspected isolates obtained were identified using the VITEK-2 system. Although no negative visual changes were observed in the salad samples used in the study, it was determined that the number of Gram-negative microorganisms was very high and six salad samples were not suitable for public health. In 50 salad samples, 2% Salmonella and 4% Citrobacter freundii were detected. In addition, it was determined that the Salmonella strain isolated from the salad sample was resistant to three different antibiotics and Citrobacter was resistant to two different antibiotics. Salmonella spp. and Citrobacter spp. are considered very dangerous to public health because they are associated with foodborne outbreaks and can develop antibiotic resistance very quickly. Salad producers should try to reduce the possibility of microbial contamination by using different technologies.


Subject(s)
Citrobacter , Food Microbiology , Public Health , Salmonella , Salmonella/isolation & purification , Citrobacter/isolation & purification , Humans , Turkey , Salads/microbiology , Food Contamination/analysis , Microbial Sensitivity Tests , Fast Foods/microbiology , Anti-Bacterial Agents/pharmacology , Colony Count, Microbial , Citrobacter freundii/isolation & purification , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Drug Resistance, Bacterial
5.
Restor Dent Endod ; 49(1): e4, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38449492

ABSTRACT

Objectives: This study aims to correlate caries-causing microorganism load, lactic acid estimation, and blood groups to high caries risk in diabetic and non-diabetic individuals and low caries risk in healthy individuals. Materials and Methods: This study includes 30 participants divided into 3 groups: Group A, High-risk caries diabetic individuals; Group B, High-risk caries non-diabetic individuals; and Group C, Low-risk caries individuals. The medical condition, oral hygiene, and caries risk assessment (American Dental Association classification and International Caries Detection and Assessment System scoring) were documented. Each individual's 3 mL of saliva was analyzed for microbial load and lactic acid as follows: Part I: 2 mL for microbial quantity estimation using nutrient agar and blood agar medium, biochemical investigation, and carbohydrate fermentation tests; Part II: 0.5 mL for lactic acid estimation using spectrophotometric analysis. Among the selected individuals, blood group correlation was assessed. The χ2 test, Kruskal-Wallis test, and post hoc analysis were done using Dunn's test (p < 0.05). Results: Group A had the highest microbial load and lactic acid concentration, followed by Groups B and C. The predominant bacteria were Lactobacilli (63.00 ± 15.49) and Streptococcus mutans (76.00 ± 13.90) in saliva. Blood Group B is prevalent in diabetic and non-diabetic high-risk caries patients but statistically insignificant. Conclusions: Diabetic individuals are more susceptible to dental caries due to high microbial loads and increased lactic acid production. These factors also lower the executing tendency of neutrophils, which accelerates microbial accumulation and increases the risk of caries in diabetic individuals.

6.
Environ Sci Pollut Res Int ; 31(17): 25192-25201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462566

ABSTRACT

Bee pollen is a healthy product with a good nutritional profile and therapeutic properties. Its high moisture content, however, promotes the growth of bacteria, molds, and yeast during storage commonly result in product degradation. Therefore, the aim of this study is to assess the effectiveness of gamma irradiation (GI) and ozone (OZ) as bee pollen preservation methods for longer storage time, as well as whether they are influenced by pollen species. To do that, GI at a dosage of 2.5, 5.0, and 7.5 kGy was applied at a rate of 0.68 kGy/h and OZ application at a concentration of 0.01, 0.02, and 0.03 g/m3 was applied for one time for 6 h, to Egyptian clover and maize bee pollen, then stored at ambient temperature for 6 months. We then determined the total phenolic content (TPC) and antioxidant activity of treated and non-treated pollen samples at 0, 3, and 6 months of storage. Total bacteria, mold, and yeast count were also evaluated at 0, 2, 4, and 6 months. Statistical analyses revealed that, TPC, antioxidant, and microbial load of both clover and maize pollen samples were significantly (p < 0.05) affected by both treatment and storage time and their interaction. Both methods were extremely effective at preserving the antioxidant properties of pollen samples after 6 months of storage at room temperature. Furthermore, the highest concentrations of both GI and OZ applications completely protected pollen samples from mold and yeast while decreasing bacterial contamination. GI at the highest dose (7.5 KGy) was found to be more effective than other GI doses and OZ application in preserving biologically active compounds and lowering the microbial count of pollen samples for 6 months. As a result, we advise beekeepers to use GI at this dose for longer-term storage.


Subject(s)
Antioxidants , Ozone , Bees , Animals , Saccharomyces cerevisiae , Phenols , Fungi , Pollen
7.
Sci Rep ; 14(1): 5752, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459176

ABSTRACT

Herbal spices are widely consumed as food additives owing to their distinct aroma and taste as well as a myriad of economic and health value. The aroma profile of four major spices including bay leaf, black pepper, capsicum, and fennel was tested using HS-SPME/GC-MS and in response to the most widely used spices´ processing methods including autoclaving and γ-radiation at low and high doses. Additionally, the impact of processing on microbial contamination of spices was tested using total aerobic count. GC-MS analysis led to the identification of 22 volatiles in bay leaf, 34 in black pepper, 23 in capsicum, and 24 in fennel. All the identified volatiles belonged to oxides/phenols/ethers, esters, ketones, alcohols, sesquiterpene and monoterpene hydrocarbons. Oxides/phenol/ethers were detected at high levels in all tested spices at ca. 44, 28.2, 48.8, 61.1%, in bay leaves, black pepper, capsicum, and fennel, respectively of the total blend and signifying their typical use as spices. Total oxides/phenol/ethers showed an increase in bay leaf upon exposure to γ-radiation from 44 to 47.5%, while monoterpene hydrocarbons were enriched in black pepper upon autoclaving from 11.4 in control to reach 65.9 and 82.6% for high dose and low dose of autoclaving, respectively. Cineole was detected in bay leaf at 17.9% and upon exposure to autoclaving at high dose and γ-radiation (both doses) its level increased by 29-31%. Both autoclaving and γ-radiation distinctly affected aroma profiles in examined spices. Further, volatile variations in response to processing were assessed using multivariate data analysis (MVA) revealing distinct separation between autoclaved and γ-radiated samples compared to control. Both autoclaving at 115 °C for 15 min and radiation at 10 kGy eliminated detected bioburden in all tested spices i.e., reduced the microbial counts below the detection limit (< 10 cfu/g).


Subject(s)
Foeniculum , Piper nigrum , Volatile Organic Compounds , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Phenol/analysis , Solid Phase Microextraction/methods , Chemometrics , Spices , Monoterpenes/analysis , Ethers , Oxides , Volatile Organic Compounds/analysis
8.
Antimicrob Resist Infect Control ; 13(1): 26, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424571

ABSTRACT

Healthcare-associated infections (HAIs) and antimicrobial resistance (AMR) pose threats to global health. Effective hand hygiene is essential for preventing HAIs and the spread of AMR in healthcare. We aimed to highlight the recent progress and future directions in hand hygiene and alcohol-based handrub (ABHR) use in the healthcare setting. In September 2023, 42 experts in infection prevention and control (IPC) convened at the 3rd International Conference on Prevention and Infection Control (ICPIC) ABHR Taskforce in Geneva, Switzerland. The purpose of this meeting was to provide a synthesis of recent evidence and formulate a research agenda on four critical areas for the implementation of effective hand hygiene practices: (1) ABHR formulations and hand rubbing techniques, (2) low-resource settings and local production of ABHR, (3) hand hygiene monitoring and technological innovations, and (4) hand hygiene standards and guidelines.


Subject(s)
Cross Infection , Hand Hygiene , Humans , Hand Hygiene/methods , Hand Disinfection/methods , Ethanol , Infection Control/methods , Cross Infection/prevention & control , Delivery of Health Care
9.
Heliyon ; 10(4): e25504, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38384505

ABSTRACT

Over the past few decades, the demand for high-quality food has increased steadily. Therefore, it is essential to develop innovative technologies that effectively reduce microbial load while minimizing any negative effect on the quality of spices. The objective of this study was to determine the efficacy of a self-designed non-contact induction heating system using contaminated cumin seeds. The non-contact induction heating decontamination process was performed at different temperatures of 115, 135 and 155°C and durations (45, 60 and 75 s) through continuous process (screw conveyor) in Pyrex cylinder chamber. Various parameters including microbial load, color characteristics, essential oil content, surface morphology, sample temperature, and energy consumption were analyzed as dependent variables in the study. The results showed that the treatment combination (155°C - 60 s) reduced the aerobic plate count from 6.21 to 2.97 CFU/g. Mold, yeast and coliforms in the treatment combination (155°C-45 s) were also reduced by 3.26 and 3.6 CFU/g, respectively. The total color difference of the samples increased due to the degradation and alteration of pigments at high temperatures. However, no statistically significant disparity in essential oil content was observed between the treatment groups and the control group. The quantities of essential oil components in the cumin seeds were determined to align with the ISO standard, with the primary constituents identified as follows: Terpinen-7-al γ (38.98%), Cumin aldehyde (20.75%), γ-Terpinene (18.81%), ß-Pinene (13.66%), and p-Cymene (6.2%). In summary, non-contact induction heating system shows promise as an effective technology for surface decontamination of spices. The acquired findings contribute to a deeper understanding of the impact of the induction heating process on both the microbial contamination levels and the quality attributes of cumin seeds. This scientific knowledge serves as a foundational framework for the prospective adoption and integration of this technology on a larger industrial scale.

10.
J Environ Manage ; 354: 120258, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387343

ABSTRACT

Global sustainable development faces several challenges in addressing the needs of a growing population. Regarding food industries, the heightening pressure to meet these needs has resulted in increased waste generation. Thus, recognising these wastes as valuable resources is crucial to integrating sustainable models into current production systems. For instance, the current 24 billion tons of nutrient-rich livestock wastewater (LW) generated yearly could be recovered and valorised via biological uptake through microalgal biomass. Microalgae-based livestock wastewater treatment (MbLWT) has emerged as an effective technology for nutrient recovery, specifically targeting carbon, nitrogen, and phosphorus. However, the viability and efficacy of these systems rely on the characteristics of LW, including organic matter and ammonium concentration, content of suspended solids, and microbial load. Thus, this systematic literature review aims to provide guidance towards implementing an integral MbLWT system for nutrient control and recovery, discussing several pre-treatments used in literature to overcome the challenges regarding LW as a suitable media for microalgae cultivation.


Subject(s)
Microalgae , Water Purification , Animals , Livestock , Wastewater , Nutrients , Technology , Biomass , Nitrogen , Phosphorus
11.
J Food Prot ; 87(2): 100216, 2024 02.
Article in English | MEDLINE | ID: mdl-38182092

ABSTRACT

Teff is a gluten-free cereal crop widely cultivated in Ethiopia and is a critical ingredient in making injera, a unique flatbread. However, there is a significant issue with adulteration of teff, impacting its safety and quality. This study evaluated economically-driven adulteration effects on teff grains' nutritional and microbial quality. A preliminary survey revealed that it is a common practice to adulterate teff grains with inexpensive and inedible materials throughout the supply chain in the study area. One hundred and thirty teff grain samples were collected from producers, collectors, whole-sellers, and retailers in the cities of Tulu bolo and Jimma to determine the types and extents of adulterants present and their effect on the nutritional and microbial quality of the grains. They were mixed separately to create composite samples representing different supply chain actors. Standard protocols were used to evaluate nutritional and microbial quality. The results showed significant differences among the supply chain actors regarding identified adulterants, nutritional content, and microbial quality. The study identified chaff, soil + sand, and dukkaa (a combination of nonedible substances separated from teff grains in milling houses and warehouses) as the significant adulterants, with mean ranges of 1.17-8.07%, 1.29-7.23%, and 8.93-37.13% respectively. The study also evaluated the proximate composition and microbial load of the teff samples collected from different supply chain actors. The ranges of values for moisture, protein, fat, ash, fiber, carbohydrate, and energy were 8.33-10.53%, 6.49-9.42%, 2.29-3.86%, 2.33-6.39%, 2.42-3.95%, 70.9-73.76%, and 333.52-361.9 kcal, respectively. The microbial load showed ranges of 6.92-7.98, 3.17-3.22, 1.78-2.04, 6.73-7.89, and 6.88-7.93 log CFU/g for Total Plate Count, Escherichia coli, Salmonella, mold, and yeast, respectively. The results showed an increase in teff adulteration from producers to Jimma retailers, indicating multiple-stage adulteration throughout the supply chain, posing a threat to product safety and quality. The study recommends good coordination among the bodies responsible for food safety, producers, and consumers to mitigate this issue effectively.


Subject(s)
Edible Grain , Eragrostis , Food Safety , Drug Contamination , Escherichia coli
12.
Animals (Basel) ; 14(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38254348

ABSTRACT

The study assessed the impact of four equine semen processing techniques on sperm quality and microbial load immediately post-processing and after 48 h of refrigeration. The aim was to explore the potential reduction of prophylactic antibiotic usage in semen extenders. Semen from ten adult stallions was collected and processed under a strict hygiene protocol and divided into four aliquots: Simple Centrifugation with antibiotics (SC+), Simple Centrifugation (SC-), Single-Layer Colloidal Centrifugation (CC-), and Filtration (with SpermFilter®) (F-), all in extenders without antibiotics. Sperm motility, viability, and microbial load on three culture media were assessed. No significant differences were observed in the main in the sperm quality parameters among the four protocols post-processing and at 48 h (p < 0.05 or p < 0.1). Microbial loads in Columbia 5% Sheep Blood Agar and Schaedler vitamin K1 5% Sheep Blood Agar mediums were significantly higher (p < 0.10) for raw semen than for CS+, CC-, and F- post-processing. For Sabouraud Dextrose Agar medium, the microbial load was significantly higher (p < 0.10) in raw semen compared to CS+ and F-. No significant differences (p < 0.10) were found in 48 h chilled samples. Regardless of antibiotic presence, the evaluated processing methods, when combined with rigorous hygiene measures, maintained semen quality and reduced microbial load to the same extent as a traditional protocol using antibiotics.

13.
Heliyon ; 9(11): e22425, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053903

ABSTRACT

Egyptian Siwi dates dried using the open sun drying is exposed to different contaminants. So, the current study aims to use the closed solar dryer to improve Siwi date safety. The impact of washing and closed solar drying on the levels of microbial load, aflatoxins and heavy metals in Egyptian Siwi dates (ESD), in comparison to traditional open sun drying methods were examined. Two different drying techniques were employed to dry 300 kg of ESD. The microbial load was assessed following the two drying procedures. The levels of aflatoxins and heavy metals were analyzed using High-performance liquid chromatography (HPLC) and Inductively Coupled Plasma (ICP) techniques, respectively, after both drying methods. Additionally, the influence of storage time on the microbial load of the ESD was also evaluated using standard methods. The findings of the current study demonstrated that the closed solar drying significantly reduced the total bacterial and fungal counts by 96 % and 93 %, respectively, when compared to open sun-drying. No aflatoxins were detected in both fresh Siwi dates and Siwi dates dried using closed solar drying. However, after open sun drying, two aflatoxins; aflatoxin B1 (AFB1) and aflatoxin G1 (AFG1), were detected in the ESD, with concentrations of 0.95 and 0.23 µg kg-1, respectively. The closed solar drying significantly decreased the levels of lead (Pb), cadmium (Cd), copper (Cu), nickel (Ni), chromium (Cr), zinc (Zn), manganese (Mn), and iron (Fe) in the dried dates by 96 %, 94 %, 48 %, 71 %, 64 %, 4 %, 26 %, and 7 %, respectively, when compared to open sun drying. The stored Siwi dates that was exposed to the open sun drying showed a higher increase in bacterial (4.86 log CFU/g) and fungal (4.46 log CFU/g) counts. However, the stored Siwi dates that was exposed to the closed solar dryer showed a lower increase in bacterial (3.21 log CFU/g) and fungal (2.51 log CFU/g) counts. So, the duration of storage significantly impacted the microbial loads of the closed solar dried dates as compared to open sun drying. Overall, closed solar drying reduced the levels of investigated contaminants and extended the shelf life of ESD, thereby enhancing their safety for human consumption.

14.
Ital J Food Saf ; 12(3): 11109, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37822575

ABSTRACT

Dry aging is a process during which meat is stored within maturation chambers at low temperatures and low relative humidity, resulting in improved tenderness and flavor development. The cuts are exposed to the atmosphere by hanging them or setting them on racks in the maturation chamber without any protective packaging. Animals and humans are usually the major sources of bacterial food contamination in the meat industry, but other routes might be involved. Therefore, procedures to reduce or eliminate pathogens from surfaces are crucial for an effective hazard analysis critical control point program in the food industry and other environments. This study aimed to assess the survival of Listeria monocytogenes, Escherichia coli, Salmonella spp., and Staphylococcus aureus on the inner surface of dry aging chambers. Moreover, we tested the efficacy of alkaline electrolyzed water (REW) for its application within a procedure aimed at reducing foodborne pathogens during meat storage. Environmental conditions inside the dry aging cabinet determine a reduction of circa 3 log CFU/cm2 of the considered microorganisms on the inner surface in 24 hours. Additionally, the nebulization of REW with the smoking system increased the count reduction in 24 hours due to environmental conditions for L. monocytogenes (~1 log CFU/cm2) and for S. aureus (~2 log CFU/cm2). In this context, the use of REW can be justified for routine cleaning procedures of the surfaces, with the added value of being safe to handle, not containing environmental pollutants, and making it unnecessary to rinse surfaces due to its instability.

15.
Animals (Basel) ; 13(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37893929

ABSTRACT

This current study addresses the knowledge gap regarding the influence of seasons, months, and THI on milk yield, composition, somatic cell counts (SCC), and total bacterial counts (TBC) of dairy farms in northeastern regions of Iran. For this purpose, ten dairy herds were randomly chosen, and daily milk production records were obtained. Milk samples were systematically collected from individual herds upon delivery to the dairy processing facility for subsequent analysis, including fat, protein, solids-not-fat (SNF), pH, SCC, and TBC. The effects of seasons, months, and THI on milk yield, composition, SCC, and TBC were assessed using an analysis of variance. To account for these effects, a mixed-effects model was utilized with a restricted maximum likelihood approach, treating month and THI as fixed factors. Our investigation revealed noteworthy correlations between key milk parameters and seasonal, monthly, and THI variations. Winter showed the highest milk yield, fat, protein, SNF, and pH (p < 0.01), whereas both SCC and TBC reached their lowest values in winter (p < 0.01). The highest values for milk yield, fat, and pH were recorded in January (p < 0.01), while the highest protein and SNF levels were observed in March (p < 0.01). December marked the lowest SCC and TBC values (p < 0.01). Across the THI spectrum, spanning from -3.6 to 37.7, distinct trends were evident. Quadratic regression models accounted for 34.59%, 21.33%, 4.78%, 20.22%, 1.34%, 15.42%, and 13.16% of the variance in milk yield, fat, protein, SNF, pH, SCC, and TBC, respectively. In conclusion, our findings underscore the significant impact of THI on milk production, composition, SCC, and TBC, offering valuable insights for dairy management strategies. In the face of persistent challenges posed by climate change, these results provide crucial guidance for enhancing production efficiency and upholding milk quality standards.

16.
Microorganisms ; 11(10)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37894170

ABSTRACT

Examinations of total viable counts (TVCs) and Salmonella spp. on the skin of individual pigs during the slaughter process are useful to identify abattoir-specific risk factors for (cross-)contamination. At seven process stages (lairage to before chilling), pigs were bacteriologically investigated by repeatedly sampling the same animals using the agar contact method. The mean TVC of all pigs increased significantly at the first three tested process stages (mean count, after delivery: 5.70 log cfu/cm2, after showering: 6.27 log cfu/cm2, after stunning: 6.48 log cfu/cm2). Significant mean TVC reductions occurred after scalding/dehairing (mean count: 3.71 log cfu/cm2), after singeing/flaming (2.70 log cfu/cm2), and after evisceration (2.44 log cfu/cm2) compared with the respective preceding process stages. At the end of the slaughter line and before chilling, the mean TVC was 2.33 log cfu/cm2, showing that the slaughter process reduced contamination significantly. The slaughter process effectively reduced even very high levels of incoming TVCs, since at the individual animal level, at the end of the slaughter process, there was no difference in the TVCs of animals with initially high and initially low TVCs. Additionally, 12 Salmonella spp. isolates were recovered from 12 different pigs, but only until the stage after scalding/dehairing. Overall, the agar contact method used is valuable for detecting hygiene deficiencies at slaughter, and is animal-equitable, practical, and suitable for use on live animals.

17.
Arch Oral Biol ; 155: 105799, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37672969

ABSTRACT

OBJECTIVE: Assess risk factors, local and systemic immunological biomarkers in healthy individuals and with Denture Stomatitis (DS). DESIGN: For this observational transversal study, 27 participants without DS (Group 0), 24 with moderate DS (Group 1), and 25 with severe DS (Group 2) were assessed for sociodemographic, behavioral, and clinical parameters, microbial load of Candida spp., Staphylococcus spp., Streptococcus mutans, Pseudomonas spp., and enterobacteria, and cytokine and C-reactive protein levels. ANOVA, Fisher's exact, Kruskal-Wallis, Mann-Whitney, Wilcoxon and Pearson's chi-square tests were used for data analysis (α = 0.05). RESULTS: Group 1 had a significantly higher mean age compared to the other groups (P = 0.018), but no correlation was identified between age and DS (P = 0.830; r = 0.025). No significant differences were found among the groups for other sociodemographic and behavioral characteristics. Group 1 had significantly older upper and lower dentures; however, no correlation was identified between age of upper (P = 0.522; r = 0.075) and lower (P = 0.143; r = 0.195) dentures and DS. The microbial load of Candida albicans on the dentures (P = 0.035) and Candida spp. on the palate (P = 0.008) of the groups 1 and 2 was higher than group 0. Group 1 and 2 had higher Candida spp. counts on denture (P = 0.003) than group 0. There was no difference among groups for bacterial analyzed. Group 1 showed higher and Group 2 intermediate salivary levels of IL-6 compared to Group 0. There was no difference in the C-reactive protein levels among groups. CONCLUSIONS: Microbial load of Candida spp. is the factor with the strongest relationship with DS, with capacity for local signaling through IL-6.

18.
Animals (Basel) ; 13(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37760214

ABSTRACT

The presence of Salmonella in pig feces is a major source of abattoir and carcass contamination, and one of the main sources of human salmonellosis. This study assessed whether using a form of esterified formic acid (30% formic acid) in drinking water (10 kg/1000 L) 5 days before slaughter could be a helpful strategy to mitigate this public health issue. Thus, 240 pigs from three Salmonella-positive commercial fattening farms were selected. From each farm, 40 pigs were allocated to a control group (CG) and 40 to a treatment group (TG). At the abattoir, fecal samples from both groups were collected for Salmonella detection (ISO 6579-1:2017) and quantification (ISO/TS 6579-2:2012). Salmonella was present in 35% (95% IC = 29.24-41.23) of the samples collected. The prevalence was significantly higher in the CG than in the TG (50% vs. 20%; p < 0.001). In all farms, the TG showed a lower percentage of shedders than the CG. A random-effects logistic model showed that the odds of shedding Salmonella were 5.63 times higher (95% CI = 2.92-10.8) for the CG than for the TG. Thus, the proportion of pigs shedding Salmonella that was prevented in the TG due to the use of this form of organic acid was 82.2%. In addition, a Chi-squared analysis for trends showed that the higher the Salmonella count, the higher the odds of the sample belonging to the CG. These results suggest that adding this type of acid to drinking water 5 days before slaughter could reduce the proportion of Salmonella-shedding pigs and the Salmonella loads in the guts of shedder pigs.

19.
Heliyon ; 9(8): e18879, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37609408

ABSTRACT

The current trend in the production of smart films involves the use of pH-responsive color indicators derived from natural sources. In line with this trend, the aim of this research is to produce edible films from sodium alginate (A) and chitosan (Ch) incorporating red beet anthocyanin (Ac) extract, and to assess the properties of these films and their use as coatings for chicken fillets. The study employed a factorial design to evaluate the effects of treatments C (control), A25%-ch75% (films consisting of 25% sodium alginate and 75% chitosan), and A25%-ch75%-Ac (films consisting of 25% sodium alginate, 75% chitosan, and red beet anthocyanin). The findings indicate that the inclusion of red beet anthocyanin extract did not result in any discernible differences in the FTIR spectra of the film samples. Analysis of the XRD results revealed that the addition of the extract led to a reduction in the crystal structure of the film. Moreover, SEM results demonstrated that the extract caused alterations in the polymer chains and an increase in the porosity of the film matrix. With regard to the chicken fillet samples coated with the film, over time, there was an increase in microbial analysis (total microorganism count and Staphylococcus aureus coagulase-positive) and chemical properties (pH, peroxide, thiobarbituric acid, and nitrogen compounds) for all samples. However, this trend was significantly lower in the samples coated with the Ac extract (P < 0.05). Texture analysis results revealed that the hardness parameter of all samples decreased over the storage period, while the samples containing the Ac extract demonstrated a significant increase in this parameter (P < 0.05). Additionally, the color changes of the pH sensor corresponded to the anthocyanin structure. Based on the results, the smart film composed of sodium alginate/chitosan incorporating red beet anthocyanin extract has the potential to enhance the quality, prolong the shelf life, and decrease the microbial load of chicken fillet when used as a coating. Furthermore, red beet anthocyanin can serve as a suitable indicator for spoilage changes in packaged food products.

20.
Foods ; 12(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37297384

ABSTRACT

As a result of the increasing focus on alternative protein sources which are ideally still sustainable, the yellow mealworm, Tenebrio molitor, has come into focus. To verify its suitability as a food source in relation to human health, an analysis of the microbiome of larvae of T. molitor is pertinent. Subsequently, the focus of this study was, on the one hand, to analyze the influence of the substrate on the microbial load of the larvae microbiome, and, on the other hand, to determine which processing methods ensure the risk-free consumption of mealworms. For this purpose, mealworms were grown on 10 different substrates derived from by-products of food production (malt residual pellets, corn germ meal, chestnut breakage and meal, wheat bran, bread remains, draff, nettle, hemp seed oil cake, oyster mushrooms with coffee grounds, pumpkin seed oil cake) and microbial loads were analyzed using different selective media. Further starvation/defecation and heating (850 W for 10 min) methods were used to investigate how the reduction of microorganisms is enabled by these methods. The results showed that there was no significant relationship between the microbial load of the substrate and the mealworm. Starvation and defecation led to a lower stock of microorganisms. Heating led to a significant microbial reduction in non-defecated mealworms. The group of defecated and heated mealworms showed no detectable microbial load. In conclusion, firstly, the choice of substrate showed no effect on the microbial load of larvae of Tenebrio molitor and secondly, heating and starvation allow risk-free consumption. This study makes an important contribution for evaluating the safety of mealworms as a sustainable protein source in human nutrition.

SELECTION OF CITATIONS
SEARCH DETAIL
...