Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Biochem Mol Biol Educ ; 52(3): 359-368, 2024.
Article in English | MEDLINE | ID: mdl-38217452

ABSTRACT

After a time away from the classrooms and laboratories due to the global pandemic, the return to teaching activities during the semester represented a challenge to both teachers and students. Our particular situation in a Microbial Physiology course was the necessity of imparting in shorter time, laboratory practices that usually take longer. This article describes a 2-week-long laboratory exercise that covers several concepts in an interrelated way: conjugation as a gene transfer mechanism, regulation of microbial physiology, production of secondary metabolites, degradation of macromolecules, and biofilm formation. Utilizing a Quorum Quenching (QQ) strategy, the Quorum Sensing (QS) system of Pseudomonas aeruginosa is first attenuated. Then, phenotypes regulated by QS are evidenced. QS is a regulatory mechanism of microbial physiology that relies on signal molecules. QS is related in P. aeruginosa to several virulence factors, some of which are exploited in the laboratory practices presented in this work. QQ is a phenomenon by which QS is interrupted or attenuated. We utilized a QQ approach based on the enzymatic degradation of the P. aeruginosa QS signals to evidence QS-regulated traits that are relevant to our Microbial Physiology course. Results obtained with the same test performed by a random group of students before and after the activities show the positive effectiveness of the approach presented in this work.


Subject(s)
Laboratories , Pseudomonas aeruginosa , Quorum Sensing , Pseudomonas aeruginosa/physiology , Pseudomonas aeruginosa/metabolism , Humans , Students , Biofilms/growth & development
3.
J Appl Microbiol ; 126(6): 1850-1860, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30924989

ABSTRACT

AIMS: The aim of this research was to analyse the quorum-sensing (QS) and quorum-quenching (QQ) mechanisms based on N-acyl-l-homoserine lactones (AHLs) in Azospirillum brasilense Az39, a strain with remarkable capacity to benefit a wide range of crops under agronomic conditions. METHODS AND RESULTS: We performed an in silico and in vitro analysis of the quorum mechanisms in A. brasilense Az39. The results obtained in vitro using the reporter strains Chromobacterium violaceum and Agrobacterium tumefaciens and liquid chromatography coupled with mass-mass spectrometry analysis showed that although Az39 does not produce AHL molecules, it is capable of degrading them by at least two hypothetical enzymes identified by bioinformatics approach, associated with the bacterial cell. In Az39 cultures supplemented with 500 nmol l-1 of the C3 unsubstituted AHLs (C4, C6, C8, C10, C12, C14), AHL levels were lower than in noninoculated LB media controls. Similar results were observed upon the addition of AHLs with hydroxy (OH-) and keto (oxo-) substitutions in C3. These results not only demonstrate the ability of Az39 to degrade AHLs. They also show the wide spectrum of molecules that can be degraded by this bacterium. CONCLUSIONS: Although A. brasilense Az39 is a silent bacterium unable to produce AHL signals, it is able to interrupt the communications between other bacteria and/or plants by a QQ activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report confirming by unequivocal methodology the ability of A. brasilense, one of the most agriculturally used benefic bacteria around the world, to degrade AHLs by a QQ mechanism.


Subject(s)
Acyl-Butyrolactones/metabolism , Azospirillum brasilense/physiology , Quorum Sensing/physiology , Agrobacterium tumefaciens/metabolism , Azospirillum brasilense/genetics , Azospirillum brasilense/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromatography, Liquid , Chromobacterium/metabolism , Mass Spectrometry , Quorum Sensing/genetics
4.
J Appl Microbiol ; 125(2): 544-553, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29624810

ABSTRACT

AIMS: To devise a protocol for heterologous expression and purification of a partial toxic portion of the Bacillus thuringiensis (Bt) vegetative insecticidal protein Vip3A and using it as an antigen for anti-Vip3A polyclonal antibody development. Also, to evaluate the regulation of Vip3A secretion into culture supernatants (SNs) of different Bt strains based on this antibody. METHODS AND RESULTS: A primer pair was designed to amplify partially the toxic portion of the vip3A gene from the HD125 strain. The amplicon was cloned in expressing vector to produce a ~35 kDa peptide, which was HPLC-purified prior to rabbit immunizations. The serum containing the polyclonal anti-Vip3A antibody demonstrated a detection sensitivity of 0·4 ng mm-2 for the antigen in slot-blot experiments. Seven Bt strains from different origins were assessed regarding their temporal secretion of Vip3A toxin. ELISA results showed a strain-specific temporal regulation of Vip3A secretion in culture for the temperate isolates, with no detection of the toxin for the tropical strains, even when the presence of the gene was confirmed by PCR and sequencing. CONCLUSIONS: Conformational variation in the toxic portion of Vip3A may explain lack of its detection in the tropical strains. Isolates from the same subspecies display physiological variability in proteins' secretion into culture SNs, which can affect screening procedures for more effective strains/toxins. SIGNIFICANCE AND IMPACT OF THE STUDY: Immunoassays based on the developed anti-Vip3A antibody can be useful in a variety of basic studies. This method can be also coupled with toxicity assays on target insects, for more efficient screening methods of novel Bt strains/toxins with biocontrol applicability.


Subject(s)
Antibodies, Bacterial , Bacillus thuringiensis , Bacterial Proteins , Animals , Antibodies, Bacterial/immunology , Antibodies, Bacterial/metabolism , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Insecticides/immunology , Insecticides/metabolism , Rabbits
5.
Front Microbiol ; 6: 490, 2015.
Article in English | MEDLINE | ID: mdl-26074891

ABSTRACT

Many strains of bacteria produce antagonistic substances that restrain the growth of others, and potentially give them a competitive advantage. These substances are commonly released to the surrounding environment, involving metabolic costs in terms of energy and nutrients. The rate at which these molecules need to be produced to maintain a certain amount of them close to the producing cell before they are diluted into the environment has not been explored so far. To understand the potential cost of production of antagonistic substances in water environments, we used two different theoretical approaches. Using a probabilistic model, we determined the rate at which a cell needs to produce individual molecules in order to keep on average a single molecule in its vicinity at all times. For this minimum protection, a cell would need to invest 3.92 × 10(-22) kg s(-1) of organic matter, which is 9 orders of magnitude lower than the estimated expense for growth. Next, we used a continuous model, based on Fick's laws, to explore the production rate needed to sustain minimum inhibitory concentrations around a cell, which would provide much more protection from competitors. In this scenario, cells would need to invest 1.20 × 10(-11) kg s(-1), which is 2 orders of magnitude higher than the estimated expense for growth, and thus not sustainable. We hypothesize that the production of antimicrobial compounds by bacteria in aquatic environments lies between these two extremes.

SELECTION OF CITATIONS
SEARCH DETAIL