Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43.245
Filter
1.
Life (Basel) ; 14(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38929671

ABSTRACT

BACKGROUND: The imbalance of skin microbiota in acne can induce changes leading to induction or to aggravation of chronic inflammatory lesions; complex mechanisms are involved. Cutibacterium acnes (C. acnes) ribotypes RT4 and RT5 express more biofilm and are associated with inflammatory acne lesions. C. acnes RT6 is a non-acne ribotype, beneficial for the skin. OBJECTIVES: In an open clinical trial, acne adults were included and assessed clinically at baseline and at month 2 using the Investigator Global Assessment of Acne (IGA) score. A topical emulsion was applied twice daily for 2 months (M2) in each included patient. In the same series of acne patients, skin swab samples were collected from acne patients at baseline and M2 from lesional and non-lesional skin; skin swabs were collected for the metagenomic long-read analysis of microbiota. MATERIALS AND METHODS: Acne patients with a gravity score IGA of >1<3 were included in this pilot study. An emulsion of O/W formulated with vegetal extract of Umbelliferae associated with a polysaccharide at 1% was applied twice daily for 2 months. At baseline and M2 clinical assessments were made; skin swab samples were also taken for microbiota analysis from lesional and non-lesional skin in each included patient. Extractions of genomic DNA (gDNA) from swab samples from baseline and from M2 were made, followed by full-length (V1-V9) amplification of the 16S rDNA and sequencing of amplicon libraries for strain-level bacterial community profiling. RESULTS: In a series of 32 adult acne patients, the mean initial IGA scale was 3.1; at M2 the IGA scale was 1.5 (p < 0.001). The mean decrease in acne lesions was by 63%. Microbiome metagenomic long-read analysis in these series was mainly dominated by C. acnes followed by Staphylococcus epidermidis (S. epidermidis). The density of C. acnes ribotypes RT6 (non-acne strain) was increased at M2 compared to baseline and the density of ribotypes C. acnes RT1 to RT5 was decreased at M2, compared to baseline (p < 0.0001). S. epidermidis ribotypes (1 to 36) were non significantly increased at M2, compared to baseline (p < 0.1). CONCLUSIONS: In a series of 32 acne patients that applied an emulsion based on vegetal extract of Umbelliferae and a polysaccharide at 1% twice daily, a significant clinical improvement in IGA scale for acne lesions was seen at M2, compared to baseline (p < 0.0001). The clinical improvement was correlated with an improvement in skin microbiome at M2 compared to baseline, indicated by the increase in the relative abundance of non-acne strain of C. acnes ribotype 6 and of the decrease in the relative abundance of acne strains ribotypes C. acnes RT1 to RT5.

2.
Life (Basel) ; 14(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38929676

ABSTRACT

The intestinal microbiota, comprised of bacteria, archaea, and phages, inhabits the gastrointestinal tract of the organism. Male reproductive sterility is currently a prominent topic in medical research. Increasing research suggests that gut microbiota dysbiosis can result in various reproductive health problems. This article specifically investigates the impact of gut microbiota dysbiosis on male reproductive infertility development. Gut microbiota imbalances can disrupt the immune system and immune cell metabolism, affecting testicular growth and sperm production. This dysfunction can compromise the levels of hormones produced and secreted by the endocrine glands, affecting male reproductive health. Furthermore, imbalance of the gut microbiota can disrupt the gut-brain-reproductive axis, resulting in male reproductive infertility. This article explores how the imbalance of the gut microbiota impacts male reproductive infertility through immune regulation, endocrine regulation, and interactions of the gut-brain-reproductive axis, concluding with recommendations for prevention and treatment.

3.
Life (Basel) ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38929688

ABSTRACT

Breast cancer is the most frequently diagnosed cancer in women worldwide. According to recent studies, alterations in the microbiota and epigenetic modulations are risk factors for this disease. This systematic review aims to determine the possible associations between the intestinal and mammary microbial populations, epigenetic modifications, and breast cancer. To achieve this objective, we conducted a literature search in the PubMed, Web of Science, and Science Direct databases following the PRISMA guidelines. Although no results are yet available in humans, studies in mice suggest a protective effect of maternal dietary interventions with bioactive compounds on the development of breast tumors in offspring. These dietary interventions also modified the gut microbiota, increasing the relative abundance of short-chain fatty acid-producing taxa and preventing mammary carcinogenesis. In addition, short-chain fatty acids produced by the microbiota act as epigenetic modulators. Furthermore, some authors indicate that stress alters the gut microbiota, promoting breast tumor growth through epigenetic and gene expression changes in the breast tumor microenvironment. Taken together, these findings show the ability of epigenetic modifications and alterations of the microbiota associated with environmental factors to modulate the development, aggressiveness, and progression of breast cancer.

4.
J Clin Med ; 13(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38929928

ABSTRACT

Objectives: This study aims to assess the presence of pathogenic microorganisms in the corneal epithelial layer of keratoconus patients. Methods: DNA was extracted from corneal epithelial samples procured from ten individual keratoconus eyes and three healthy controls. Metagenomic next-generation sequencing (mNGS) was performed to detect ocular microbiota using an agnostic approach. Results: Metagenomic sequencing revealed a low microbial read count in corneal epithelial samples derived from both keratoconus eyes (average: 530) and controls (average: 622) without a statistically significant difference (p = 0.29). Proteobacteria were the predominant phylum in both keratoconus and control samples (relative abundance: 72% versus 79%, respectively). Conclusions: The overall low microbial read count and the lack of difference in the relative abundance of different microbial species between keratoconus and control samples do not support the hypothesis that a chronic corneal infection is implicated in the pathogenesis of keratoconus. These findings do not rule out the possibility that an acute infection may be involved in the disease process as an initiating event.

5.
J Clin Med ; 13(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38929949

ABSTRACT

Background: In this investigation, we aimed to understand the influence of oral probiotic supplementation on the vaginal microbiota of women preparing for assisted reproductive technology (ART) procedures. Given the importance of a healthy microbiome for reproductive success, this study sought to explore how probiotics might alter the bacterial composition in the vaginal environment. Methods: We recruited a cohort of 30 women, averaging 37 years of age (ranging from 31 to 43 years), who were scheduled to undergo ART. Using 16S ribosomal RNA (rRNA) sequencing, we meticulously analyzed the vaginal microbiota composition before and after the administration of oral probiotic supplements. Results: Our analysis identified 17 distinct microorganisms, including 8 species of Lactobacillus. Following probiotic supplementation, we observed subtle yet notable changes in the vaginal microbiota of some participants. Specifically, there was a decrease in Gardnerella abundance by approximately 20%, and increases in Lactobacillus and Bifidobacterium by 10% and 15%, respectively. Additionally, we noted a significant reduction in the Firmicutes/Bacteroidetes (F/B) ratio in the probiotic group, indicating potential shifts in the overall bacterial composition. Conclusions: These preliminary findings suggest that oral probiotic supplementation can induce significant changes in the vaginal microbiota of middle-aged women undergoing ART, potentially improving their overall bacterial profile. Future studies should consider a larger sample size and a narrower age range to validate these results. Investigating factors related to female hormone production could also provide deeper insights. Understanding the effects of probiotics on the vaginal microbiota in patients with ovarian aging may lead to personalized interventions and better reproductive outcomes.

6.
Microorganisms ; 12(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38930415

ABSTRACT

Compared to commercial breeds, Chinese local pig breeds have a greater ability to digest dietary fiber, which may be due to differences in intestinal microbiota. In this study, we fed Ding'an and DLY pigs high and low levels of dietary fiber, respectively, to investigate factors contributing to high dietary fiber adaption in Ding'an pigs. Twelve Ding'an pigs and DLY pigs were randomly divided into a 2 (diet) × 2 (breed) factorial experiment (n = 3). Compared with commercial pigs, Ding'an pigs have a stronger ability to digest dietary fiber. Prevotella was more prevalent in Ding'an pigs than in DLY pigs, which may be an important reason for the stronger ability of fiber degradation in Ding'an pigs. When the effects of feed and breed factors are considered, differences in abundance of 31 species and 14 species, respectively, may result in a greater ability of fiber degradation in Ding'an pigs. Among them, Prevotella. sp. CAG:520 may be a newly discovered bacterium related to fiber degradation, which positively correlated with many fiber-degrading bacteria (r > 0.7). We also found that the concentration of plant metabolites with anti-inflammatory and antioxidant effects was higher in the colonic chyme of Ding'an pigs after increasing the fiber content, which resulted in the downregulated expression of inflammatory factors in colonic mucosa. Spearman's correlation coefficient revealed a strong correlation between microbiota and the apparent digestibility of dietary fiber (r > 0.7). The mRNA expressions of SLC16A1, PYY, and GCG were significantly increased in the colonic mucosa of Ding'an pigs fed on high-fiber diets, which indicates that Ding'an pigs have an enhanced absorption of SCFAs. Our results suggested that an appropriate increase in dietary fiber content can reduce the inflammatory response and improve feed efficiency in Ding'an pigs, and differences in the intestinal microbial composition may be an important reason for the difference in the fiber degradation capacity between the two breeds of pigs.

7.
Microorganisms ; 12(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38930430

ABSTRACT

Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high-TB-burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI in PLHIV. We characterised the stool microbiota of PLHIV with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST-negative) LTBI (n = 25 per group). The 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet-Multinomial Mixtures, DESeq2, and PICRUSt2. No α- or ß-diversity differences occurred by LTBI status; however, LTBI-positive people were Faecalibacterium-, Blautia-, Gemmiger-, and Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, and Streptococcus-depleted. Inferred metagenome data showed that LTBI-negative-enriched pathways included several metabolite degradation pathways. Stool from LTBI-positive people demonstrated differential taxa abundance based on a quantitative response to antigen stimulation. In LTBI-positive people, older people had different ß-diversities than younger people, whereas in LTBI-negative people, no differences occurred across age groups. Amongst female PLHIV, those with LTBI were, vs. those without LTBI, Faecalibacterium-, Blautia-, Gemmiger-, and Bacteriodes-enriched, which are producers of short-chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.

8.
Microorganisms ; 12(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38930431

ABSTRACT

This study aimed to explore the effects of Bacillus amyloliquefaciens (BA) as one woody forage addition (as a probiotic, 1 × 107 CFU/g) on tilapia (Oreochromis niloticus). Woody forage is one kind of fishery feed that could significantly enhance the growth, feed utilization, and digestibility of tilapia. At first, tilapia was divided into eight groups and fed with control, control + BA, Moringa oleifera, M. oleifera + BA, Neolamarckia cadamba, N. cadamba + BA, Broussonetia papyrifera, and B. papyrifera + BA diets, respectively. After dieting for 8 weeks, the intestinal morphology of tilapia in the eight groups was observed, and the effects of the B. amyloliquefaciens addition and wordy forage on the intestine functions were analyzed by two-way ANOVA. As no significant negative effects were found on the woody forage on tilapia, the villus height, density and width, and epithelial goblet cells in the posterior intestines of tilapia with BA supplementation were greater than those in the groups without BA supplementation, suggesting B. amyloliquefaciens SCAU-070 could promote the growth and development of tilapia intestinal tracts. Furthermore, it was found that B. amyloliquefaciens SCAU-070 enhanced the antioxidation capacity of tilapia posterior intestine tissue by promoting the activity of superoxide dismutase and content of malondialdehyde. In addition, the result of high-throughput sequencing (16S rDNA) showed that the beneficial bacteria Cetobacterium and Romboutsia in the probiotic groups increased significantly, while the potential pathogenic bacteria Acinetobacter decreased significantly.

9.
Microorganisms ; 12(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38930451

ABSTRACT

The human microbiome, a complex ecosystem of bacteria, viruses, and protozoans living in symbiosis with the host, plays a crucial role in human health, influencing everything from metabolism to immune function. Dysbiosis, or an imbalance in this ecosystem, has been linked to various health issues, including diabetes and gestational diabetes (GD). In diabetes, dysbiosis affects the function of adipose tissue, leading to the release of adipokines and cytokines, which increase inflammation and insulin resistance. During pregnancy, changes to the microbiome can exacerbate glucose intolerance, a common feature of GD. Over the past years, burgeoning insights into the gut microbiota have unveiled its pivotal role in human health. This article comprehensively reviews literature from the last seven years, highlighting the association between gut microbiota dysbiosis and GD, as well as the metabolism of antidiabetic drugs and the potential influences of diet and probiotics. The underlying pathophysiological mechanisms discussed include the impact of dysbiosis on systemic inflammation and the interplay with genetic and environmental factors. By focusing on recent studies, the importance of considering microbial health in the prevention and treatment of GD is emphasized, providing insights into future research directions and clinical applications to improve maternal-infant health outcomes.

10.
Microorganisms ; 12(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38930459

ABSTRACT

In this study, we investigated the correlation between the composition and function of the gut microbiota and the semen quality of Rongchang boars. Significant differences in gut microbial composition between boars with high (group H) and low (group L) semen utilization rates were identified through 16S rRNA gene sequencing, with 18 differential microbes observed at the genus level. Boars with lower semen utilization rates exhibited a higher relative abundance of Treponema, suggesting its potential role in reducing semen quality. Conversely, boars with higher semen utilization rates showed increased relative abundances of Terrisporobacter, Turicibacter, Stenotrophomonas, Clostridium sensu stricto 3, and Bifidobacterium, with Stenotrophomonas and Clostridium sensu stricto 3 showing a significant positive correlation with semen utilization rates. The metabolomic analyses revealed higher levels of gluconolactone, D-ribose, and 4-pyridoxic acid in the H group, with 4 pyridoxic acid and D-ribose showing a significant positive correlation with Terrisporobacter and Clostridium sensu stricto 3, respectively. In contrast, the L group showed elevated levels of D-erythrose-4-phosphate, which correlated negatively with Bifidobacterium and Clostridium sensu stricto 3. These differential metabolites were enriched in the pentose phosphate pathway, vitamin B6 metabolism, and antifolate resistance, potentially influencing semen quality. These findings provide new insights into the complex interplay between the gut microbiota and boar reproductive health and may offer important information for the discovery of disease biomarkers and reproductive health management.

11.
Microorganisms ; 12(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38930465

ABSTRACT

The gut microbiota plays a pivotal role in upholding intestinal health, fostering intestinal development, fortifying organisms against pathogen intrusion, regulating nutrient absorption, and managing the body's lipid metabolism. However, the influence of different cultivation modes on the growth indices and intestinal microbes of Salmo trutta fario remains underexplored. In this study, we employed high-throughput sequencing and bioinformatics techniques to scrutinize the intestinal microbiota in three farming modes: traditional pond aquaculture (TPA), recirculating aquaculture (RA), and flow-through aquaculture (FTA). We aimed to assess the impact of different farming methods on the water environment and Salmo trutta fario's growth performance. Our findings revealed that the final weight and weight gain rate in the FTA model surpassed those in the other two. Substantial disparities were observed in the composition, relative abundance, and diversity of Salmo trutta fario gut microbiota under different aquaculture modes. Notably, the dominant genera of Salmo trutta fario gut microbiota varied across farming modes: for instance, in the FTA model, the most prevalent genera were SC-I-84 (7.34%), Subgroup_6 (9.93%), and UTCFX1 (6.71%), while, under RA farming, they were Bacteroidetes_vadinHA17 (10.61%), MBNT15 (7.09%), and Anaeromyxoactor (6.62%). In the TPA model, dominant genera in the gut microbiota included Anaeromyxobacter (8.72%), Bacteroidetes_vadinHA17 (8.30%), and Geobacter (12.54%). From a comparative standpoint, the genus-level composition of the gut microbiota in the RA and TPA models exhibited relative similarity. The gut microbiota in the FTA model showcased the most intricate functional diversity, while TPA farming displayed a more intricate interaction pattern with the gut microbiota. Transparency, pH, dissolved oxygen, conductivity, total dissolved solids, and temperature emerged as pivotal factors influencing Salmo trutta fario gut microbiota under diverse farming conditions. These research findings offer valuable scientific insights for fostering healthy aquaculture practices and disease prevention and control measures for Salmo trutta fario, holding substantial significance for the sustainable development of the cold-water fish industry in the Qinghai-Tibet Plateau.

12.
Microorganisms ; 12(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38930472

ABSTRACT

BACKGROUND: The endometrium remains a difficult tissue for the analysis of microbiota, mainly due to the low bacterial presence and the sampling procedures. Among its pathologies, endometrial cancer has not yet been completely investigated for its relationship with microbiota composition. In this work, we report on possible correlations between endometrial microbiota dysbiosis and endometrial cancer. METHODS: Women with endometrial cancer at various stages of tumor progression were enrolled together with women with a benign polymyomatous uterus as the control. Analyses were performed using biopsies collected at two specific endometrial sites during the surgery. This study adopted two approaches: the absolute quantification of the bacterial load, using droplet digital PCR (ddPCR), and the analysis of the bacterial composition, using a deep metabarcoding NGS procedure. RESULTS: ddPCR provided the first-ever assessment of the absolute quantification of bacterial DNA in the endometrium, confirming a generally low microbial abundance. Metabarcoding analysis revealed a different microbiota distribution in the two endometrial sites, regardless of pathology, accompanied by an overall higher prevalence of pathogenic bacterial genera in cancerous tissues. CONCLUSIONS: These results pave the way for future studies aimed at identifying potential biomarkers and gaining a deeper understanding of the role of bacteria associated with tumors.

13.
Microorganisms ; 12(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38930475

ABSTRACT

Cesarean section is considered a possible trigger of atopy and gut dysbiosis in newborns. Bifidobacteria, and specifically B. bifidum, are thought to play a central role in reducing the risk of atopy and in favoring gut eubiosis in children. Nonetheless, no trial has ever prospectively investigated the role played by this single bacterial species in preventing atopic manifestations in children born by cesarean section, and all the results published so far refer to mixtures of probiotics. We have therefore evaluated the impact of 6 months of supplementation with B. bifidum PRL2010 on the incidence, in the first year of life, of atopy, respiratory tract infections, and dyspeptic syndromes in 164 children born by cesarean (versus 249 untreated controls). The results of our multicenter, randomized, and controlled trial have shown that the probiotic supplementation significantly reduced the incidence of atopic dermatitis, upper and lower respiratory tract infections, and signs and symptoms of dyspeptic syndromes. Concerning the gut microbiota, B. bifidum supplementation significantly increased α-biodiversity and the relative values of the phyla Bacteroidota and Actinomycetota, of the genus Bacteroides, Bifidobacterium and of the species B. bifidum and reduced the relative content of Escherichia/Shigella and Haemophilus. A 6-month supplementation with B. bifidum in children born by cesarean section reduces the risk of gut dysbiosis and has a positive clinical impact that remains observable in the following 6 months of follow-up.

14.
Microorganisms ; 12(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38930480

ABSTRACT

Upper urinary tract urolithiasis is an emerging disease in cats, with 98% of kidney stones composed of calcium oxalate. In humans, disturbances in the intestinal and urinary microbiota are suspected to contribute to the formation of calcium oxalate stones. We hypothesized that similar mechanisms may be at play in cats. This study examines the intestinal and urinary microbiota of nine cats with kidney stones compared to nine healthy cats before, during, and after treatment with the antibiotic cefovecin, a cephalosporin. Initially, cats with kidney stones displayed a less diverse intestinal microbiota. Antibiotic treatment reduced microbiota diversity in both groups. The absence of specific intestinal bacteria could lead to a loss of the functions these bacteria perform, such as oxalate degradation, which may contribute to the formation of calcium oxalate stones. This study confirms the presence of a distinct urobiome in cats with kidney stones, characterized by greater richness and diversity compared to healthy cats. These findings highlight the potential of microbiota modulation as a strategy to prevent renal lithiasis in cats.

15.
Microorganisms ; 12(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38930492

ABSTRACT

The use of proton pump inhibitors (PPIs) has increased considerably in many Western countries, and there is concern that numerous conditions and diseases associated with PPI use may be adverse events. The main function of gastric acid is to defend the organism against orally ingested microorganisms, and there is also concern that alterations not only in the gastric microbiome but also the downstream intestinal microbiome may increase the risk of disease or alter the course of preexisting disease. The current study is a systematic review of the available evidence from experimental trials investigating the effects of PPIs on the gastrointestinal microbiota by next-generation sequencing. Thirteen studies were identified. The effects of PPIs were seen on alterations in diversity and richness in some of the studies, while a larger proportion of the studies detected alterations at various taxonomic levels. The general finding was that PPI use caused an increase in bacteria normally found in the oral microbiota in both the upper and lower GI tract. The most consistent taxonomic alterations seemed to be increases in oral flora along the axis Streptococcaceae and Streptococcus at genus level and various Streptococcus spp., as well as Veillonellaceae, Veillonella and Haemophilus.

16.
Microorganisms ; 12(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38930493

ABSTRACT

Colorectal cancer (CRC) stands as a significant global health concern, ranking second in mortality and third in frequency among cancers worldwide. While only a small fraction of CRC cases can be attributed to inherited genetic mutations, the majority arise sporadically due to somatic mutations. Emerging evidence reveals gut microbiota dysbiosis to be a contributing factor, wherein polyketide synthase-positive Escherichia coli (pks+ E. coli) plays a pivotal role in CRC pathogenesis. pks+ bacteria produce colibactin, a genotoxic protein that causes deleterious effects on DNA within host colonocytes. In this review, we examine the role of the gut microbiota in colon carcinogenesis, elucidating how colibactin-producer bacteria induce DNA damage, promote genomic instability, disrupt the gut epithelial barrier, induce mucosal inflammation, modulate host immune responses, and influence cell cycle dynamics. Collectively, these actions foster a microenvironment conducive to tumor initiation and progression. Understanding the mechanisms underlying pks+ bacteria-mediated CRC development may pave the way for mass screening, early detection of tumors, and therapeutic strategies such as microbiota modulation, bacteria-targeted therapy, checkpoint inhibition of colibactin production and immunomodulatory pathways.

17.
Microorganisms ; 12(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38930519

ABSTRACT

Understanding the microbiological profiles of peri-implant conditions is crucial for developing effective preventive and therapeutic strategies. This narrative review analyzes the microbial profiles associated with healthy peri-implant sites, peri-implant mucositis, and peri-implantitis, along with related microbiological sampling and analyses. Healthy peri-implant sites are predominantly colonized by Streptococcus, Rothia, Neisseria, and Corynebacterium species, in addition to Gram-positive cocci and facultatively anaerobic rods, forming a stable community that prevents pathogenic colonization and maintains microbial balance. In contrast, peri-implant mucositis shows increased microbial diversity, including both health-associated and pathogenic bacteria such as red and orange complex bacteria, contributing to early tissue inflammation. Peri-implantitis is characterized by even greater microbial diversity and a complex pathogenic biofilm. Predominant pathogens include Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, and unique species like Filifactor alocis and Fretibacterium fastidiosum. Additionally, less common species such as Staphylococcus and Enterobacteriaceae, contributing to disease progression through biofilm formation and increased inflammatory response, along with EBV and human cytomegalovirus with a still not defined role, and Candida albicans contribute to disease progression through biofilm formation, immune modulation, and synergistic inter-kingdom interactions. Future research should standardize diagnostic criteria, employ advanced molecular techniques, integrate microbial data with clinical factors, and highlight inter-kingdom interactions.

18.
Microorganisms ; 12(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38930537

ABSTRACT

Against a backdrop of declining bee colony health, this study aims to gain a better understanding of the impact of an antimicrobial (Fumidil B®, Can-Vet Animal Health Supplies Ltd., Guelph, ON, Canada) and a probiotic (Bactocell®, Lallemand Inc., Montreal, QC, Canada) on bees' microbiota and the health of their colonies after wintering. Therefore, colonies were orally exposed to these products and their combination before wintering in an environmental room. The results show that the probiotic significantly improved the strength of the colonies in spring by increasing the total number of bees and the number of capped brood cells. This improvement translated into a more resilient structure of the gut microbiota, highlighted by a more connected network of interactions between bacteria. Contrastingly, the antimicrobial treatment led to a breakdown in this network and a significant increase in negative interactions, both being hallmarks of microbiota dysbiosis. Although this treatment did not translate into a measurable colony strength reduction, it may impact the health of individual bees. The combination of these products restored the microbiota close to control, but with mixed results for colony performance. More tests will be needed to validate these results, but the probiotic Bactocell® could be administrated as a food supplement before wintering to improve colony recovery in spring.

19.
Microorganisms ; 12(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38930542

ABSTRACT

Exposure to passive heat (acclimation) and exercise under hot conditions (acclimatization), known as heat acclimation (HA), are methods that athletes include in their routines to promote faster recovery and enhance physiological adaptations and performance under hot conditions. Despite the potential positive effects of HA on health and physical performance in the heat, these stimuli can negatively affect gut health, impairing its functionality and contributing to gut dysbiosis. Blood redistribution to active muscles and peripheral vascularization exist during exercise and HA stimulus, promoting intestinal ischemia. Gastrointestinal ischemia can impair intestinal permeability and aggravate systemic endotoxemia in athletes during exercise. Systemic endotoxemia elevates the immune system as an inflammatory responses in athletes, impairing their adaptive capacity to exercise and their HA tolerance. Better gut microbiota health could benefit exercise performance and heat tolerance in athletes. This article suggests that: (1) the intestinal modifications induced by heat stress (HS), leading to dysbiosis and altered intestinal permeability in athletes, can decrease health, and (2) a previously acquired microbial dysbiosis and/or leaky gut condition in the athlete can negatively exacerbate the systemic effects of HA. Maintaining or improving the healthy gut microbiota in athletes can positively regulate the intestinal permeability, reduce endotoxemic levels, and control the systemic inflammatory response. In conclusion, strategies based on positive daily habits (nutrition, probiotics, hydration, chronoregulation, etc.) and preventing microbial dysbiosis can minimize the potentially undesired effects of applying HA, favoring thermotolerance and performance enhancement in athletes.

20.
Microorganisms ; 12(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930552

ABSTRACT

Numerous studies have reported a correlation between gut microbiota and influenza A virus (IAV) infection and disease severity. However, the causal relationship between these factors remains inadequately explored. This investigation aimed to assess the influence of gut microbiota on susceptibility to human infection with H7N9 avian IAV and the severity of influenza A (H1N1)pdm09 infection. A two-sample Mendelian randomization analysis was conducted, integrating our in-house genome-wide association study (GWAS) on H7N9 susceptibility and H1N1pdm09 severity with a metagenomics GWAS dataset from a Chinese population. Twelve and fifteen gut microbiotas were causally associated with H7N9 susceptibility or H1N1pdm09 severity, separately. Notably, Clostridium hylemonae and Faecalibacterium prausnitzii were negative associated with H7N9 susceptibility and H1N1pdm09 severity, respectively. Moreover, Streptococcus peroris and Streptococcus sanguinis were associated with H7N9 susceptibility, while Streptococcus parasanguini and Streptococcus suis were correlated with H1N1pdm09 severity. These results provide novel insights into the interplay between gut microbiota and IAV pathogenesis as well as new clues for mechanism research regarding therapeutic interventions or IAV infections. Future studies should concentrate on clarifying the regulatory mechanisms of gut microbiota and developing efficacious approaches to reduce the incidence of IAV infections, which could improve strategy for preventing and treating IAV infection worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL
...