ABSTRACT
A low-cost and disposable microcell was constructed with a screen-printed electrode for the non-enzymatic electrochemical determination of creatinine. The working electrode was modified with carbon black and maintained in contact with paper-adsorbed iron (III) ions. A small sample volume of 3⯵L was required for the device operation. Then, iron (III) ions were complexed in the presence of creatinine in a chemical step, followed by an electrochemical reduction of non-complexed metallic ions in excess. Cyclic voltammetry and differential-pulse voltammetry experiments were employed for the electrochemical characterizations and analytical performance evaluation of the microcell. The working electrode modification with carbon black provided a significant increase of analytical signal. The sensor presented a linear response for creatinine concentrations ranging from 0.10 to 6.5â¯mmolâ¯L-1, with a limit of detection of 0.043â¯mmolâ¯L-1. Experiments for creatinine determination in real samples were successful performed through of standard recovery in urine.