Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Toxics ; 12(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38922119

ABSTRACT

This study investigates the occurrence and characteristics of macroplastic and polymer microparticles in the Urias coastal lagoon's beach sediments, in northwest Mexico. Coastal lagoons, productive and vulnerable ecosystems, are impacted significantly by anthropogenic activities, leadings to their pollution by various contaminants, including plastics. Our research involved sampling sediments from four sites within the lagoon that were influenced by different human activities such as fishing, aquaculture, thermoelectric power plant operations, industrial operations, and domestic wastewater discharge. Our methodology included collecting macroplastics and beach sediment samples, followed by laboratory analyses to identify the plastic debris' size, shape, color, and chemical composition. The results indicated a notable presence of macroplastic items (144), predominantly bags, styrofoam, and caps made of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). The polymer microparticles were mainly fibers, with cotton and polyester as the most common polymers, suggesting a significant contribution from clothing-related waste. The dominant colors of the microparticles were blue and transparent. High densities were observed in areas with slower water exchange. Our findings highlight the urgent need for better waste management practices to mitigate plastic pollution in coastal lagoons, preserving their ecological and economic functions.

2.
Sci Total Environ ; 884: 163815, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37121319

ABSTRACT

In recent years, domestic laundry has been recognized as a relevant source of microfiber (MF) pollution to aquatic environments. Nevertheless, the MF emissions from industrial washing processes in real world scenarios have not been quantified. The aim of this study was to quantify the MF emissions from 3 industrial washing processes (rinse wash, acid wash and enzymatic wash) commonly employed in the manufacturing process of blue jeans. The blue jeans were characterized by ATR-FT-IR, SEM and TGA to study the morphology, the polymer chemical identity and the proportion of synthetic and natural fibers, respectively. The MF emissions were quantified as the MF mass and number emitted per washed jean. All the industrial washing processes released a majority of synthetic MF. The enzymatic wash produced the highest amount of MF, with 1423 MF per gram of fabric (MF/g) equivalent to 381.7 MF grams per gram of fabric (MF g/g), followed by the acid wash with 253 MF/g equivalent to 142.7 MF g/g and lastly the rinse wash with 133 MF/g equivalent to 62.3 MF g/g. Statistically significant differences between the MF sizes for all washing processes were found when evaluating the emissions by MF/g, however, the previous trend was not found for MF g/g. Moreover, the total MF emissions of an industrial washing process of a pair of blue jeans during its manufacture process are up to 10.95 times higher than the reported domestic washing estimates performed by the consumer available in the published literature. We demonstrate that studying industrial washing procedures of textile garments will improve the accuracy of the current estimates of MF emissions available in published reports, which will ultimately aid in the development of regulations for MF emissions at an industrial level.


Subject(s)
Laundering , Plastics , Microplastics , Spectroscopy, Fourier Transform Infrared , Laundering/methods , Textiles
3.
Polymers (Basel) ; 13(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916472

ABSTRACT

Currently, the inappropriate disposal of plastic materials, such as polyethylene terephthalate (PET) wastes, is a major environmental problem since it can cause serious damage to the environment and contribute to the proliferation of pathogenic microorganisms. To reduce this accumulation, PET-type bottles have been recycled, and also explored in other applications such as the development of membranes. Thus, this research aims to develop electrospun microfiber membranes from PET wastes and evaluate their use as an air filter media. The solution concentrations varied from 20 to 12% wt% of PET wastes, which caused a reduction of the average fiber diameter by 60% (from 3.25 µm to 1.27 µm). The electrospun filter membranes showed high mechanical resistance (4 MPa), adequate permeability (4.4 × 10-8 m2), high porosity (96%), and provided a high collection efficiency (about 100%) and low-pressure drop (212 Pa, whose face velocity was 4.8 cm/s) for the removal of viable aerosol nanoparticles. It can include bacteria, fungi, and also viruses, mainly SARS-CoV-2 (about 100 nm). Therefore, the developed electrospun membranes can be applied as indoor air filters, where extremely clean air is needed (e.g., hospitals, clean zones of pharmaceutical and food industry, aircraft, among others).

4.
Food Microbiol ; 95: 103677, 2021 May.
Article in English | MEDLINE | ID: mdl-33397611

ABSTRACT

Imported papayas from Mexico have been implicated in multiple salmonellosis outbreaks in the United States in recent years. While postharvest washing is a critical process to remove latex, dirt, and microbes, it also has the potential of causing cross-contamination by foodborne pathogens, with sponge or other fibrous rubbing tools often questioned as potential harboring or transmitting risk. In this study, Salmonella inactivation and cross-contamination via sponges and microfiber wash mitts during simulated papaya washing and cleaning were investigated. Seven washing treatments (wash without sanitizer; wash at free chlorine 25, 50, and 100 mg/L, and at peracetic acid 20, 40, and 80 mg/L), along with unwashed control, were evaluated, using Salmonella strains with unique antibiotic markers differentially inoculated on papaya rind (serovars Typhimurium, Heidelberg, and Derby) and on wash sponge or microfiber (serovars Typhimurium, Newport, and Braenderup). Salmonella survival and transfer on papaya and on sponge/microfiber, and in wash water were detected using selective plating or enrichment. The washing and cleaning process reduced Salmonella on inoculated papayas by 1.69-2.66 and 0.69-1.74 log for sponge and microfiber cleaning, respectively, with the reduction poorly correlated to sanitizer concentration. Salmonella on inoculated sponge or microfiber was under detection limit (1.00 log CFU/cm2) by plate count, but remained recoverable by selective enrichment. Transference of Salmonella from inoculated papaya to sponge/microfiber, and vice versa, could be detected sporadically by selective enrichment. Sponge/microfiber mediated Salmonella cross-contamination from inoculated to uninoculated papayas was frequently detectable by selective enrichment, but rendered undetectable by wetting sponge/microfiber in sanitizing wash water (FC 25-100 mg/L or PAA 20-80 mg/L) between washing different papaya fruits. Therefore, maintaining adequate sanitizer levels and frequently wetting sponge/microfiber in sanitizing wash water can effectively mitigate risks of Salmonella cross-contamination associated with postharvest washing, especially with regard to the use of sponge or microfiber wash mitts.


Subject(s)
Carica/microbiology , Chlorine/pharmacology , Disinfectants/pharmacology , Food Handling/instrumentation , Peracetic Acid/pharmacology , Porifera/microbiology , Salmonella typhimurium/drug effects , Animals , Food Contamination/analysis , Food Contamination/prevention & control , Food Handling/methods , Fruit/microbiology , Mexico , Salmonella typhimurium/growth & development
5.
Environ Chall (Amst) ; 5: 100267, 2021 Dec.
Article in English | MEDLINE | ID: mdl-38620870

ABSTRACT

Wet wipes for disinfection, sanitizing, and medical purposes, like personal protective equipment, have witnessed an upsurge in production and use as a result of COVID-19 outbreak. They are a potential source of microfibers and have recently been found in COVID-19 plastic litter survey campaigns conducted in a few marine environments around the world. This mini-review highlights wet wipes as a one of the key debris items contributing to the growing COVID-19-related microplastic pollution, and there are significant gaps in our understanding of microfiber release under different environmental conditions, morphological, and chemical degradation signatures, necessitating a comprehensive study of disinfectant wipes. Thus, we urge microplastic researchers to investigate the environmental implications of wet wipes in order to keep the total estimate of the plastic problem up to date and manage the associated environmental challenges.

6.
Mar Pollut Bull ; 153: 110966, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32275526

ABSTRACT

Repeated reports of microplastic pollution in the marine pinniped diet have emerged in the last years. However, only few studies address the drivers of microplastics presence and the potential implications for monitoring microplastic pollution in the ocean. This study monitored their in the scats (N = 205) of four pinniped species/subspecies at five different locations in the southern Pacific Ocean (Peru and Chile). Samples from all rookeries contained microplastics, and overall, 68% of the examined scats contained fragments/fibers, mostly blue colored. We confirmed that 81.5% of the fragments/fibers were anthropogenic in origin , but only 30% were polymers. Scats from Juan Fernández Archipelago presented higher microplastic concentrations than continental rookeries. Also, the common diet in each location may influence the levels found in the samples. This study presents a useful non-invasive technique to track plastic pollution in top predator diets as bioindicators for future surveillance/management plans applied to different location.


Subject(s)
Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Chile , Pacific Ocean , Peru , Plastics
7.
Mar Pollut Bull ; 145: 5-13, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31590817

ABSTRACT

The objective of the present study was to test whether the Atlantic ghost crab Ocypode quadrata is a reliable biomonitor of microplastic (MP) pollution of beach sediments. To test the hypothesis (H1) that the sediment is the main source of MP ingestion, the proportion of MP types (hard plastic, microfibers, pellet, soft plastic, and extruded polystyrene foam) in the gut content was compared with that on the strandline. The types of MPs in the gut content and sediment had similar proportions; black (~49%) and blue (~45%) microfibers were responsible for this similarity (55%), hence confirming H1. However, the second hypothesis (H2) that prevalence of MP in the gut content is related to its density on beach with distinct urbanization degree was not accepted. These results indicate that high trophic plasticity of the ghost crab and, consequently, multiple-sources of contamination may interfere with its use as a biomonitor of MP pollution.


Subject(s)
Brachyura/growth & development , Geologic Sediments/analysis , Water Pollutants/analysis , Animals , Bathing Beaches , Brachyura/drug effects , Brachyura/metabolism , Environmental Monitoring/methods , Plastics/analysis , Plastics/pharmacology , Urbanization , Water Pollutants/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL