Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Biomed Pharmacother ; 177: 116899, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889636

ABSTRACT

Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) that arise due to numerous causes like protein accumulation and autoimmunity characterized by neurologic depletion which lead to incapacity in normal physiological function such as thinking and movement in these patients. Glial cells perform an important role in protective neuronal function; in the case of neuroinflammation, glial cell dysfunction can promote the development of neurodegenerative diseases. miRNA that participates in gene regulation and plays a vital role in many biological processes in the body; in the central nervous system (CNS), it can play an essential part in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative disease (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic agent in these disorders. Finally, we highlight miRNA as therapy.

2.
Mol Biol Rep ; 51(1): 725, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851636

ABSTRACT

Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.


Subject(s)
DNA Breaks, Double-Stranded , Neurodegenerative Diseases , Neuroinflammatory Diseases , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/genetics , Animals , DNA Breaks, Double-Stranded/radiation effects , Humans , Neuroinflammatory Diseases/etiology , DNA Repair/genetics , DNA Damage/radiation effects
3.
China Pharmacy ; (12): 33-37, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1005210

ABSTRACT

OBJECTIVE To study the repair effect of ephedrine on lipopolysaccharide (LPS)-induced microglia function injury and its mechanism. METHODS Human microglia cells (HMC3) were used as research objects to investigate the effects of different concentrations of ephedrine (75, 150, 300, 600 μg/mL) on the viability and apoptosis of HMC3 cells. HMC3 cells were divided into control group (without drug intervention), LPS group (1 μg/mL), ephedrine group (1 μg/mL LPS+300 μg/mL ephedrine), BAY11-7082 group [1 μg/mL LPS+5 μmol/L nuclear factor-κB (NF-κB) pathway inhibitor BAY11-7082], inhibitor group (1 μg/mL LPS+300 μg/mL ephedrine+5 μmol/L BAY11-7082) and activator group (1 μg/mL LPS+300 μg/mL ephedrine+1 μmol/L NF-κB pathway activator Prostratin). After 24 hours of drug treatment, cell migration, the levels of soluble interleukin-6(sIL-6), interleukin-10(IL-10), superoxide dismutase(SOD)and malondialdehyde(MDA), and the expressions of NF-κB pathway-related proteins were all detected. RESULTS The viability of HMC3 cells could be increased significantly by 300 μg/mL ephedrine, while the apoptotic rate was decreased significantly (P<0.05). Compared with the control group, the number of migrating cells was increased significantly in the LPS group; the levels of sIL-6 and MDA, the phosphorylation of NF-κB protein were increased significantly, while the levels of IL-10 and SOD were decreased significantly (P<0.05). Compared with the LPS group, the above indexes were reversed significantly in the ephedrine group and BAY11-7082 group (P<0.05). Compared with the ephedrine group, the number of migrating cells was decreased significantly in the inhibitor group; the levels of sIL-6 and MDA, the phosphorylation of NF-κB protein were decreased significantly, while the levels of IL-10 and SOD were increased significantly (P<0.05). The above indexes were reversed significantly in the activator group (P<0.05)can repair cell injury by inhibiting LPS induced apoptosis, migration, inflammation and oxidant stress of HMC3 cells, the mechanism of which may be associated with inhibiting the activity of the NF-κB signaling pathway.

4.
J Eat Disord ; 11(1): 227, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111061

ABSTRACT

Anorexia nervosa (AN) is characterized by emaciation, hyperactivity, and amenorrhea. Imaging studies in AN patients have revealed reductions in grey and white matter volume, which correlate with the severity of neuropsychological deficits. However, the cellular basis for the observed brain atrophy is poorly understood. Although distinct hypothalamic centers, including the arcuate nucleus (ARC) are critically involved in regulating feeding behavior, little is known about potential hypothalamic modifications in this disorder. Since glia e.g. astrocytes and microglia influence neuronal circuits, we investigated the glial changes underlying pathophysiology of starvation in the corpus callosum (CC) and hypothalamus. Female mice were given a limited amount of food once a day and had unlimited access to a running wheel until a 20% weight reduction was achieved (acute starvation). This weight reduction was maintained for two weeks to mimic chronic starvation. Immunohistochemistry was used to quantify the density of astrocytes, microglia, oligodendrocytes, and the staining intensity of neuropeptide Y (NPY), a potent orexigenic peptide. Chronic starvation induced a decreased density of OLIG2+ oligodendrocytes, GFAP+ astrocytes, and IBA1+ microglia in the CC. However, the densities of glial cells remained unchanged in the ARC following starvation. Additionally, the staining intensity of NPY increased after both acute and chronic starvation, indicating an increased orexigenic signaling. Chronic starvation induced glial cell changes in the CC in a mouse model of AN suggesting that glia pathophysiology may play a role in the disease.


The eating disorder anorexia nervosa (AN) leads to extreme body weight loss, increased physical activity, and the absence of menstrual periods. Studies have revealed reduced brain volumes in patients with AN, which are associated with the severity of cognitive impairments. The cellular basis for this brain volume loss is mostly unclear. Glial cells, recognized for their role as supporting tissue for neuronal cells, may be involved as they can influence neuronal mechanisms. Although distinct brain regions, like the hypothalamus, are critically involved in regulating feeding behavior, little is known about cell changes in that brain region of patients with AN. To investigate these changes, an animal model mimicking the symptoms of AN was used. Glial cell changes in the corpus callosum, which connects the two hemispheres of the brain, were observed. Furthermore, no glial cell changes in the arcuate nucleus of the hypothalamus were obtained. The findings indicate that glial cell changes in the corpus callosum may play a role in the disease.

5.
Neuroscience ; 533: 63-76, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37827357

ABSTRACT

Benzophenone-3 (BP-3) is the most commonly used UV filter in cosmetics, which is absorbed through the skin and crosses the blood-brain barrier. This compound increases extracellular glutamate concentrations, lipid peroxidation, the number of microglia cells and induces process of apoptosis. The aim of this study was to determine the effect of BP-3 on the activation and polarization of microglial cells in the frontal cortex and hippocampus of adult male rats exposed to BP-3 prenatally and then for two weeks in adulthood. It has been found, that exposure to BP-3 reduced the expression of the marker of the M2 phenotype of glial cells in both examined brain structures. An increase in the CD86/CD206 microglial phenotype ratio, expression of transcription factor NFκB and activity of caspase-1 were observed only in the frontal cortex, whereas BP-3 increased the level of glucocorticoid receptors in the hippocampus. The in vitro study conducted in the primary culture of rat frontal cortical microglia cells showed that BP-3 increased the LPS-stimulated release of pro-inflammatory cytokines IL-1α, IL-1ß, TNFα, but in cultures without LPS there was decreased IL-1α, IL-6 and TNFα production, while the IL-18 and IP-10 was elevated. The obtained results indicate that differences in the level of immunoactivation between the frontal cortex and the hippocampus may result from the action of this compound on glucocorticoid receptors. In turn, changes in cytokine production in microglial cells indicate that BP-3 aggravates the LPS-induced immunoactivation.


Subject(s)
Microglia , Tumor Necrosis Factor-alpha , Rats , Animals , Male , Microglia/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Receptors, Glucocorticoid/metabolism , Cytokines/metabolism
6.
Int Immunopharmacol ; 124(Pt B): 110952, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37751655

ABSTRACT

PURPOSE: The abnormal polarisation of microglial cells (MGs) following retinal ischemia/reperfusion (RIR) initiates neuroinflammation and progressive death of retinal ganglion cells (RGCs), causing increasingly severe and irreversible visual dysfunction. Roflumilast (Roflu) is a promising candidate for treating neuroinflammatory diseases. This study aimed to explore whether Roflu displayed a cytoprotective effect against RIR-induced neuroinflammation and to characterise the underlying signalling pathway. METHODS: The effects and mechanism of Roflu against RIR injury were investigated in C57BL/6J mice and the BV2 cell line. We used quantitative real-time PCR and enzyme-linked immunosorbent assay to examine the levels of inflammatory factors. Furthermore, haematoxylin and eosin and immunofluorescence (IF) stainings were used to assess the morphology of the retina and the states of MGs and RGCs. Reactive oxygen species (ROS) levels were examined using a ROS assay kit, while whole-genome sequencing analysis was conducted to identify altered pathways and molecules. Western blotting and IF staining were used to quantify the proteins associated with the nuclear factor erythroid 2-related factor 2 (Nrf2)/stimulator of interferon gene (STING)/nuclear factor kappa beta (NF-κB) pathway. RESULTS: MG polarisation includes the pro-inflammatory and neurotoxic M1 phenotype as well as the anti-inflammatory and neuroprotective M2 phenotype. Roflu significantly attenuated MG activation and contributed to a shift in the MG phenotype from M1 to M2. Moreover, Roflu decreased ROS release and increased heme oxygenase 1 and NAD(P)H quinone oxidoreductase 1 expression. In vitro and in vivo experiments validated that Roflu exerted its neuroprotective effects primarily by upregulating the Nrf2/STING/NF-κB pathway. However, these effects were abrogated when the Nrf2 expression was inhibited by pharmacological or genetic manipulation. CONCLUSIONS: Roflu suppressed RIR-induced neuroinflammation by driving the shift of MG polarisation from M1 to M2 phenotype, which was mediated by the upregulation of the Nrf2/STING/NK-κB pathway.


Subject(s)
NF-kappa B , Reperfusion Injury , Mice , Animals , NF-kappa B/metabolism , Neuroinflammatory Diseases , NF-E2-Related Factor 2/metabolism , Microglia , Reactive Oxygen Species/metabolism , Inflammation/metabolism , Mice, Inbred C57BL , Phenotype , Retina/metabolism , Reperfusion Injury/metabolism , Ischemia/metabolism
7.
Pharmaceutics ; 15(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37513990

ABSTRACT

Cannabidiol (CBD) has previously been shown to inhibit inflammatory cytokine production in both in vitro and in vivo studies of neurodegenerative diseases. To date, the CBD treatment of these diseases by quantitative targeting directly to the brain is one of the greatest challenges. In this paper, we present a new particulate system capable of delivering CBD into the brain via the intranasal route. Intranasal administration of CBD-loaded starch nanoparticles resulted in higher levels of cannabidiol in the brain compared to an identically administered cannabidiol solution. The production and the characterization of starch-based nanoparticles was reported, as well as the evaluation of their penetration and anti-inflammatory activity in cells. Cannabidiol-loaded starch nanoparticles were prepared by crosslinking with divanillin, using the nanoprecipitation method. Evaluation of the anti-inflammatory activity in vitro was performed using the BV2 microglia cell line. The starch nanoparticles appeared under electron microscopy in clusters sized approximately 200 nm in diameter. In cultures of lipopolysaccharide-induced inflamed BV2 cells, the cannabidiol-loaded starch nanoparticles demonstrated low toxicity while effectively reducing nitric oxide production and IL-6 levels. The anti-inflammatory effect was comparable to that of a glucocorticoid. Starch-based nanoparticle formulations combined with intranasal administration may provide a suitable platform for efficacious cannabidiol delivery and activity in the central nervous system.

8.
Epigenetics ; 18(1): 2241008, 2023 12.
Article in English | MEDLINE | ID: mdl-37506371

ABSTRACT

As the primary innate immune cells of the brain, microglia respond to damage and disease through pro-inflammatory release of cytokines and neuroinflammatory molecules. Histone acetylation is an activating transcriptional mark that regulates inflammatory gene expression. Inhibition of histone deacetylase 3 (Hdac3) has been utilized in pre-clinical models of depression, stroke, and spinal cord injury to improve recovery following injury, but the molecular mechanisms underlying Hdac3's regulation of inflammatory gene expression in microglia is not well understood. To address this lack of knowledge, we examined how pharmacological inhibition of Hdac3 in an immortalized microglial cell line (BV2) impacted histone acetylation and gene expression of pro- and anti-inflammatory genes in response to immune challenge with lipopolysaccharide (LPS). Flow cytometry and cleavage under tags & release using nuclease (CUT & RUN) revealed that Hdac3 inhibition increases global and promoter-specific histone acetylation, resulting in the release of gene repression at baseline and enhanced responses to LPS. Hdac3 inhibition enhanced neuroprotective functions of microglia in response to LPS through reduced nitric oxide release and increased phagocytosis. The findings suggest Hdac3 serves as a regulator of microglial inflammation, and that inhibition of Hdac3 facilitates the microglial response to inflammation and its subsequent clearing of debris or damaged cells. Together, this work provides new mechanistic insights into therapeutic applications of Hdac3 inhibition which mediate reduced neuroinflammatory insults through microglial response.


Subject(s)
Histones , Inflammation , Microglia , Humans , DNA Methylation , Histones/metabolism , Inflammation/genetics , Lipopolysaccharides/pharmacology , Microglia/metabolism
9.
Clin Exp Pharmacol Physiol ; 50(8): 647-663, 2023 08.
Article in English | MEDLINE | ID: mdl-37308175

ABSTRACT

Ligustilide, a natural phthalide mainly derived from chuanxiong rhizomes and Angelica Sinensis roots, possesses anti-inflammatory activity, particularly in the context of the nervous system. However, its application is limited because of its unstable chemical properties. To overcome this limitation, ligusticum cycloprolactam (LIGc) was synthesized through structural modification of ligustilide. In this study, we combined network pharmacological methods with experimental verification to investigate the anti-neuroinflammatory effects and mechanisms of ligustilide and LIGc. Based on our network pharmacology analysis, we identified four key targets of ligustilide involved in exerting an anti-inflammatory effect, with the nuclear factor (NF)-κB signal pathway suggested as the main signalling pathway. To verify these results, we examined the expression of inflammatory cytokines and inflammation-related proteins, analysed the phosphorylation level of NF-κB, inhibitor of κBα (IκBα) and inhibitor of κB kinase α and ß (IKKα+ß), and evaluated the effect of BV2 cell-conditioned medium on HT22 cells in vitro. Our results, demonstrate for the first time that LIGc can downregulate the activation of the NF-κB signal pathway in BV2 cells induced by lipopolysaccharide, suppress the production of inflammatory cytokines and reduce nerve injury in HT22 cells mediated by BV2 cells. These findings suggest that LIGc inhibits the neuroinflammatory response mediated by BV2 cells, providing strong scientific support for the development of anti-inflammatory drugs based on natural ligustilide or its derivatives. However, there are some limitations to our current study. In the future, further experiments using in vivo models may provide additional evidence to support our findings.


Subject(s)
Ligusticum , NF-kappa B , NF-kappa B/metabolism , Ligusticum/metabolism , Neuroinflammatory Diseases , Network Pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Microglia , Lipopolysaccharides/pharmacology
10.
Biosensors (Basel) ; 13(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36832056

ABSTRACT

Microglia cells, as the resident immune cells of the central nervous system (CNS), are highly motile and migratory in development and pathophysiological conditions. During their migration, microglia cells interact with their surroundings based on the various physical and chemical properties in the brain. Herein, a microfluidic wound-healing chip is developed to investigate microglial BV2 cell migration on the substrates coated with extracellular matrixes (ECMs) and substrates usually used for bio-applications on cell migration. In order to generate the cell-free space (wound), gravity was utilized as a driving force to flow the trypsin with the device. It was shown that, despite the scratch assay, the cell-free area was created without removing the extracellular matrix coating (fibronectin) using the microfluidic assay. It was found that the substrates coated with Poly-L-Lysine (PLL) and gelatin stimulated microglial BV2 migration, while collagen and fibronectin coatings had an inhibitory effect compared to the control conditions (uncoated glass substrate). In addition, the results showed that the polystyrene substrate induced higher cell migration than the PDMS and glass substrates. The microfluidic migration assay provides an in vitro microenvironment closer to in vivo conditions for further understanding the microglia migration mechanism in the brain, where the environment properties change under homeostatic and pathological conditions.


Subject(s)
Fibronectins , Microfluidics , Microfluidics/methods , Fibronectins/pharmacology , Microglia/physiology , Cell Movement/physiology , Extracellular Matrix
11.
Neuromolecular Med ; 25(2): 301-311, 2023 06.
Article in English | MEDLINE | ID: mdl-36749430

ABSTRACT

Stroke is a leading cause of death, with a continuously increasing incidence. As a metabolic process that catabolizes glucose pyruvate and provides adenosine triphosphate (ATP), glycolysis plays a crucial role in different diseases. Phosphoglycerate kinase 1 (PGK1) facilitates energy production with biosynthesis in many diseases, including stroke. However, the exact role of PGK1/glycolysis in stroke remains to be elucidated. A rat model of middle cerebral artery occlusion (MCAO) was used to mimic ischemia/reperfusion injuries. Oxygen glucose deprivation/re-oxygenation (OGD/R) was used to induce injury to highly aggressively proliferating immortalized (HAPI) rat microglial cells. The extracellular acidification rate (ECAR) was determined using an XFe24 Extracellular Flux Analyzer. ATP, lactate dehydrogenase, tumor necrosis factor-alpha, and interleukin-6 levels were measured using commercial kits. Chromatin immunoprecipitation assay was performed to examine the interaction between H3K27ac or p300 and the PGK1 promoter region. PGK1 was either knocked down or overexpressed by lentivirus. Thus, to examine its role in stroke, real-time polymerase chain reaction and immunoblotting were used to measure gene expression. The expression of PGK1 was increased and associated with M1 polarization and glycolysis in MCAO rat models. OGD/R promoted M1 polarization and HAPI microglial cell inflammation by regulating glycolysis. Silencing PGK1 reduced OGD/R-increased M1 polarization, inflammation, and glycolysis. Conversely, the overexpression of PGK1 promoted HAPI microglial cell inflammation by regulating glycolysis. The mechanism showed that histone acetyltransferase p300 promoted PGK1 expression through H3K27 acetylation. Finally, data indicated that silencing PGK1 inhibited microglia M1 polarization, inflammation, and glycolysis in MCAO rat models. PGK1 could promote ischemia/reperfusion injury-induced microglial M1 polarization and inflammation by regulating glycolysis, which might provide a novel direction in developing new therapeutic medications for preventing or treating stroke.


Subject(s)
Brain Ischemia , Reperfusion Injury , Stroke , Rats , Animals , Microglia/metabolism , Brain Ischemia/metabolism , Stroke/metabolism , Infarction, Middle Cerebral Artery/pathology , Inflammation/metabolism , Glucose/metabolism , Reperfusion Injury/metabolism , Glycolysis
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-990724

ABSTRACT

Objective:To study the role of a novel brain-derived peptide hypoxic-ischemic brain damage associated peptide (HIBDAP) in regulating pyroptosis of oxygen-glucose deprived (OGD) microglia.Methods:The sequence of HIBDAP was coupled with the sequence of cell-penetrating peptide transactivator of transcription (TAT) to form TAT-HIBDAP. Fluorescein isothiocyanate (FITC) labeled TAT-HIBDAP was added to microglia cells and observed under fluorescence microscope. Microglia cells were treated with different concentrations of TAT-HIBDAP (1, 5, 10, 20 μmol/L) and then OGD process. Cell pyroptosis was analyzed using lactate dehydrogenase (LDH) assay. The concentration of TAT-HIBDAP with the most prominent inhibiting effects was determined and selected for subsequent experiments. The pyroptosis morphology of the control group, the OGD group and the HIBDAP group (5 μmol/L TAT-HIBDAP+OGD) was observed using transmission electron microscope. The mRNA and protein expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes were examined using real-time quantitative PCR and Western Blot analysis.Results:Fluorescence microscope showed FITC-labeled TAT-HIBDAP could successfully enter microglia cells. Compared with the OGD group, low concentrations of TAT-HIBDAP (1, 5, 10 μmol/L) could significantly reduce microglia pyroptosis and the concentration of 5 μmol/L showed the most prominent effects. Compared with the control group, OGD group showed typical pyroptosis morphology and HIBDAP group showed significantly improved morphology. The mRNA and protein expression of NLRP3 inflammasomes in the OGD group were significantly higher than the control group and also the HIBDAP group.Conclusions:The novel brain-derived peptide HIBDAP may reduce the expression of NLRP3 inflammasomes and inhibit the pyroptosis of OGD microglia.

13.
Chin Med Sci J ; 37(4): 320-330, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36171177

ABSTRACT

Objective To study the effects of TYRO protein kinase-binding protein (TYROBP) deficiency on learning behavior, glia activation and pro-inflammatory cycokines, and Tau phosphorylation of a new Alzheimer's disease (AD) mouse model carrying a PSEN1 p.G378E mutation.Methods A new AD mouse model carrying PSEN1 p.G378E mutation was built based on our previously found AD family which might be ascribed to the PSEN1 mutation, and then crossed with TYROBP deficient mice to produce the heterozygous hybrid mice (PSEN1G378E/WT; Tyrobp+/-) and the homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/-). Water maze test was used to detect spatial learning and memory ability of mice. After the mice were sacrificed, the hippocampus was excised for further analysis. Immunofluorescence was used to identify the cell that expresses TYROBP and the number of microglia and astrocyte. Western blot was used to detect the expression levels of Tau and phosphorylated Tau (p-Tau), and ELISA to measure the levels of pro-inflammatory cytokines. Results Our results showed that TYROBP specifically expressed in the microglia of mouse hippocampus. Absence of TYROBP in PSEN1G378E mutation mouse model prevented the deterioration of learning behavior, decreased the numbers of microglia and astrocytes, and the levels of interleukin-6, interleukin-1ß and tumor necrosis factor-α in the hippocampus (all P < 0.05). The ratios of AT8/Tau5, PHF1/Tau5, pT181/Tau5, pT231/Tau5 and p-ERK/ERK were all higher in homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/- mice) compared with PSEN1G378E/G378E mice (all P < 0.05). Conclusions TYROBP deficiency might play a protective role in the modulation of neuroinflammation of AD. However, the relationship between neuroinflammation processes involving microglia and astrocyte activation, and release of pro-inflammatory cytokines, and p-Tau pathology needs further study.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Neuroinflammatory Diseases , Hippocampus/pathology , Mutation , Cytokines/genetics , Cytokines/metabolism , Cytokines/pharmacology , Disease Models, Animal , tau Proteins/genetics , tau Proteins/metabolism , tau Proteins/pharmacology , Amyloid beta-Peptides/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/pharmacology
14.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145381

ABSTRACT

Vernonia amygdalina Del. is a traditional medicinal plant and vegetable originating from tropical Africa. The phytochemical investigation of V. amygdalina led to eight undescribed polyhydric stigmastane-type steroids, vernonin M-T (1-8). Their gross structures and stereochemistry were elucidated by HR-ESI-MS, 1D and 2D NMR spectra, X-ray diffraction, quantum chemical computation of the ECD spectrum, and the in situ dimolybdenum CD method. The anti-neuroinflammatory activity of the isolated compounds was performed in BV-2 microglia cells. As a result, compound 1 displayed a notable anti-neuroinflammatory effect via suppressing the LPS-induced IκB degradation and restricting the activation of the PI3K/AKT and p38 MAPK pathways.

15.
Rep Biochem Mol Biol ; 11(1): 125-137, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35765526

ABSTRACT

Background: It is believed that activation of microglia in the central nervous system upon detection of stimulus like lipopolysaccharides provokes neuroinflammation via the production of pro-inflammatory mediators and cytokines. The cytoprotective and anti-inflammatory properties of various folk medicine has been gaining attention as a strategy to combat various disease. This study aimed to assess the anti-neuroinflammatory properties of chloroform extract of in vitro Panax ginseng root culture based on nitric oxide and cytokines production. Methods: The study was initiated with the determination of maximum non-toxic dose (MNTD) of P. ginseng root culture chloroform extract using the MTT assay. The lipopolysaccharides-stimulated BV2 microglia cells were treated with MNTD and ½MNTD of the extract and its anti-neuroinflammatory properties were assessed by measuring the production of nitric oxide (NO) via Griess assay, as well as TNF-α, IL-6 and IL-10 using Quantikine ELISA. Results: It was found that the MNTD and ½MNTD of the extract did not play a significant role in the production of pro-inflammatory cytokines such as NO, TNF-α and IL-6. However, the MNTD and ½MNTD of chloroform extract significantly increased the anti-inflammatory IL-10 compared to the untreated cells. Conclusion: With this, the chloroform extract of P. ginseng root culture potentially exerts anti-neuroinflammatory properties.

16.
Cells ; 11(10)2022 05 17.
Article in English | MEDLINE | ID: mdl-35626698

ABSTRACT

Neurodegenerative diseases are deteriorating conditions of the nervous system that are rapidly increasing in the ageing population. Increasing evidence suggests that neuroinflammation, largely mediated by microglia, the resident immune cells of the brain, contributes to the onset and progression of neurodegenerative diseases. Hence, microglia are considered a major therapeutic target that could potentially yield effective disease-modifying treatments for neurodegenerative diseases. Despite the interest in studying microglia as drug targets, the availability of cost-effective, flexible, and patient-specific microglia cellular models is limited. Importantly, the current model systems do not accurately recapitulate important pathological features or disease processes, leading to the failure of many therapeutic drugs. Here, we review the key roles of microglia in neurodegenerative diseases and provide an update on the current microglial plaforms utilised in neurodegenerative diseases, with a focus on human microglia-like cells derived from peripheral blood mononuclear cells as well as human-induced pluripotent stem cells. The described microglial platforms can serve as tools for investigating disease biomarkers and improving the clinical translatability of the drug development process in neurodegenerative diseases.


Subject(s)
Microglia , Neurodegenerative Diseases , Brain/pathology , Humans , Inflammation/pathology , Leukocytes, Mononuclear/pathology , Microglia/pathology , Neurodegenerative Diseases/pathology
17.
Molecules ; 27(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35566338

ABSTRACT

Neuroinflammation characterized by microglia activation is the mechanism of the occurrence and development of various central nervous system diseases. ST2825, as a peptide-mimetic MyD88 homodimerization inhibitor, has been identified as crucial molecule with an anti-inflammatory role in several immune cells, especially microglia. The purpose of the study was to investigate the anti-neuroinflammatory effects and the possible mechanism of ST2825. Methods: Lipopolysaccharide (LPS) was used to stimulate neuroinflammation in male BALB/c mice and BV2 microglia cells. The NO level was determined by Griess Reagents. The levels of pro-inflammatory cytokines and chemokines were determined by ELISA. The expressions of inflammatory proteins were determined by real-time PCR and Western blotting analysis. The level of ROS was detected by DCFH-DA staining. Results: In vivo, the improved levels of LPS-induced pro-inflammatory factors, including TNF-α, IL-6, IL-1ß, MCP-1 and ICAM-1 in the cortex and hippocampus, were reduced after ST2825 treatment. In vitro, the levels of LPS-induced pro-inflammatory factors, including NO, TNF-α, IL-6, IL-1ß, MCP-1, iNOS, COX2 and ROS, were remarkably decreased after ST2825 treatment. Further research found that the mechanism of its anti-neuroinflammatory effects appeared to be associated with inhibition of NF-κB activation and down-regulation of the NLRP3/cleaved caspase-1 signaling pathway. Conclusions: The current findings provide new insights into the activity and molecular mechanism of ST2825 for the treatment of neuroinflammation.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Caspase 1/metabolism , Heterocyclic Compounds, 2-Ring , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Microglia , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases , Reactive Oxygen Species/metabolism , Signal Transduction , Spiro Compounds , Tumor Necrosis Factor-alpha/metabolism
18.
Front Cell Neurosci ; 16: 874102, 2022.
Article in English | MEDLINE | ID: mdl-35573832

ABSTRACT

The accumulation of abnormal aggregation of amyloid-ß plaques is one of the most distinguishing pathologies of Alzheimer's disease (AD) and is highly toxic to neurons. Exosomes have demonstrated great potential for AD therapy. However, the impact and underlying mechanism of M2 microglia-derived exosomes (M2-EXOs) in AD progression and outcome are seldom explored. Therefore, we employed an Aß1-42 oligomer (Aß)-induced AD model in neuronal HT-22 cells and 7-month-old APP/PS1 mice to investigate the effects of M2-EXOs on AD. We revealed that the AD cell model established by Aß was accompanied by the upregulation of Aß1-42, neuronal death, alternation of mitochondrial function and autophagy. M2-EXOs can be internalized by HT-22 cells and MAP2-positive neuronal cells in APP/PS1 mice, and exert neuroprotective functions. Specifically, the administration of M2-EXOs in the AD cell model partially increased cell viability, restored the destruction of mitochondrial membrane potential, and reduced the accumulation of reactive oxygen species inside the mitochondria and cells in a dose-dependent manner. Moreover, we demonstrated that PINK1/Parkin mediated mitophagy was enhanced, while incubation with M2-EXOs decreased beclin1, LC3II, PINK1, and Parkin expression levels. Finally, we observed that compared with APP/PS1 mice treated with PBS, the application of M2-EXOs could decrease Aß plaque deposition and minus Aß oligomer expression along with improved PINK1/Parkin pathway-mediated autophagy. Overall, our results imply that M2-EXOs play a protective role in the pathogenesis of AD by ameliorating PINK1/Parkin-mediated mitophagy, indicating that it may provide a novel therapeutic strategy to treat AD.

19.
Cell Commun Signal ; 20(1): 56, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35461293

ABSTRACT

BACKGROUND: Microglia-mediated neuroinflammatory response following traumatic brain injury (TBI) is considered as a vital secondary injury factor, which drives trauma-induced neurodegeneration and is lack of efficient treatment. ACT001, a sesquiterpene lactone derivative, is reportedly involved in alleviation of inflammatory response. However, little is known regarding its function in regulating innate immune response of central nervous system (CNS) after TBI. This study aimed to investigate the role and underlying mechanism of ACT001 in TBI. METHODS: Controlled cortical impact (CCI) models were used to establish model of TBI. Cresyl violet staining, evans blue extravasation, neurobehavioral function assessments, immunofluorescence and transmission electron microscopy were used to evaluate therapeutic effects of ACT001 in vivo. Microglial depletion was induced by administering mice with colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622. Cell-cell interaction models were established as co-culture system to simulate TBI conditions in vitro. Cytotoxic effect of ACT001 on cell viability was assessed by cell counting kit-8 and activation of microglia cells were induced by Lipopolysaccharides (LPS). Pro-inflammatory cytokines expression was determined by Real-time PCR and nitric oxide production. Apoptotic cells were detected by TUNEL and flow cytometry assays. Tube formation was performed to evaluate cellular angiogenic ability. ELISA and western blot experiments were used to determine proteins expression. Pull-down assay was used to analyze proteins that bound ACT001. RESULTS: ACT001 relieved the extent of blood-brain barrier integrity damage and alleviated motor function deficits after TBI via reducing trauma-induced activation of microglia cells. Delayed depletion of microglia with PLX5622 hindered therapeutic effect of ACT001. Furthermore, ACT001 alleviated LPS-induced activation in mouse and rat primary microglia cells. Besides, ACT001 was effective in suppressing LPS-induced pro-inflammatory cytokines production in BV2 cells, resulting in reduction of neuronal apoptosis in HT22 cells and improvement of tube formation in bEnd.3 cells. Mechanism by which ACT001 functioned was related to AKT/NFκB/NLRP3 pathway. ACT001 restrained NFκB nuclear translocation in microglia cells through inhibiting AKT phosphorylation, resulting in decrease of NLRP3 inflammasome activation, and finally down-regulated microglial neuroinflammatory response. CONCLUSIONS: Our study indicated that ACT001 played critical role in microglia-mediated neuroinflammatory response and might be a novel potential chemotherapeutic drug for TBI. Video Abstract.


Subject(s)
Brain Injuries, Traumatic , Furans , Microglia , Neuroinflammatory Diseases , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/drug therapy , Cytokines/metabolism , Furans/therapeutic use , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Microglia/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction
20.
Environ Toxicol Pharmacol ; 90: 103794, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34971797

ABSTRACT

Many studies have shown that aflatoxin B1 (AFB1) can cause cytotoxicity in numerous cells and organs induced by oxidative stress. However, the toxic effects and related mechanism of AFB1 on the microglia cells in the spinal cords have not been studied yet. Our results showed that AFB1 significantly reduced the number of microglia cells, increased the oxidants (malonaldehyde and hydrogen peroxide) but decreased the anti-oxidants (superoxide dismutase and total antioxidant capacity) in a dose dependent manner in mice spinal cords. In addition, AFB1 significantly increased the oxidative stress, promoted apoptosis and cell cycle arrest in G2-M phase, and activated NF-κB phosphorylation in BV2 microglia cells. However, the addition of active oxygen scavenger N-acetylcysteine can significantly reduce the ROS production, improve cell cycle arrest, reduce apoptosis, and the expression of phosphorylated NF-κB in BV2 microglia cells. These results indicate that AFB1 induces microglia cells apoptosis through oxidative stress by activating NF-κB signaling pathway.


Subject(s)
Aflatoxin B1/toxicity , Apoptosis/drug effects , Microglia/drug effects , Acetylcysteine/administration & dosage , Animals , Cell Cycle Checkpoints/drug effects , Cells, Cultured , Male , Mice , NF-kappa B/metabolism , Oxidative Stress/drug effects , Phosphorylation , Reactive Oxygen Species/metabolism , Signal Transduction , Spinal Cord/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...