ABSTRACT
In swine farming, antibiotics are often used to reduce disease and promote animal growth. Part of these compounds is not absorbed by the swine body, being excreted and later reaching the treatment systems, soil, and nearby waterbodies. This research sought to investigate the influence of adding ciprofloxacin (CIP) on the anaerobic digestion of swine wastewater. For that, a bench-scale anaerobic sequential batch reactor (ASBR) was used, with 5 L of working volume in six different phases, with volumetric organic loading rate (VOLR) and CIP dosage variation. According to the results, the optimal VOLR for the reactor was 0.60 ± 0.11 gSV L-1 d-1, resulting in biogas productivity of 0.51 ± 0.03 Lbiogas L-1 d-1. After initial stability, adding substrate with 0.5 mgCIP L-1 resulted in an abrupt drop of 82% in the productivity from the 7th to 11th day of addition, coinciding with volatile acids accumulation. Afterward, the reactor recovered and reached apparent stability, with productivity similar to the previous step without the drug. For 2.5 mgCIP L-1 in the substrate, the biogas productivity at equilibrium was 11.8% lower than in the phases with the same VOLR and 0.0 and 0.5 mgCIP L-1. Organic matter removals near 80% were achieved for both dosages. The 16S rRNA metagenomic analyses showed an increase in the relative abundance of most of the phyla found, indicating that the dosages used allowed the acclimatization of microorganisms and possibly the compound biodegradation.
Subject(s)
Microbiota , Wastewater , Animals , Swine , Anaerobiosis , Biofuels , Bioreactors , Ciprofloxacin/pharmacology , RNA, Ribosomal, 16S/genetics , MethaneABSTRACT
This study describes the synthesis of Cu/Nb2O5, Fe/Nb2O5, and Cu-Fe/Nb2O5 catalysts obtained by incorporating copper and/or iron metals into niobium pentoxide (Nb2O5). The new materials were characterized by the following techniques: Thermogravimetric Analysis (TA), surface and pore analysis, X-ray diffractometry (XRD), and Fourier Transform Infrared Spectroscopy (FT-IR). The catalyst was applied in the photocatalytic degradation of salicylic acid (SA). The influence of different parameters (calcined temperature, pH, and metal addition) on the photocatalytic reaction was evaluated. The results indicated that catalysts containing copper were more active and pH influenced the SA degradation process. SA removal results indicated that Cu/Nb2O5 photocatalyst presented a 1.5 fold higher degradation after 120 min in comparison to Cu-Fe/Nb2O5 and 4.6 fold higher than Fe/Nb2O5 catalyst, all them calcined at 400 °C. In tests carried out in the presence of formic acid, increasing the pH from about 3 to 7 allowed an almost 3.4-fold increase in SA degradation for the Cu-Fe/Nb2O5 catalyst calcined at 400 °C.
Subject(s)
Copper , Niobium/chemistry , Oxides/chemistry , Catalysis , Iron/chemistry , Metals , Salicylic Acid , Spectroscopy, Fourier Transform InfraredABSTRACT
The presence of microcontaminants in the water supply system offers adverse impacts. This study analyzed the performance of two powdered activated carbons (PAC1 and PAC2) in the removal of 2,4-D herbicide in ultrapure water (UW) and natural water (NW) to verify the influence of natural organic matter (NOM) on the adsorptive process. The properties of PAC1 and PAC2 were analyzed by textural analysis, FTIR, TG, pH, XDR, NMR. The specific surface area of PAC2 was lower than PAC1 and PAC2 showed better adsorption capacity in UW (37.04 mg.g-1) and in NW (8.06 mg.g-1). The results of experiments performed in natural water showed that both activated carbons had reduced 2,4-D adsorption capacity in the presence of NOM, since it may compete for the same adsorption sites or block the access of the 2,4-D molecule to the pores of the activated carbon. PAC2 showed a higher mesopores percentage, decreasing the effects caused by NOM in 2,4-D adsorption. The use of activated carbons with varying pore sizes for the removal of microcontaminants is recommended, especially in NW. This result contributes to the choice of the adsorbent type to be applied in water treatment plants.
Subject(s)
Herbicides , Water Pollutants, Chemical , Water Purification , 2,4-Dichlorophenoxyacetic Acid , Adsorption , Charcoal/chemistry , Herbicides/chemistry , Powders , Water Purification/methodsABSTRACT
The presence of micropollutants in wastewater is one of the most significant environmental challenges. Particularly, pollutants such as pharmaceutical residues present high stability and resistance to conventional physicochemical and biological degradation processes. Thus, we aimed at immobilizing a laccase enzyme by two different methods: the first one was based on producing alginate-laccase microcapsules through a droplet-based microfluidic system; the second one was based on covalent binding of the laccase molecules on aluminum oxide (Al2O3) pellets. Immobilization efficiencies approached 92.18% and 98.22%, respectively. Laccase immobilized by the two different methods were packed into continuous flow microreactors to evaluate the degradation efficiency of acetaminophen present in artificial wastewater. After cyclic operation, enzyme losses were found to be up to 75 µg/mL and 66 µg/mL per operation cycle, with a maximum acetaminophen removal of 72% and 15% and a retention time of 30 min, for the laccase-alginate microcapsules and laccase-Al2O3 pellets, respectively. The superior catalytic performance of laccase-alginate microcapsules was attributed to their higher porosity, which enhances retention and, consequently, increased the chances for more substrate-enzyme interactions. Finally, phytotoxicity of the treated water was lower than that of the untreated wastewater, especially when using laccase immobilized in alginate microcapsules. Future work will be dedicated to elucidating the routes for scaling-up and optimizing the process to assure profitability.
ABSTRACT
Metaldehyde is a polar, mobile, low molecular weight pesticide that is challenging to remove from drinking water with current adsorption-based micropollutant treatment technologies. Alternative strategies to remove this and compounds with similar properties are necessary to ensure an adequate supply of safe and regulation-compliant drinking water. Biological removal of metaldehyde below the 0.1 µgâ¢L-1 regulatory concentration was attained in pilot-scale slow sand filters (SSFs) subject to bioaugmentation with metaldehyde-degrading bacteria. To achieve this, a library of degraders was first screened in bench-scale assays for removal at micropollutant concentrations in progressively more challenging conditions, including a mixed microbial community with multiple carbon sources. The best performing strains, A. calcoaceticus E1 and Sphingobium CMET-H, showed removal rates of 0.0012 µgâ¢h-1â¢107 cells-1 and 0.019 µgâ¢h-1â¢107 cells-1 at this scale. These candidates were then used as inocula for bioaugmentation of pilot-scale SSFs. Here, removal of metaldehyde by A. calcoaceticus E1, was insufficient to achieve compliant water regardless testing increasing cell concentrations. Quantification of metaldehyde-degrading genes indicated that aggregation and inadequate distribution of the inoculum in the filters were the likely causes of this outcome. Conversely, bioaugmentation with Sphingobium CMET-H enabled sufficient metaldehyde removal to achieve compliance, with undetectable levels in treated water for at least 14 d (volumetric removal: 0.57 µgâ¢L-1â¢h-1). Bioaugmentation did not affect the background SSF microbial community, and filter function was maintained throughout the trial. Here it has been shown for the first time that bioaugmentation is an efficient strategy to remove the adsorption-resistant pesticide metaldehyde from a real water matrix in upscaled systems. Swift contaminant removal after inoculum addition and persistent activity are two remarkable attributes of this approach that would allow it to effectively manage peaks in metaldehyde concentrations (due to precipitation or increased application) in incoming raw water by matching them with high enough degrading populations. This study provides an example of how stepwise screening of a diverse collection of degraders can lead to successful bioaugmentation and can be used as a template for other problematic adsorption-resistant compounds in drinking water purification.
Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Acetaldehyde/analogs & derivatives , Filtration , Water Pollutants, Chemical/analysisABSTRACT
Diclofenac (DCF), ibuprofen (IBU), propranolol (PRO), triclosan (TCS) and linear alkylbenzene sulfonate (LAS) can be recalcitrant in Wastewater Treatment Plants (WWTP). The removal of these compounds was investigated in scale-up (69 L) Expanded Granular Sludge Bed (EGSB) reactor, fed with sanitary sewage from the São Carlos-SP (Brazil) WWTP and 200 mg L-1 of ethanol. The EGSB was operated in three phases: (I) hydraulic retention time (HRT) of 36±4 h; (II) HRT of 20±2 h and (III) HRT of 20±2 h with ethanol. Phases I and II showed no significant difference in the removal of LAS (63 ± 11-65 ± 12 %), DCF (37 ± 18-35 ± 11 %), IBU (43 ± 18-44 ± 16 %) and PRO (46 ± 25-51 ± 23 %) for 13±2-15 ± 2 mg L-1, 106 ± 32-462 ± 294 µg L-1, 166 ± 55-462 ± 213 µg L-1 and 201 ± 113-250 ± 141 µg L-1 influent, respectively. Higher TCS removal was obtained in phase I (72 ± 17 % for 127 ± 120 µg L-1 influent) when compared to phase II (51 ± 13 % for 135 ± 119 µg L-1 influent). This was due to its greater adsorption (40 %) in the initial phase. Phase III had higher removal of DCF (42 ± 10 % for 107 ± 26 µg L-1 influent), IBU (50 ± 15 % for 164 ± 47 µg L-1 influent) and TCS (85 ± 15 % for 185 ± 148 µg L-1 influent) and lower removal of LAS (35 ± 14 % for 12 ± 3 mg L-1 influent) and PRO (-142 ± 177 % for 188 ± 88 µg L-1 influent). Bacteria similar to Syntrophobacter, Smithella, Macellibacteroides, Syntrophus, Blvii28_wastewater-sludge_group and Bacteroides were identified in phase I with relative abundance of 3.1 %-4.7 %. Syntrophobacter was more abundant (15.4 %) in phase II, while in phase III, it was Smithella (12.7 %) and Caldisericum (15.1 %). Regarding the Archaea Domain, Methanosaeta was more abundant in phases I (84 %) and II (67 %), while in phase III it was Methanobacterium (86 %).
Subject(s)
Pharmaceutical Preparations , Sewage , Anaerobiosis , Brazil , HygieneABSTRACT
This study aims to evaluate micropollutant occurrence and removal in a low-middle income country (LMIC) by investigating the occurrence of 28 chemicals from different classes (triclosan, 15 polycyclic aromatic hydrocarbons (PAHs), 4 estrogens and 8 polybrominated diphenyl ether (PBDE) congeners) in three technologically diverse full-scale Brazilian wastewater treatment plants (WWTPs). These chemicals were detected at concentrations similar to those reported in other low-middle income countries (LMICs) and high-income countries (HICs) (0.1-49 µg/L) indicating their widespread use globally and the need for more studies in LMICs that are typically characterized by relatively inadequate wastewater treatment barriers. Among the three different WWTPs investigated for removal of these chemicals, the least energy intensive system, waste stabilization ponds (WSPs), was the most effective (95-99%) compared to the activated sludge (79-94%), and Up-flow sludge blanket reactor (UASB) with trickling filters system (89-95%). These results highlight the potential of WSPs for micropollutant removal-especially in warm climates. However, the effluent from all three WWTP could pose a risk to aquatic organisms when discharged into the receiving waters as the effluent concentrations of triclosan, some estrogens, PAHs and BDE 209 were above European environmental quality standards (EQS) or predicted no effect concentration (PNEC values), indicating that receiving water bodies could benefit from further treatment. In combination, these results help to further understand prevailing concentrations of micropollutants globally and fate in current wastewater treatment systems.
Subject(s)
Water Pollutants, Chemical , Water Purification , Anaerobiosis , Brazil , Sewage , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysisABSTRACT
The current problem related to the supply of drinking water for the metropolitan area of Monterrey, which comprises of five million inhabitants, and the important role played by the El Cuchillo Dam, found downstream of the Santa Catarina River basin as a surface source of drinking water for the city, renders this river an interesting site for assessment. This work evaluates the degree to which the surface water and the subsoil of the river are affected by emerging organic pollutants due to their existence, even at low concentrations, representing a toxic risk enhanced by the absence of stricter standards for regulating these substances. Based on fieldwork, three discharge points that could affect the quality of the surface water were selected: two points on the river stream, and three groundwater wells. Gas chromatography results showed the presence of BisPhenol A (BPA) and bis(2-EthylHexyl) Phthalate (DEHP) in both the surface water and subsoil at different seasons of the year. The highest concentration levels in the samples taken from both types of water were 0.9 and 60 µg L-1 for BPA and DEHP, respectively. Results of this research did not reveal the level at which the aquifer is affected by these substances.
Subject(s)
Benzhydryl Compounds , Phenols , Phthalic Acids , Water Pollutants, Chemical , Cities , Environmental Monitoring , MexicoABSTRACT
Activated biocarbons were prepared using biomass wastes: sugarcane bagasse, coconut shell and endocarp of babassu coconut; as a renewable source of low-cost raw materials and without prior treatments. These activated biocarbons were characterized by textural analysis, solid-state 13C nuclear magnetic resonance spectroscopy, X-ray diffraction and scanning electronic microscopy. Textural analysis results revealed that those activated biocarbons were microporous, with specific surface area values of 547, 991 and 1,068 m2 g-1 from sugarcane bagasse, coconut shell and endocarp of babassu coconut, respectively. The innovation of this work was to evaluate which biomass residue was able to offer the best performance in removing 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) from water by adsorption. Adsorption process of 2,4-D was investigated and the Langmuir and Redlich-Peterson models described best the adsorption process, with R2 values within 0.96-0.99. The 2,4-D removal performance were 97% and 99% for the coconut and babassu biocarbons, respectively. qM parameter values obtained from Langmuir model were 153.9, 233.0 and 235.5 mg g-1 using sugarcane bagasse, coconut shell and endocarp of babassu, respectively. In addition, the adsorption kinetics were described nicely by the second-order model and the Gibbs free energy parameter values were negative, pointing to a spontaneous adsorption, as well.
Subject(s)
2,4-Dichlorophenoxyacetic Acid/isolation & purification , Industrial Waste , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , 2,4-Dichlorophenoxyacetic Acid/chemistry , Adsorption , Agriculture , Biomass , Cellulose/chemistry , Cocos/chemistry , Herbicides/chemistry , Herbicides/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Saccharum/chemistry , Thermodynamics , Water Pollutants, Chemical/chemistry , X-Ray DiffractionABSTRACT
Biodegradation of organic micropollutants is likely to occur due to cometabolism by particular microbial groups. In an effort to identify the stages of anaerobic digestion potentially involved in the biodegradation of the veterinary antimicrobial sulfamethazine (SMZ), the influence of selected carbon sources (sucrose, glucose, fructose, ethanol, meat extract, cellulose, soluble starch, soy oil, acetic acid, propionic acid and butyric acid) on SMZ removal by anaerobic sludge was evaluated in short-term batch experiments. Adsorption to the granular sludge constituted a significant removal mechanism, accounting for 39% of SMZ removal in control experiments. The presence of glucose, fructose, sucrose and meat extract exerted an inducing effect on SMZ degradation, resulting in removal efficiencies of 54, 53, 58 and 61%, respectively, indicating the occurrence of cometabolism. Time courses of sucrose and meat extract degradation revealed markedly distinct organic acid profiles but resulted in similar SMZ removals. Temporal profiles of acetic and propionic acid degradation were not associated with SMZ removal, as changes in SMZ concentration were observed even after the organic acids had been completely removed. The experimental results suggest that SMZ cometabolism is not associated to sucrose hydrolysis, acetoclastic methanogenesis and acetogenesis from propionic acid.
Subject(s)
Anti-Infective Agents/metabolism , Organic Chemicals/metabolism , Sulfamethazine/metabolism , Waste Disposal, Fluid/methods , Adsorption , Anaerobiosis , Biodegradation, Environmental , Manure , Sewage , Sucrose/metabolism , Veterinary Drugs/metabolism , Water Pollutants, Chemical/metabolismABSTRACT
This study aimed at investigating the degradation of fungicide carbendazim (CBZ) via photo-Fenton reactions in artificially and solar irradiated photoreactors at laboratory scale and in a semi-pilot scale Raceway Pond Reactor (RPR), respectively. Acute toxicity was monitored by assessing the sensibility of bioluminescent bacteria (Aliivibrio fischeri) to samples taken during reactions. In addition, by-products formed during solar photo-Fenton were identified by liquid chromatography coupled to mass spectrometry (UFLC-MS). For tests performed in lab-scale, two artificial irradiation sources were compared (UVλ > 254nm and UV-Visλ > 320nm). A complete design of experiments was performed in the semi-pilot scale RPR in order to optimize reaction conditions (Fe2+ and H2O2 concentrations, and water depth). Efficient degradation of carbendazim (> 96%) and toxicity removal were achieved via artificially irradiated photo-Fenton under both irradiation sources. Control experiments (UV photolysis and UV-Vis peroxidation) were also efficient but led to increased acute toxicity. In addition, H2O2/UVλ > 254nm required longer reaction time (60 minutes) when compared to the photo-Fenton process (less than 1 min). While Fenton's reagent achieved high CBZ and acute toxicity removal, its efficiency demands higher concentration of reagents in comparison to irradiated processes. Solar photo-Fenton removed carbendazim within 15 min of reaction (96%, 0.75 kJ L-1), and monocarbomethoxyguanidine, benzimidazole isocyanate, and 2-aminobenzimidazole were identified as transformation products. Results suggest that both solar photo-Fenton and artificially irradiated systems are promising routes for carbendazim degradation.
Subject(s)
Benzimidazoles/analysis , Carbamates/analysis , Hydrogen Peroxide/chemistry , Iron/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Water Purification/methods , Aliivibrio fischeri/drug effects , Benzimidazoles/radiation effects , Benzimidazoles/toxicity , Carbamates/radiation effects , Carbamates/toxicity , Equipment Design , Models, Theoretical , Photolysis , Toxicity Tests, Acute , Water Pollutants, Chemical/radiation effects , Water Pollutants, Chemical/toxicityABSTRACT
In advanced water treatment processes, the degradation efficiency of contaminants depends on the reactivity of the hydroxyl radical toward a target micropollutant. The present study predicts the hydroxyl radical rate constant in water (k OH) for 118 emerging micropollutants, by means of quantitative structure-property relationships (QSPR). The conformation-independent QSPR approach is employed, together with a large number of 15,251 molecular descriptors derived with the PaDEL, Epi Suite, and Mold2 freewares. The best multivariable linear regression (MLR) models are found with the replacement method variable subset selection technique. The proposed five-descriptor model has the following statistics for the training set: [Formula: see text], RMS train = 0.21, while for the test set is [Formula: see text], RMS test = 0.11. This QSPR serves as a rational guide for predicting oxidation processes of micropollutants.
Subject(s)
Hydroxyl Radical/chemistry , Models, Theoretical , Water Pollutants, Chemical/chemistry , Water Purification/methods , Linear Models , Molecular Conformation , Oxidation-Reduction , Quantitative Structure-Activity RelationshipABSTRACT
This work assessed the behaviour of nine pharmaceuticals and/or endocrine disrupting chemicals (EDCs) in demo-scale upflow anaerobic sludge blanket reactors (UASB reactors) coupled to distinct simplified post-treatment units (submerged bed, polishing ponds, and trickling filters) fed on raw sewage taken from a municipality in Brazil. The dissolved concentration of the studied micropollutants in the raw and treated sewage was obtained using solid phase extraction (SPE) followed by analysis in a liquid chromatography system coupled to a hybrid high resolution mass spectrometer consisting of an ion-trap and time of flight (LC-MS-IT-TOF). The UASB reactors demonstrated that they were not appropriate for efficiently removing the assessed compounds from the sewage. Furthermore, this study demonstrated that the hydraulic retention time (HRT) was an important parameter for the removal of the hydrophilic and less biodegradable compounds, such as trimethoprim and sulfamethoxazole. The post-treatment units substantially increased the removal of most target micropollutants present in the anaerobic effluents, with a greater removal of micropollutants in simplified systems that require a large construction area, such as the submerged bed and polishing ponds, probably because of the higher HRT employed. Alternatively, compact post-treatment systems, such as trickling filters, tended to be less effective at removing most of the micropollutants studied, and the type of packing proved to be crucial for determining the fate of such compounds using trickling filters.