Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Vavilovskii Zhurnal Genet Selektsii ; 27(6): 553-564, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38023811

ABSTRACT

Wild and domesticated emmer (ВВАА, 2n = 28) are of significant interest for expanding the genetic diversity of common wheat as sources of a high protein and microelement grain content, resistance to many biotic and abiotic factors. Particular interest in these species is also determined by their close relationship with Triticum aestivum L., which facilitates interspecific hybridization. The objective of this work was to analyze the nature of alien introgressions in hybrid lines from crossing common wheat varieties with T. dicoccoides and T. dicoccum, and to assess the effect of their genome fragments on the cytological stability of introgression lines. A C-banding technique and genotyping with SNP and SSR markers were used to determine localization and length of introgression fragments. Assessment of cytological stability was carried out on the basis of chromosome behavior in microsporogenesis. A molecular cytogenetic analysis of introgression wheat lines indicated that the inclusion of the genetic material of wild and domesticated emmer was carried out mainly in the form of whole arms or large fragments in the chromosomes of the B genome and less extended inserts in the A genome. At the same time, the highest frequency of introgressions of the emmer genome was observed in chromosomes 1A, 1B, 2B, and 3B. The analysis of the final stage of meiosis showed a high level of cytological stability in the vast majority of introgression wheat lines (meiotic index was 83.0-99.0 %), which ensures the formation of functional gametes in an amount sufficient for successful reproduction. These lines are of interest for the selection of promising material with agronomically valuable traits and their subsequent inclusion in the breeding process.

2.
Plant Reprod ; 36(4): 333-342, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37532894

ABSTRACT

KEY MESSAGE: Asymmetric meiosis leading to the release of pollen grains as pseudomonads is a synapomorphy in Cyperaceae, but differences in microspore development are relevant in the family's evolutionary history. Cyperaceae members present atypical microsporogenesis, in which one meiotic product is functional while the other three degenerate, culminating in pseudomonad pollen formation. Differences during development, such as pseudomonad shape and degenerative microspore positioning, are seen throughout the family, but no phylogenetic interpretation has been made regarding these variances thus far. In this study, we analyzed the early- and late-diverging sedge genera Hypolytrum and Eleocharis, respectively, while comparing them to data available in the literature and conducting an ancestral character reconstruction for pseudomonad traits. Light microscopy results show that pseudomonad development in Hypolytrum is homologous to several other sedge genera, presenting apical degenerative microspores. However, pseudomonads are round and centrally arranged in the anther locule in this case, which consists of a pleisiomorphic trait for the family. The basal positioning of degenerative microspores is restricted to Rhynchospora, consisting of an apomorphic trait for this genus. Despite these differences, ultrastructural analysis of Eleocharis pseudomonad revealed shared features with other genera studied, which include variations in chromatin condensation and cytoplasmic turnover in functional cells. These common features seem related to the different cellular fates seen during microspore development and further corroborate the synapomorphic status of pseudomonads in sedges.

3.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511499

ABSTRACT

Early anther morphogenesis is a crucial process for male fertility in plants, governed by the transcription factor SPL. While the involvement of AGAMOUS (AG) in SPL activation and microsporogenesis initiation is well established, our understanding of the mechanisms governing the spatial distribution and precise expression of SPL during anther cell fate determination remains limited. Here, we present novel findings on the abnormal phenotypes of two previously unreported SPL mutants, spl-4 and spl-5, during anther morphogenesis. Through comprehensive analysis, we identified ARF3 as a key upstream regulator of SPL. Our cytological experiments demonstrated that ARF3 plays a critical role in restricting SPL expression specifically in microsporocytes. Moreover, we revealed that ARF3 directly binds to two specific auxin response elements on the SPL promoter, effectively suppressing AG-mediated activation of SPL. Notably, the arf3 loss-of-function mutant exhibits phenotypic similarities to the SPL overexpression mutant (spl-5), characterized by defective adaxial anther lobes. Transcriptomic analysis revealed differential expression of the genes involved in the morphogenesis pathway in both arf3 and spl mutants, with ARF3 and SPL exhibited opposing regulatory effects on this pathway. Taken together, our study unveils the precise role of ARF3 in restricting the spatial expression and preventing aberrant SPL levels during early anther morphogenesis, thereby ensuring the fidelity of the critical developmental process in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Differentiation , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
BMC Plant Biol ; 23(1): 177, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016286

ABSTRACT

BACKGROUND: Primary trisomy is a powerful genetic tool in plants. However, trisomy has not been detected in Populus as a model system for tree and woody perennial plant biology. RESULTS: In the present study, a backcross between Populus alba × Populus glandulosa 'YXY 7#' (2n = 2x = 38) and the triploid hybrid 'Beilinxiongzhu 1#' (2n = 3x = 57) based on the observation of microsporogenesis and an evaluation of the variations in pollen was conducted to create primary trisomy. Many abnormalities, such as premature migration of chromosomes, lagging of chromosomes, chromosome bridges, asymmetric separation, micronuclei, and premature cytokinesis, have been detected during meiosis of the triploid hybrid clone 'Beilinxiongzhu 1#'. However, these abnormal behaviors did not result in completely aborted pollen. The pollen diameter of the triploid hybrid clone 'Beilinxiongzhu 1#' is bimodally distributed, which was similar to the chromosomal number of the backcross progeny. A total of 393 progeny were generated. We provide a protocol for determining the number of chromosomes in aneuploid progeny, and 19 distinct simple sequence repeat (SSR) primer pairs covering the entire Populus genome were developed. Primary trisomy 11 and trisomy 17 were detected in the 2x × 3 x hybrid using the SSR molecular markers and counting of somatic chromosomes. CONCLUSIONS: Nineteen distinct SSR primer pairs for determining chromosomal number in aneuploid individuals were developed, and two Populus trisomies were detected from 2x × 3 x hybrids by SSR markers and somatic chromosome counting. Our findings provide a powerful genetic tool to reveal the function of genes in Populus.


Subject(s)
Populus , Triploidy , Trisomy , Populus/genetics , Gametogenesis, Plant/genetics , Crosses, Genetic , Aneuploidy , Plants/genetics
5.
J Exp Bot ; 74(1): 178-193, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36260406

ABSTRACT

Pollen development is a crucial biological process indispensable for seed set in flowering plants and for successful crop breeding. However, little is known about the molecular mechanisms regulating pollen development in crop species. This study reports a novel male-sterile tomato mutant, pollen deficient 2 (pod2), characterized by the production of non-viable pollen grains and resulting in the development of small parthenocarpic fruits. A combined strategy of mapping-by-sequencing and RNA interference-mediated gene silencing was used to prove that the pod2 phenotype is caused by the loss of Solanum lycopersicum G-type lectin receptor kinase II.9 (SlG-LecRK-II.9) activity. In situ hybridization of floral buds showed that POD2/SlG-LecRK-II.9 is specifically expressed in tapetal cells and microspores at the late tetrad stage. Accordingly, abnormalities in meiosis and tapetum programmed cell death in pod2 occurred during microsporogenesis, resulting in the formation of four dysfunctional microspores leading to an aberrant microgametogenesis process. RNA-seq analyses supported the existence of alterations at the final stage of microsporogenesis, since we found tomato deregulated genes whose counterparts in Arabidopsis are essential for the normal progression of male meiosis and cytokinesis. Collectively, our results revealed the essential role of POD2/SlG-LecRK-II.9 in regulating tomato pollen development.


Subject(s)
Arabidopsis , Biological Phenomena , Solanum lycopersicum , Solanum lycopersicum/genetics , Lectins/genetics , Lectins/metabolism , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Plant Breeding , Pollen/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant
6.
Protoplasma ; 260(2): 571-587, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35947212

ABSTRACT

Brachiaria, a genus from the Poaceae family, is largely cultivated as forage in Brazil. Among the most cultivated varieties of Brachiaria spp., B. brizantha cv. Marandu (syn. Urochloa brizantha) is of great agronomical importance due to the large areas cultivated with this species. This cultivar is apomictic and tetraploid. Sexual diploid genotype is available for this species. The difference in levels of ploidy among sexual and apomictic plants contributes to hindering Brachiaria breeding programs. The induction of haploids and double haploids is of great interest for the generation of new genotypes with potential use in intraspecific crosses. A key factor for the success of this technique is identifying adequate microspore developmental stages for efficient embryogenesis induction. Knowledge of the morphological changes during microsporogenesis and microgametogenesis and sporophytic tissues composing the anther is critical for identifying the stages in which microspores present a higher potential for embryogenic callus and somatic embryo through in vitro culture. In this work, morphological markers were associated with anther and pollen grain developmental stages, through histological analysis. Anther development was divided into 11 stages using morphological and cytological characteristics, from anther with archesporial cells to anther dehiscence. The morphological characteristics of each stage are presented. In addition, the response of stage 8 anthers to in vitro culture indicates microspores initiating somatic embryogenic pathway.


Subject(s)
Brachiaria , Brachiaria/genetics , Plant Breeding , Poaceae/genetics , Reproduction , Tetraploidy
7.
Plants (Basel) ; 11(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35956551

ABSTRACT

Solidago canadensis L., native to North America, has become a troublesome invasive plant worldwide due to its strong sexual reproductive capacity. Although there have been studies on some stages of sexual reproduction, there has been no systematic description of the process. In this study, we observed capitulum development, the occurrence of megasporogenesis and microsporogenesis, and embryo development using a scanning electron microscope. The results showed that there was a close relationship between the length of the capitulum bud and the stage in the reproductive process. Capitulum development appeared when the length of the capitate inflorescence was less than 1.73 ± 0.08 mm. The meiosis of microspores occurred when the length of the capitate inflorescence ranged from 2.20 ± 0.07 mm to 3.50 ± 0.10 mm, and mature pollen grains and embryo sacs formed when the length of the capitate inflorescence was greater than 5.15 ± 0.14 mm. Based on the available information, a reproductive calendar showing the key reproductive events from capitulum development to seed formation has been prepared. These processes may be related to its inherent temperature adaptation and non-synchronization of flowering, which may avoid embryo abortion during embryo development and consequently as a key step for its successful invasion in China. These results open up new horizons for effective prevention and control of spread in the future.

8.
Front Plant Sci ; 13: 862813, 2022.
Article in English | MEDLINE | ID: mdl-35557738

ABSTRACT

Seedlessness is one of the most important agronomic traits in mandarins on the fresh fruit market. Creation of triploid plants is an important breeding strategy for development of new commercial varieties of seedless citrus. To this end, one strategy is to perform sexual hybridizations, with tetraploid genotypes as male parents. However, while seed development has been widely studied in citrus, knowledge of key steps such as microsporogenesis and microgametogenesis, is scarce, especially in polyploids. Therefore, we performed a study on the effect of ploidy level on pollen development by including diploid and tetraploid (double diploid) genotypes with different degrees of pollen performance. A comprehensive study on the pollen ontogeny of diploid and doubled diploid "Sanguinelli" blood orange and "Clemenules" clementine was performed, with focus on pollen grain germination in vitro and in planta, morphology of mature pollen grains by scanning electron microscopy (SEM), cytochemical characterization of carbohydrates by periodic acid-Shiff staining, and specific cell wall components revealed by immunolocalization. During microsporogenesis, the main difference between diploid and doubled diploid genotypes was cell area, which was larger in doubled diploid genotypes. However, after increase in size and vacuolization of microspores, but before mitosis I, doubled diploid "Clemenules" clementine showed drastic differences in shape, cell area, and starch hydrolysis, which resulted in shrinkage of pollen grains. The loss of fertility in doubled diploid "Clemenules" clementine is mainly due to lack of carbohydrate accumulation in pollen during microgametogenesis, especially starch content, which led to pollen grain abortion. All these changes make the pollen of this genotype unviable and very difficult to use as a male parent in sexual hybridization with the objective of recovering large progenies of triploid hybrids.

9.
Plants (Basel) ; 11(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35161338

ABSTRACT

Pollen grains of flowering plants display a fascinating diversity of forms. The observed diversity is determined by the developmental mechanisms involved in the establishment of pollen morphological features. Pollen grains are generally surrounded by an extremely resistant wall displaying apertures that play a key role in reproduction, being the places at which pollen tube growth is initiated. Aperture number, structure, and position (collectively termed 'aperture pattern') are determined during microsporogenesis, which is the earliest step of pollen ontogeny. Here, we review current knowledge about aperture pattern developmental mechanisms and adaptive significance with respect to plant reproduction and how advances in these fields shed light on our understanding of aperture pattern evolution in angiosperms.

10.
Epigenomes ; 5(4)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34968249

ABSTRACT

Plants are exposed to highly fluctuating effects of light, temperature, weather conditions, and many other environmental factors throughout their life. As sessile organisms, unlike animals, they are unable to escape, hide, or even change their position. Therefore, the growth and development of plants are largely determined by interaction with the external environment. The success of this interaction depends on the ability of the phenotype plasticity, which is largely determined by epigenetic regulation. In addition to how environmental factors can change the patterns of genes expression, epigenetic regulation determines how genetic expression changes during the differentiation of one cell type into another and how patterns of gene expression are passed from one cell to its descendants. Thus, one genome can generate many 'epigenomes'. Epigenetic modifications acquire special significance during the formation of gametes and plant reproduction when epigenetic marks are eliminated during meiosis and early embryogenesis and later reappear. However, during asexual plant reproduction, when meiosis is absent or suspended, epigenetic modifications that have arisen in the parental sporophyte can be transmitted to the next clonal generation practically unchanged. In plants that reproduce sexually and asexually, epigenetic variability has different adaptive significance. In asexuals, epigenetic regulation is of particular importance for imparting plasticity to the phenotype when, apart from mutations, the genotype remains unchanged for many generations of individuals. Of particular interest is the question of the possibility of transferring acquired epigenetic memory to future generations and its potential role for natural selection and evolution. All these issues will be discussed to some extent in this review.

11.
Plant Reprod ; 34(4): 307-319, 2021 12.
Article in English | MEDLINE | ID: mdl-34173886

ABSTRACT

KEY MESSAGE: Anther development and dehiscence is considered from an evolutionary perspective to identify drivers for differentiation, functional conservation and to identify key questions for future male reproduction research. Development of viable pollen and its timely release from the anther are essential for fertilisation of angiosperm flowers. The formation and subsequent dehiscence of the anther are under tight regulatory control, and these processes are remarkably conserved throughout the diverse families of the angiosperm clade. Anther development is a complex process, which requires timely formation and communication between the multiple somatic anther cell layers (the epidermis, endothecium, middle layer and tapetum) and the developing pollen. These layers go through regulated development and selective degeneration to facilitate the formation and ultimate release of the pollen grains. Insight into the evolution and divergence of anther development and dehiscence, especially between monocots and dicots, is driving greater understanding of the male reproductive process and increased, resilient crop yields. This review focuses on anther structure from an evolutionary perspective by highlighting their diversity across plant species. We summarise new findings that illustrate the complexities of anther development and evaluate how they challenge established models of anther form and function, and how they may help to deliver future sustainable crop yields.


Subject(s)
Flowers , Magnoliopsida , Flowers/genetics , Magnoliopsida/genetics , Plants , Pollen/genetics
12.
Physiol Mol Biol Plants ; 27(5): 959-968, 2021 May.
Article in English | MEDLINE | ID: mdl-34092947

ABSTRACT

Camellia oleifera is believed to exhibit a complex intraspecific polyploidy phenomenon. Abnormal microsporogenesis can promote the formation of unreduced gametes in plants and lead to sexual polyploidy, so it is hypothesized that improper meiosis probably results in the formation of natural polyploidy in Camellia oleifera. In this study, based on the cytological observation of meiosis in pollen mother cells (PMCs), we found natural 2n pollen for the first time in Camellia oleifera, which may lead to the formation of natural polyploids by sexual polyploidization. Additionally, abnormal cytological behaviour during meiosis, including univalent chromosomes, extraequatorial chromosomes, early segregation, laggard chromosomes, chromosome stickiness, asynchronous meiosis and deviant cytokinesis (monad, dyads, triads), was observed, which could be the cause of 2n pollen formation. Moreover, we confirmed a relationship among the length-width ratio of flower buds, stylet length and microsporogenesis. This result suggested that we can immediately determine the microsporogenesis stages by phenotypic characteristics, which may be applicable to breeding advanced germplasm in Camellia oleifera. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01002-5.

13.
Front Plant Sci ; 12: 669424, 2021.
Article in English | MEDLINE | ID: mdl-34113367

ABSTRACT

Development of double haploids is an elusive current breeding objective in Cannabis sativa L. We have studied the whole process of anther and pollen grain formation during meiosis, microsporogenesis, and microgametogenesis and correlated the different microgametophyte developmental stages with bud length in plants from varieties USO31 and Finola. We also studied microspore and pollen amyloplast content and studied the effect of a cold pretreatment to excised buds prior to microspore in vitro culture. Up to 476,903 microspores and pollen grains per male flower, with in vivo microspore viability rates from 53.71 to 70.88% were found. A high uniformity in the developmental stage of microspores and pollen grains contained in anthers was observed, and this allowed the identification of bud length intervals containing mostly vacuolate microspores and young bi-cellular pollen grains. The starch presence in C. sativa microspores and pollen grains follows a similar pattern to that observed in species recalcitrant to androgenesis. Although at a low frequency, cold-shock pretreatment applied on buds can deviate the naturally occurring gametophytic pathway toward an embryogenic development. This represents the first report concerning androgenesis induction in C. sativa, which lays the foundations for double haploid research in this species.

14.
Plant Signal Behav ; 16(6): 1913308, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33853501

ABSTRACT

Comparing cellular features in microsporogenesis across taxa may yield important clues to evolution of meiosis in plants. We previously provided evidence that bidirectional cytokinesis occurs in M. denudata and suggested that the same may also occur in P. trimera based on a published report. Both M. denudata and P. trimera are basal angiosperm species that belong to the order of Magnoliales. For comparison, only unidirectional cytokinesis, either centripetal or centrifugal cytokinesis, has been found in microsporogenesis in eudicots and monocots. These observations raise the possibility that bidirectional cytokinesis is a common feature of microsporogenesis in basal angiosperms but not in eudicots and monocots. In this report, we provide evidence that bidirectional cytokinesis also occurs in another basal angiosperm species, Nymphaea colorata. The new findings, together with the previous findings, indicate that bidirectional cytokinesis is a prominent feature of microsporogenesis in at least some basal angiosperm species, and it occurs independently of cytokinesis types with respect to the timing of cytokinesis and tetrad configurations.


Subject(s)
Cell Polarity/physiology , Cytokinesis/physiology , Gametogenesis, Plant/physiology , Meiosis/physiology , Nymphaea/growth & development , Pollen/growth & development
15.
Micron ; 140: 102962, 2021 01.
Article in English | MEDLINE | ID: mdl-33099208

ABSTRACT

Microsporogenesis and microgametogenesis are unusual in sedges (Cyperaceae), the third largest monocotyledonous family, as three microspores are aborted in favor of a single functional microspore. However, studies using light microscopy show that megasporogenesis and megagametogenesis occur normally. Nevertheless, the lack of ultrastructural details limits our knowledge of female gametophyte development in this family. Given the importance of morphological studies of reproductive structures, ovules and megagametophytes of Rhynchospora pubera were analyzed under transmission electron microscopy for the first time. Overall, ovules presented features similar to those described for the family, but ultrastructural details revealed an absence of a clear boundary between the egg cell and the central cell cytoplasm. Most interestingly, antipodal and nucellar cells showed several signs of vacuolar cell death, which suggest that programmed autolysis in sporogenous and gametophytic tissue is common in gametophyte development in the Cyperaceae. This may be related to the reproductive success of this family.


Subject(s)
Cyperaceae/anatomy & histology , Microscopy, Electron, Transmission/methods , Ovule/ultrastructure , Autophagy , Cell Death , Cyperaceae/ultrastructure , Meiosis , Vacuoles/pathology
16.
BMC Plant Biol ; 20(Suppl 1): 201, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33050882

ABSTRACT

BACKGROUND: Triticum kiharae (AtAtGGDD, 2n = 42) is of interest for the improvement of bread wheat as a source of high grain protein and gluten content, as well as resistance to many diseases. The use of T. kiharae for the improvement of T. aestivum L. is complicated by the fact that the homology degree of their genomes is low and this leads to an unbalanced set of chromosomes in the gametes of its first generations and the elimination of some genotypes. The aim of this study was to analyze the nature of alien introgressions and their effect on the cytological stability of hybrids obtained from crossing of bread wheat varieties with T. kiharae. RESULTS: Using C-banding, the presence of entire chromosomes of T. kiharae in the karyotypes of hybrid lines (intergenomic substitution 2G/2B), chromosome arms (centric translocation Т2AtS:2AL) and large inserts in the form of terminal translocations involving chromosomes of 1st, 3rd and 5th homoeologous groups of B- and G-genomes were found. Molecular markers revealed short introgression of T. kiharae into the genome of common wheat varieties. The highest introgression frequency was shown for 1A, 1B, 2A, 5B, and 6A chromosomes, while no foreign chromatin was detected in 4A and 4B chromosomes. A high level of cytological stability (a meiotic index of 88.18-93.0%) was noted for the majority of introgression lines. An exception was found for the lines containing the structural reorganization of chromosome 5B, affecting the main genes of chromosome synapsis in terms of their functioning. CONCLUSIONS: During the stabilization of hybrid karyotypes, the introgression of genetic material from T. kiharae into the genome of T. aestivum occurs in the form of short fragments detectable only by molecular markers and in the form of whole chromosomes (intergenomic substitution) and their large fragments (centric and terminal translocations). The level of cytological stability achieved in F10 by the majority of introgression lines ensures the formation of functional gametes sufficient for the successful reproduction of the obtained hybrids.


Subject(s)
Genetic Introgression , Triticum/genetics , Chromosome Banding , Chromosomes, Plant , Crosses, Genetic , Cytological Techniques , Karyotype , Microsatellite Repeats , Translocation, Genetic
17.
Planta ; 252(3): 39, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32797317

ABSTRACT

MAIN CONCLUSION: In Brachiaria brizantha BbrizSERK1, BbrizSERK2 and BbrizSERK3 were identified. SERK expression marks somatic embryogenesis, sexual MMC, and sexual and apomictic PMC. BbrizSERK3 might have a regulatory role in reproductive development. Somatic embryogenesis receptor-like kinase (SERK) consists of plasma membrane receptor genes that have been characterized in various species, associated with several aspects of plant development, including reproduction. SERK genes are involved in anther development and in early embryo development in sexual and asexual seed formation. To comprehend the complexity of the SERK genes and their function in Brachiaria reproduction, we performed a homology-based search in a genomic database of a sexual B. brizantha and identified sequences of three SERK genes, BbrizSERK1, BbrizSERK2, and BbrizSERK3. RNASeq data showed equivalent abundance of BbrizSERK1 and BbrizSERK2 transcripts in ovaries at early megasporogenesis of sexuals and apomicts, while BbrizSERK3 transcripts were more abundant in ovaries of sexuals than in apomicts. BbrizSERK3 results in three coding sequences due to alternative splicing, among them Variant 1 results in a protein with all the predicted domains of a SERK. BbrizSERK transcripts were detected in male reproductive tissues of both sexual and apomictic plants, suggesting a role in controlling anther development. BbrizSERK transcripts were detected early in ovule development, in the integuments, and in the megaspore mother cell of the sexual plant, but not in the cells that give rise to apomictic embryo sacs, suggesting a role in female reproductive development of sexuals. This paper provides evidences that SERK genes plays a role in the onset and establishment of somatic embryogenesis and in the reproductive development of B. brizantha and suggests a distinct role of BbrizSERK in apomixis initiation.


Subject(s)
Brachiaria/growth & development , Brachiaria/genetics , Gene Expression Regulation, Plant , Plant Development/genetics , Reproduction/genetics , Seeds/growth & development , Seeds/genetics , Gene Expression Regulation, Developmental , Genes, Plant , Plant Somatic Embryogenesis Techniques
18.
J Appl Genet ; 61(4): 477-488, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32715437

ABSTRACT

Genic male sterility (GMS) is an effective pollination control system applied in the hybrid breeding of Brassica napus L. Shaan-GMS is a spontaneous mutant of dominant GMS in B. napus. In this research, anther abortion in the homozygous two-type line 9A15AB derived from Shaan-GMS was characterised with the combined use of light microscopy and transmission electron microscopy. Results indicated that the most striking differences between the fertile and sterile plants occurred in the tapetum in the early microsporocyte stage. In sterile plants, the tapetal cells were irregularly arranged, multi-layered and occupied the growing space of microsporocytes. When entering into meiosis, the tapetum cells degraded and the cytoplasm fused. Some oval monolayer or bilayer membrane organelles existed in the tapetal cells in sterile anthers. Mitochondria in the tapetal cells were abnormal, and middle layer cells degraded early. Pollen mother cells of Shaan-GMS degenerated at the start of meiosis and ceased at the anaphase I stage, with no dyads or tetrads formed. The combined effects of the abnormal development of the tapetum, the middle layer cells and meiosis lead to male sterility in Shaan-GMS. Inheritance of male sterility of Shaan-GMS is controlled by a monogenically multiallelic locus with three different alleles (Ms, ms and Mf), with a relationship expressed as Mf > Ms and Ms > ms. The findings help lay the foundation for illustrating the mechanism of male sterility and the utilisation of Shaan-GMS in rapeseed.


Subject(s)
Brassica napus/genetics , Breeding , Flowers/genetics , Plant Infertility/genetics , Alleles , Brassica napus/growth & development , Flowers/growth & development , Homozygote , Pollen/genetics
19.
Protoplasma ; 257(5): 1473-1485, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32588232

ABSTRACT

Representatives of the family Commelinaceae are characterised by morphologically, anatomically, or functionally diverse stamens (common presence of staminodia), which produce diverse pollen grains. The heteromorphism of stamens noted in all Commelinaceae species is a particular example of the evolutionary modification of the androecium in entomophilous plants. The morphological, anatomical, and cytological analyses of the androecium as well as the analysis of the microsporogenesis process and the formation of the male gametophyte in Tinantia erecta (a species belonging to the family Commelinaceae) have demonstrated that the morphologically diverse stamens in this species do not differ anatomically. Furthermore, the process of microsporogenesis followed by gametogenesis occurring in the stamens yields pollen grains with the same morphology, cytology, and function. Therefore, despite the large morphological diversity of the androecium, all anthers in T. erecta produce male gametophytes that are identical in every respect, which is a unique feature in species from the Commelinaceae family. Additionally, T. erecta is capable of self-pollination; hence, it can be claimed that the species uses its entire reproductive potential to produce seeds and a next generation.


Subject(s)
Commelinaceae/chemistry , Flowers/chemistry
20.
Rev. biol. trop ; 68(1)mar. 2020.
Article in English | LILACS-Express | LILACS | ID: biblio-1507663

ABSTRACT

Introduction: Most of the New World members of the Loranthaceae comprise a clade that corresponds to the tribe Psittacantheae. Previous studies on floral anatomy and development in this tribe have concentrated on the highly diversified subtribe Psittacanthinae, while the smaller subtribe Ligarineae has received less attention. A detailed anatomical description of Tristerix longebracteatus helps to fill this information gap. Objetive: The present research analyzes the anatomy of Tristerix longebracteatus flowers, detailing the structure of androecium and gynoecium, including megasporogenesis and microsporogenesis. Methodology: Anatomical serial sections of flowers at different stages of development were prepared, following processing with fixation techniques, incorporation in paraffin, microtome sectioning and staining with Astra-blue and basic fuchsin. Results: The large-sized flowers of Tristerix longebracteatus present a complex pattern of vascularization with 18-20 vascular bundles at the base of the inferior ovary. A group of three vascular bundles irrigate the 4-5 petals and associated stamens, and ten bundles continue through the gynoecium. The androecium is composed of four or five anthers with simultaneous microsporogenesis. The gynoecium as a single ovarian cavity with a central mamelon in which the archesporial tissue is oriented towards the style. The base of the style forms a nectary similar to that found in the sister genus Ligaria. Conclusions: The gynoecium with a single ovarian cavity and central mamelon is a condition shared by Tristerix (subtribe Ligarinae) and all the genera of the subtribe Psittacanthinae, except Tripodanthus. The base of the style forms a nectary similar to that found in the sister genus Ligaria. This type of stylar nectary is of taxonomic value for grouping species of the subtribe Ligarinae and difers from the annular nectary of subtribe Psittacanthinae.


Introducción: La mayoría de los miembros de la familia de Loranthaceae del nuevo mundo comprenden un clado que corresponde a la tribu Psittacantheae. Estudios previos de la anatomía floral y desarrollo en esta tribu se han concentrado en la alta diversidad de la subtribu Psittacanthinae, en tanto que la subtribu Ligarinae ha presentado menor atención. Una descripción detallada de la anatomía de Tristerix longebracteatus contribuye a llenar vacíos de información. Objetivo: la presente investigación analiza la anatomía floral de Tristerix longebracteatus detallando la estructura del androceo, gineceo, incluyendo los procesos de megaesporogenesis y microesporogenesis. Metodología: Se prepararon secciones anatómicas seriadas de flores en diferentes etapas de desarrollo, con técnicas de fijación, incorporación en parafina, corte en micrótomo y doble tinción con azul de astra y fucsina. Resultados: Las flores de gran tamaño de Tristerix longebracteatus presentan un complejo patrón de vascularización con 18-20 haces vasculares en la base del ovario inferior. Un grupo de tres haces vasculares irrigan los 4-5 pétalos y estambres asociados, y 10 haces vasculares continúan a través del gineceo. El androecio está compuesto por cuatro o cinco anteras con microsporogénesis simultánea. El gineceo presenta una sola cavidad ovárica con un mamelón central en el que el tejido arquesporial está orientado hacia el estilo. La base del estilo forma un nectario similar al que se encuentra en el género hermano Ligaria. Conclusiones: El gineceo con una sola cavidad ovárica y un mamelón central es una condición compartida por Tristerix (subtribu Ligarinae) y todos los géneros de la subtribu Psittacanthinae, excepto Tripodanthus. La base del estilo forma un nectario similar al que se encuentra en el género hermano Ligaria. Este tipo de nectario estilar tiene valor taxonómico agrupando las especies de la subtribu Ligarinae en contraste con el anillo nectarífero presente en la subtribu Psittacanthinae.

SELECTION OF CITATIONS
SEARCH DETAIL
...