Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Toxicon ; 247: 107844, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960289

ABSTRACT

A Mimosa pudica var. unijuga-associated toxicity affecting horses occurred in Araguari, Triângulo Mineiro, Southeast Brazil. Affected horses had gradual hair loss of the mane and tail and endocrine dermatosis after grazing for three months during the dry season on a paddock invaded by the plant. The main histological lesions include compact ortho-keratotic hyperkeratosis and numerous flame follicles. Toxicological analysis by HPLC-UV demonstrated 0.8 mg/g of mimosine in the leaves.

2.
J Pharm Bioallied Sci ; 16(Suppl 2): S1330-S1334, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882777

ABSTRACT

A new area of nanotechnology, "green synthesis" studies nanomaterials utilizing natural biomaterials like plants, flowers, and microbesGreen nanoparticle synthesis offers various benefits, such as cost efficiency, pollution reduction, and environmental compatibility. Among nanoparticles, metallic variants have garnered the greatest attention due to their unique physical and chemical attributes. Strontium (Sr), known for promoting growth, aiding bone regeneration, and stimulating calcium signaling, holds significance in the medical domain. Consequently, Sr-based nanoparticles have gained interest in medical and dental applications due to their resemblance to calcium properties. Researchers worldwide are drawn to Mimosa pudica because of its pharmacological properties, including its ability to treat wounds, and its anti-diabetic, anti-toxin, anti-hepatotoxin, and antioxidant effects. Mimosa pudica mediated strontium nanoparticles' antioxidant activity was tested against FRAP assay, H2O2 assay, and DPPH assay with ascorbic acid as standard, where in all three assays, increasing concentration of Mimosa pudica mediated strontium nanoparticles exhibited increasing antioxidant activity which was similar to the ascorbic acid. Hence, this can be used as a novel antioxidant agent in the near future.

3.
J Pharm Bioallied Sci ; 16(Suppl 2): S1340-S1344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882787

ABSTRACT

Nanotechnology is emerging as a promising approach in the development of novel therapeutic strategies. Nanoparticles, due to their unique physicochemical properties and small size, have the potential to improve the delivery of therapeutic agents, enhance their bioavailability, and increase their efficacy. Among various types of nanoparticles, strontium nanoparticles have gained attention due to their potential antidiabetic activity and cytotoxic effects against cancer cells. Mimosa pudica, also known as "Sensitive Plant" or "Touch-Me-Not," is a medicinal plant known for its diverse pharmacological activities, including antidiabetic and anticancer properties. Recent research has focused on the synthesis of strontium nanoparticles by using Mimosa pudica as a green and sustainable approach. These nanoparticles have shown promising results in terms of their antidiabetic activity and cytotoxic effects against cancer cells. Thus, in this study, the antidiabetic effect was studied using the alpha-amylase inhibitor assay, and the cytotoxic effect was studied using the brine shrimp lethality assay. In these assays, increasing concentration of Mimosa pudica-mediated strontium nanoparticles exhibited increasing antidiabetic and cytotoxic effects, which was similar to the standard used, which is acarbose. Hence, this can be used as a novel antidiabetic and cytotoxic agent in the future.

4.
J Pharm Bioallied Sci ; 16(Suppl 2): S1335-S1339, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882793

ABSTRACT

Background: Considerable focus has been directed toward green synthesis as a dependable, sustainable, and environmentally friendly approach for synthesizing various nanomaterials. Mimosa pudica, a quickly grown pantropical weed, has been used widely for its anti-inflammatory and antimicrobial activity in traditional medicine. The development of strontium-based nanoparticles and nanoparticles linked with strontium has garnered attention in recent years due to their established utility in diverse domains such as effective drug distribution, bioimaging, cancer treatment, and advancements in bone engineering. Aims and Objectives: To examine the green synthesise of strontium nanoparticles using Mimosa pudica and its anti-inflammatory activity. Material and Methods: Mimosa pudica-mediated strontium nanoparticles' anti-inflammatory activity was tested using bovine serum albumin denaturation assay, egg albumin denaturation assay, and membrane stabilization assay with diclofenac sodium as the standard. Result: In all three assays, increasing concentration of Mimosa pudica-mediated strontium nanoparticles exhibited an increasing anti-inflammatory effect, which was similar to the standard diclofenac sodium. Conclusion: Consequently, this holds promise as a new potential anti-inflammatory agent in forthcoming applications.

5.
Int J Biol Macromol ; 270(Pt 2): 132390, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754657

ABSTRACT

Mimosa pudica (MP) is an ornamental plant due to seismonastic movements that close leaves and fall petioles in response to touch, wind, light, heat, cold, and vibration. The seeds of MP secrete smart, biocompatible, and non-toxic mucilage that has captivated researchers due to its widespread use in various fields such as pharmaceuticals and biotechnology. The mucilage is responsive to pH, salt solutions, and solvents and acts as a binder in tablet formulations for targeted drug delivery. The mucilage is chemically modifiable via acetylation, succinylation, and graft polymerization. Chemically modified MP mucilage appeared supersorbent for heavy metal ion uptake. Nanoparticles synthesized using mucilage as a reducing and capping agent displayed significant antimicrobial and wound-healing potential. Crosslinking of mucilage using citric acid as a crosslinking agent offers a sustained release of drugs. The present review is aimed to discuss extraction optimization, structure, modification, and the stimuli-responsive nature of mucilage. The review article will cover the potential of mucilage as emulsifying, suspending, bio-adhesive, gelling, and thickening agent. The role of mucilage as a capping and reducing agent for nanoparticles will also be discussed.


Subject(s)
Mimosa , Plant Mucilage , Seeds , Seeds/chemistry , Mimosa/chemistry , Plant Mucilage/chemistry , Nanoparticles/chemistry
6.
J Ethnopharmacol ; 330: 118226, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38670401

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing pulmonary disorder that has a poor prognosis and high mortality. Although there has been extensive effort to introduce several new anti-fibrotic agents in the past decade, IPF remains an incurable disease. Mimosa pudica L., an indigenous Vietnamese plant, has been empirically used to treat respiratory disorders. Nevertheless, the therapeutic effects of M. pudica (MP) on lung fibrosis and the mechanisms underlying those effects remain unclear. AIM OF THE STUDY: This study investigated the protective effect of a crude ethanol extract of the above-ground parts of MP against pulmonary fibrogenesis. MATERIALS AND METHODS: Inflammatory responses triggered by TNFα in structural lung cells were examined in normal human lung fibroblasts and A549 alveolar epithelial cells using Western blot analysis, reverse transcription-quantitative polymerase chain reaction assays, and immunocytochemistry. The epithelial-to-mesenchymal transition (EMT) was examined via cell morphology observations, F-actin fluorescent staining, gene and protein expression measurements, and a wound-healing assay. Anti-fibrotic assays including collagen release, differentiation, and measurements of fibrosis-related gene and protein expression levels were performed on TGFß-stimulated human lung fibroblasts and lung fibroblasts derived from mice with fibrotic lungs. Finally, in vitro anti-fibrotic activities were validated using a mouse model of bleomycin-induced pulmonary fibrosis. RESULTS: MP alleviated the inflammatory responses of A549 alveolar epithelial cells and lung fibroblasts, as revealed by inhibition of TNFα-induced chemotactic cytokine and chemokine expression, along with inactivation of the MAPK and NFκB signalling pathways. MP also partially reversed the TGFß-promoted EMT via downregulation of mesenchymal markers in A549 cells. Importantly, MP decreased the expression levels of fibrosis-related genes/proteins including collagen I, fibronectin, and αSMA; moreover, it suppressed collagen secretion and prevented myofibroblast differentiation in lung fibroblasts. These effects were mediated by FOXO3 stabilization through suppression of TGFß-induced ERK1/2 phosphorylation. MP consistently protected mice from the onset and progression of bleomycin-induced pulmonary fibrosis. CONCLUSION: This study explored the multifaceted roles of MP in counteracting the pathobiological processes of lung fibrosis. The results suggest that further evaluation of MP could yield candidate therapies for IPF.


Subject(s)
Epithelial-Mesenchymal Transition , Forkhead Box Protein O3 , MAP Kinase Signaling System , Plant Extracts , Pulmonary Fibrosis , Animals , Humans , Male , Mice , A549 Cells , Antifibrotic Agents/pharmacology , Bleomycin , Epithelial-Mesenchymal Transition/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Forkhead Box Protein O3/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Lung/drug effects , Lung/pathology , Lung/metabolism , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced
7.
Int J Biol Macromol ; 268(Pt 2): 131832, 2024 May.
Article in English | MEDLINE | ID: mdl-38663704

ABSTRACT

In this comprehensive investigation, a novel pH-responsive hydrogel system comprising mimosa seed mucilage (MSM), ß-cyclodextrin (ß-CD), and methacrylic acid (MAA) was developed via free radical polymerization technique to promote controlled drug delivery. The hydrogel synthesis involved strategic variations in polymer, monomer, and crosslinker content in fine-tuning its drug-release properties. The resultant hydrogel exhibited remarkable pH sensitivity, selectively liberating the model drug (Capecitabine = CAP) under basic conditions while significantly reducing release in an acidic environment. Morphological, thermal, and structural analyses proved that CAP has a porous texture, high stability, and an amorphous nature. In vitro drug release experiments showcased a sustained and controlled release profile. Optimum release (85.33 %) results were recorded over 24 h at pH 7.4 in the case of MMB9. Pharmacokinetic evaluation in healthy male rabbits confirmed bioavailability enhancement and sustained release capabilities. Furthermore, rigorous toxicity evaluations and histopathological analyses ensured the safety and biocompatibility of the hydrogel. This pH-triggered drug delivery system can be a promising carrier system for drugs involving frequent administrations.


Subject(s)
Delayed-Action Preparations , Drug Liberation , Hydrogels , Mimosa , Seeds , beta-Cyclodextrins , Hydrogen-Ion Concentration , Animals , Rabbits , Hydrogels/chemistry , Mimosa/chemistry , Seeds/chemistry , beta-Cyclodextrins/chemistry , Male , Drug Delivery Systems , Plant Mucilage/chemistry , Drug Carriers/chemistry , Polymethacrylic Acids/chemistry
8.
Biomimetics (Basel) ; 8(8)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38132542

ABSTRACT

In light of pressing global health concerns, the significance of indoor air quality in densely populated structures has been emphasized. This research introduces the Mimosa kinetic façade, an innovative design inspired by the adaptive responsiveness of the Mimosa plant to environmental stimuli. Traditional static architectural façades often hinder natural ventilation, leading to diminished air quality with potential health and cognitive repercussions. The Mimosa kinetic façade addresses these challenges by enhancing effective airflow and facilitating the removal of airborne contaminants. This study evaluates the façade's impact on quality of life and its aesthetic contribution to architectural beauty, utilizing the biomimicry design spiral for a nature-inspired approach. Computational simulations and physical tests were conducted to assess the ventilation capacities of various façade systems, with a particular focus on settings in Bangkok, Thailand. The study revealed that kinetic façades, especially certain patterns, provided superior ventilation compared to static ones. Some patterns prioritized ventilation, while others optimized human comfort during extended stays. Notably, the most effective patterns of the kinetic façade inspired by the Mimosa demonstrated a high air velocity reaching up to 12 m/s, in contrast to the peak of 2.50 m/s in single-sided façades (traditional façades). This highlights the kinetic façade's potential to rapidly expel airborne particles from indoor spaces, outperforming traditional façades. The findings underscore the potential of specific kinetic façade patterns in enhancing indoor air quality and human comfort, indicating a promising future for kinetic façades in architectural design. This study aims to achieve an optimal balance between indoor air quality and human comfort, although challenges remain in perfecting this equilibrium.

9.
Chem Biodivers ; 20(10): e202301049, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37728228

ABSTRACT

Mimosa pudica L. (MP) is well-known plant in traditional medicinal system, especially in India. Unfortunately, leaves of MP are less explored. To determine the food and nutritional value of the neglected part of Mimosa pudica L. (MP), that is MP leaves, phytochemicals and metal ions of MP were quantified by newly developed HPLC and ICPOES-based methods. The content of phytochemicals observed using HPLC analysis for chlorogenic acid, catechin, and epicatechin was 141.823 (±8.171), 666.621 (±11.432), and 293.175 (±12.743) µg/g, respectively. Using GC/MS/MS analysis, fatty acid like oleic acid were identified. In ICP-OES analysis, a significant content of Na, K, Ca, Cu, Fe, Mg, Mn, and Zn was observed. The observed TPC and TFC for MP leaf extracts was 44.327 (±1.041) mg GAE/ g of wt. and 214.217 (±4.372) mg QCE/ g of wt., respectively. The DPPH assay depicted a strong antioxidant activity of MP leaf extracts with IC50 values of 0.796 (±0.081) mg/mL and a TEAC value of 0.0356 (±0.0003). A significant antacid activity (666 mg MP+400 mg CaCO3 >400 mg CaCO3 ≫666 mg Gelusil) of MP leaves was noticed. The methanolic extract of MP leaves demonstrated anti-microbial activity against Staphylococcus aureus (15±2mm), Pseudomonas aeruginosa (12±2mm) and Escherichia coli (10±2mm). In silico studies confirmed the in vitro results obtained for antioxidant, antiacid, and anti-microbial activities. In addition, in silico studies revealed the anti-cancerous and anti-inflammatory potential of the MP leaves. In summary, this study demonstrated the medicinal significance of MP leaves and the conversion of agro-waste or the under-utilized part of MP into pharmaceutical potent materials. Consequently, the present study highlighted that MP leaves alone have medicinal importance with good nutritional utility and possess large promise in the pharma industry along with improving bio-valorization and the environment.

10.
Saudi Pharm J ; 31(8): 101695, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37520120

ABSTRACT

The current research was to develop nanoparticles based on Mimosa pudica mucilage (MPM) that could encapsulate losartan potassium (LP). Nanoparticles (NPs) produced through ionic-gelation method; the polymerization of the mucilage carried out using calcium chloride as cross-linking agent. The MPMLP-NPs demonstrated vastly enhanced pharmaceutical characteristics, presented discrete surface with spherical shape of 198.4-264.6 nm with PDI ranging 0.326-0.461 and entrapment efficiency was in the range of 80.65 ± 0.82-90.79 ± 0.96%. FTIR and DSC indicated the stability of drug during the formulation of nanoparticles. An acute oral toxicity investigation found no significant alterations in behavior and histopathology criteria. The MPMLP-NPs formulation revealed the better rates and sustained effect as assessed with the commercial product. Moreover, low dose of MPMLP-NPs showed similar anti-hypertensive effect as assessed with the marketed tablet.

11.
BMC Complement Med Ther ; 23(1): 232, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438777

ABSTRACT

BACKGROUND: Candida albicans causes high-mortality candidiasis. Antifungal drug resistance demands the development of virulence factor-targeting drugs, particularly antibiofilm. This study screened the effects of five invasive plants growing in Indonesia (Mimosa pudica, Lantana camara, Acacia mangium, Ageratina riparia, and Mikania micrantha) against C. albicans biofilms. Antifungal activity, antiphospholipase activity, biofilm morphology of C. albicans, and cytotoxic capacity were also evaluated. METHODS: Maceration was used to extract the plants, and the most active extract inhibiting the biofilms was fractionated using liquid-liquid fractionation. Antibiofilm activity was determined by a colorimetric assay, MTT. Antifungal activity was tested using the broth microdilution method. A phospholipase assay was performed using the egg-yolk agar method. Influence on the C. albicans morphology was assessed using scanning electron microscopy (SEM). The cytotoxic effect was carried out against Vero and HeLa cell lines. RESULTS: M. pudica extracts showed the most potent antifungal efficacy with minimum inhibitory concentration (MIC) of 15.62 µg/mL and 7.81 µg/mL for aerial parts and roots, respectively. At high concentrations (500 µg/mL and 250 µg/mL), ethanol extract of M. pudica aerial parts strongly inhibited the phospholipase activity. Ethyl-acetate fraction of M. pudica aerial parts demonstrated the most potent antibiofilm activity against 24 h old biofilm of C. albicans with an inhibitory concentration (53.89%) of 62.5 µg/mL showed no cytotoxicity in both Vero and HeLa cells. This fraction affected the morphology of C. albicans and contained promising compounds for inhibiting the 24 h old biofilm of C. albicans. CONCLUSIONS: Invasive M. pudica plant inhibited the growth of planktonic C. albicans cells and its ethyl acetate fraction decreased the metabolic activity of C. albicans biofilms. This result demonstrates the potential of invasive M. pudica plant to reduce biofilm-associated candida infection.


Subject(s)
Candida albicans , Candidiasis , Humans , HeLa Cells , Indonesia , Antifungal Agents/pharmacology , Biofilms
12.
J Biol Rhythms ; 38(3): 245-258, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37226809

ABSTRACT

The origin of experimental chronobiology can be traced to observations made in the 18th and 19th centuries on the sensitive plant Mimosa, which were described in two seminal reports: Jean-Jacques d'Ortous de Mairan's "Observation Botanique" (A Botanical Observation) and Augustin Pyramus de Candolle's "Du sommeil des feuilles" (On the sleep of leaves). Both report observations of the striking daily closing and opening of Mimosa leaves in controlled environments. This review presents translations of both texts with the aim of staying as faithful as possible to the original French texts. We also present the historical context in which these texts were written and link them to subsequent experiments that aimed at testing the veracity of their central conclusions. In particular, we definitely establish that Mairan himself presented his work to the French Royal Academy of Sciences, while the published report of his observation was authored by Fontenelle, the Secretary of the Academy. In addition, we offer a translation of Mairan's own presentation, based on the hand-written minutes of the academy. Finally, we discuss the decades of work on plant rhythms that laid the foundation for modern experimental chronobiology, including translations and discussion of the insightful and prescient reports by Charles François de Cisternay Dufay, Henri Louis Duhamel du Monceau, Johann Gottfried Zinn, and Wilhelm Pfeffer, which describe their efforts to reproduce and extend Mairan's pioneering observations.


Subject(s)
Circadian Rhythm , Mimosa , Sleep , Plant Leaves
13.
Cell Calcium ; 110: 102695, 2023 03.
Article in English | MEDLINE | ID: mdl-36669253

ABSTRACT

Mimosa pudica, the sensitive plant, responds to stimuli such as touch and wounding with leaf movements that propagate throughout the plant. The motion is driven by changes in the turgor of specialized cells in a set of motor organs called pulvinae. By imaging cellular Ca2+ levels as the wave of movement propagates through the leaf, Hagihara and colleagues now show that Ca2+ signals precede and predict the pulvinar movements. These results provide compelling support for a model where Mimosa uses a Ca2+-related response system to trigger its leaf movements. These researchers then used CRISPR to delete a critical genetic regulator of pulvinar development, producing plants with immobile leaves. These plants experienced more herbivory than wild type, suggesting that the Ca2+-triggered leaf movements are an adaptation to deter herbivory.


Subject(s)
Mimosa , Mimosa/physiology , Touch , Plant Leaves , Signal Transduction
14.
Bioinspir Biomim ; 18(1)2022 11 11.
Article in English | MEDLINE | ID: mdl-36301693

ABSTRACT

Direct contact of random objects from the open environment to the panel surface of an electronic device may reduce the work efficiency and cause permanent damage. However, there is a possible way to solve this problem, notably by implementing an adaptive structure design inspired by plants. TheMimosa pudicaplant provides several interesting information on its adaptability. Various studies have been conducted on the electrical properties of its organs explaining the phytoactuator and phytosensor cells that function within it. We combined the use of sensors, actuators, and synthetic excitable tissue as the first robot model purposed to mimic the behavior of theM. pudicaplant. The Computer vision method was used to measure leaf angular movement and collected it as plant behavior data based on the mechanical stimulus experiment. The Robot structure has eight arms equipped with sensors, servo motors, and microcontrollers that are operated with two activation system models approach. The first model could imitate the stimulus process received by electronic circuits that generate action potential signals with a maximum voltage of 4.71-5.02 V and a minimum voltage of -5.33 to -3.45 V that propagated from node to node. The second model involves a trained artificial neural network model with a supervised learning pattern that provides 100% accuracy when choosing movement output based on the given combination. This robot imitates theM. pudica's intelligent sensing capabilities and its ability to change the structure shape based on the thygmonasty experiments data which could provide an overview of how plants process information and perform hazard avoidance actions efficiently. Future applications for the technology inspired by the plant's self-defense mechanisms are adaptive intelligent structures that can protect against harmful conditions, particle contamination, and adjusting panel structure to search for desired environmental parameters.


Subject(s)
Robotics , Neural Networks, Computer , Movement , Plant Leaves/physiology
15.
Molecules ; 27(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35744923

ABSTRACT

Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. The main goal of this study was to predict highly effective molecules from M. pudica Linn. for reaching and maintaining penile erection before and during sexual intercourse through in silico molecular docking and dynamics simulation tools. A total of 28 bioactive molecules were identified from this target plant through public repositories, and their chemical structures were drawn using Chemsketch software. Graph theoretical network principles were applied to identify the ideal target (phosphodiesterase type 5) and rebuild the network to visualize the responsible signaling genes, proteins, and enzymes. The 28 identified bioactive molecules were docked against the phosphodiesterase type 5 (PDE5) enzyme and compared with the standard PDE5 inhibitor (sildenafil). Pharmacokinetics (ADME), toxicity, and several physicochemical properties of bioactive molecules were assessed to confirm their drug-likeness property. Molecular dynamics (MD) simulation modeling was performed to investigate the stability of PDE5-ligand complexes. Four bioactive molecules (Bufadienolide (-12.30 kcal mol-1), Stigmasterol (-11.40 kcal mol-1), Isovitexin (-11.20 kcal mol-1), and Apigetrin (-11.20 kcal mol-1)) showed the top binding affinities with the PDE5 enzyme, much more powerful than the standard PDE5 inhibitor (-9.80 kcal mol-1). The four top binding bioactive molecules were further validated for a stable binding affinity with the PDE5 enzyme and conformation during the MD simulation period as compared to the apoprotein and standard PDE5 inhibitor complexes. Further, the four top binding bioactive molecules demonstrated significant drug-likeness characteristics with lower toxicity profiles. According to the findings, the four top binding molecules may be used as potent and safe PDE5 inhibitors and could potentially be used in the treatment of ED.


Subject(s)
Aphrodisiacs , Erectile Dysfunction , Mimosa , Aphrodisiacs/therapeutic use , Cyclic Nucleotide Phosphodiesterases, Type 5 , Erectile Dysfunction/drug therapy , Humans , Male , Molecular Docking Simulation , Molecular Dynamics Simulation , Phosphodiesterase 5 Inhibitors/chemistry
16.
Polymers (Basel) ; 14(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35567073

ABSTRACT

Mimosa pudica seed mucilage (MPM) is composed of glucuronoxylan, which is a swellable, pH-responsive and non-toxic biomaterial. Herein, we aimed to extract MPM from M. pudica seeds (MP seeds) to ascertain optimization of extraction conditions to get highest yield by response surface methodology, via Box-Behnken design (RSM-BBD). MPM was extracted from MP seeds by a hot water extraction method. The effects of four different parameters on the extraction yield of MPM were evaluated: pH of the extraction medium (1-10), seed/water contact time (1-12 h), the temperature of extraction medium (30-90 °C), and seed/water ratio (1:5-1:35 w/v). The maximum yield of MPM obtained by Design-Expert software was 10.66% (10.66 g/100 g) at pH 7, seed/water contact time of 6 h, extraction temperature of 50 °C, and seed/water ratio of 1:20 w/v. The p values of ANOVA were found to be less than 0.0001, which indicated that the extraction yield of MPM was significantly affected by all the study parameters. The results revealed that pH and extraction temperature were the most significant factors affecting the yield of MPM. MPM in compressed tablet form showed pH-responsive on-off switching behavior at pH 7.4 and 1.2 in a reversible manner. MPM in compressed tablet form sustained the release of itopride for 16 h following a super case-II transport mechanism and zero-order release kinetics.

17.
Plants (Basel) ; 10(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34451737

ABSTRACT

Mimosa pudica Linn is a well-known perennial herb and is traditionally used in ayurvedic medicine for the treatment of various illnesses. Despite its abundance in nature, the therapeutic potential of this invasive weed is deemed to be underappreciated in Malaysia. Previous studies have found an abundance of bioactive compounds associated with potent antioxidant properties in all parts of the plant. However, the optimum parameters required for the extraction of antioxidant compounds are still unknown. Therefore, the present study aimed to optimize the solvent extraction parameters of M. pudica using response surface methodology to enrich the accumulation of antioxidant compounds in the extracts. The effects of the optimized M. pudica extracts were then evaluated on the cell viability and glucose uptake ability in a 3T3-L1 adipocyte cell line. The highest total phenolic (91.98 mg of gallic acid equivalent per g of the dry extract) and total flavonoid content (606.31 mg of quercetin equivalent per g of the dry extract) were recorded when using 100% ethanol that was five-fold and three-fold higher, respectively, as compared to using 50% ethanol. The extract concentration required to achieve 50% of antioxidant activity (IC50 value) was 42.0 µg/mL using 100% ethanol as compared to 975.03 µg/mL using 50% ethanol. The results indicated that the use of 100% ethanol solvent had the greatest impact on the accumulation of antioxidant compounds in the extract (p < 0.05). Cell viability assay revealed that all extract concentration treatments recorded a viability level of above 50%. Glucose uptake assay using 2-NBDG analog showed that the cells treated with 50 µg/mL extract combined with insulin were five-fold higher than the control group. Given the high antioxidant and antidiabetic properties of this plant, M. pudica can be easily highlighted as a plant subject of interest, which warrants further investigation for nutraceutical prospects.

18.
J Basic Microbiol ; 61(4): 293-304, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33491813

ABSTRACT

Enterobacter tabaci 4M9 (CCB-MBL 5004) was reported to have plant growth-promoting and heavy metal tolerance traits. It was able to tolerate more than 300 mg/L Cd, 600 mg/L As, and 500 mg/L Pb and still maintained the ability to produce plant growth-promoting substances under metal stress conditions. To explore the genetic basis of these beneficial traits, the complete genome sequencing of 4M9 was carried out using Pacific Bioscience (PacBio) sequencing technology. The complete genome consisted of one chromosome of 4,654,430 bp with a GC content of 54.6% and one plasmid of 51,135 bp with a GC content of 49.4%. Genome annotation revealed several genes involved in plant growth-promoting traits, including the production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase; solubilization of phosphate and potassium; and nitrogen metabolism. Similarly, genes involved in heavy metals (As, Co, Zn, Cu, Mn, Se, Cd, and Fe) tolerance were detected. These support its potential as a heavy metal-tolerant plant growth-promoting bacterium and a good genetic resource that can be employed to improve phytoremediation efficiency of heavy metal-contaminated soil via biotechnological techniques. This, to the best of our knowledge, is the first report on the complete genome sequence of heavy metal-tolerant plant growth-promoting E. tabaci.


Subject(s)
Enterobacter/drug effects , Enterobacter/genetics , Enterobacter/physiology , Metals, Heavy/toxicity , Plant Development/drug effects , Whole Genome Sequencing , Biodegradation, Environmental , DNA, Bacterial , Plants/metabolism , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology , Soil Pollutants/metabolism
19.
Braz. arch. biol. technol ; 64: e21200584, 2021. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1355797

ABSTRACT

Abstract For years, plants have tried to adapt to the environmental changes caused by time, improving and developing their biological structures. Many of these structural and functional properties of plants have great potential for the development of concepts in the field of biomimetics. Recent previous studies have shown that the movement of Mimosa pudica L. is caused by the variation of turgor pressure within the cells of organs motor, that is, the influx and efflux of water by osmosis, generating reversible changes in the shape of the plant. Thus, this article sought, through research and literature references, to carry out a survey of studies related to the seismonastic movements of the plant and its applications in the design of technological innovations. In addition, it presents the development of a pneumatic actuator based on the abstraction of the morphology of the primary pulvinus of the plant and the concept of bioinspired design of the theoretical model based on the technology of soft robots. As a result, the bioinspired actuator model of the plant movement is described. In addition, with a simulation, it was possible to observe that the flexible modules are capable of generating the proposed movement and allow movement of the actuator. With the study, it was possible to understand that the movement of the plant appears as an embryo for the projection of technologies, and that the proposed study appears as the basis for research with pneumatic actuators.

20.
Article in English | WPRIM (Western Pacific) | ID: wpr-974479

ABSTRACT

Aims@#The purpose of this research was to explore the composition and genomic functions of bacterial community inhabiting the rhizosphere of Mimosa pudica, which were naturally growing on tailing and non-tailing soils of an ex-tin mining area.@*Methodology and results@#DNA were extracted from rhizosphere soils and PCR targeting the hypervariable region V3-V4 was carried out by Illumina 16S metagenomic library. Libraries were sequenced using Illumina MiSeq. The Operational Taxonomic Units (OTUs) were assigned to 23 bacterial phyla, 72 classes, 165 orders, 248 families and 357 genera. The most represented and dominant phylum was Proteobacteria, with an average abundance value of 41.2%. The most represented genera included Paraburkholderia, Bradyrhizobium, Bacillus, Candidatus, Acidothermus, Acidibacter and Nitrospira. Non-tailing soils had more number and richness of species while the tailings had more diversity of species. The metagenomes accommodate suspected genes for heavy metal tolerance of microbes (As, Cr, Co, Zn, Ni, Cu, Cd, Fe and Hg) and microbial plant-growth-promoting traits for hyperaccumulator plants (synthesis of indole acetic acid (IAA), siderophore and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase; solubilization of phosphate and potassium and nitrogen fixation). @*Conclusion, significance and impact of study@#Bacteria and predicted genes discovered could be part of major factors influencing growth of M. pudica in heavy metal-contaminated soils. The study provides the first report and a basis into the bacterial community associated with M. pudica in ex-tin mining soils from the studied geographical location. The findings also provide fundamental knowledge on phytoremediation potential of heavy metal contaminated soils involving indigenous beneficial microbial populations.


Subject(s)
Bacteria , Rhizosphere , Mimosa , Plant Growth Regulators
SELECTION OF CITATIONS
SEARCH DETAIL
...