Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
J Therm Biol ; 123: 103906, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38970835

ABSTRACT

Research has shown that pigs from different regions exhibit varying responses to cold stimuli. Typically, cold stimuli induce browning of white adipose tissue mediated by adrenaline, promoting non-shivering thermogenesis. However, the molecular mechanisms underlying differential response of pig breeds to norepinephrine are unclear. The aim of this study was to investigate the differences and molecular mechanisms of the effects of norepinephrine (NE) treatment on adipocytes of Min pigs (a cold-resistant pig breed) and Duroc-Landrace-Yorkshire (DLY) pigs. Real time-qPCR, western blot, and immunofluorescence were performed following NE treatment on cell cultures of adipocytes originating from Min pigs (n = 3) and DLY pigs (n = 3) to assess the expressions of adipogenesis markers, beige fat markers, and mitochondrial biogenesis markers. The results showed that NE did not affect browning of adipocytes in DLY pigs, whereas promoted browning of adipocytes in Min pigs. Further, the expression of ADRB1 (Adrenoceptor Beta 1, ADRB1) was higher in subcutaneous adipose tissue and adipocytes of Min pigs than those of DLY pigs. Overexpression of ADRB1 in DLY pig adipocytes enhanced sensitivity to NE, exhibiting decreased adipogenesis markers, upregulated beige fat markers, and increased mitochondrial biogenesis. Conversely, adipocytes treated with ADRB1 antagonist in Min pigs resulted in decreased cellular sensitivity to NE. Further studies revealed differential CpG island methylation in ADRB1 promoter region, with lower methylation levels in Min pigs compared to DLY pigs. In conclusion, differential methylation of the ADRB1 promoter region leads to different ADRB1 expression, resulting in varying responsiveness to NE in adipocytes of two pig breeds. Our results provide new insights for further analysis of the differential cold responsiveness in pig breeds from different regions.

2.
Front Vet Sci ; 11: 1349754, 2024.
Article in English | MEDLINE | ID: mdl-38711539

ABSTRACT

Introduction: This study investigated the effects of storage japonica brown rice (SJBR) and bile acids (BA) on the growth performance, meat quality, and intestinal microbiota of growing-finishing Min pigs. Methods: A total of 24 healthy Min pigs with a similar body weight of 42.25 ± 2.13 kg were randomly divided into three groups with eight replicates of one pig each. The groups were as follows: CON (50% corn), SJBR (25% corn +25% SJBR), and SJBR + BA (25% corn +25% SJBR +0.025% hyodeoxycholic acid). The experimental period lasted from day 90 (the end of the nursery phase) to day 210 (the end of the finishing phase). Results: The results showed the following: (1) Compared with the CON group, there was no significant difference in the average daily gain (ADG) and average daily feed intake (ADFI) of the SJBR and SJBR + BA groups, and the feed conversion ratio (FCR) was significantly decreased (p < 0.05). (2) Compared with the CON group, the total protein (TP) content in the serum was significantly increased, and the blood urea nitrogen (BUN) content was significantly decreased (p < 0.05) in the SJBR and SJBR + BA groups; moreover, HDL-C was significantly higher by 35% (p < 0.05) in the SJBR + BA group. (3) There were no significant differences in carcass weight, carcass length, pH, drip loss, cooking loss, and shear force among the groups; the eye muscle area was significantly increased in the SJBR group compared with the CON group (p < 0.05); back fat thickness was significantly decreased in the SJBR + BA group compared with the SJBR group (p < 0.05); and the addition of SJBR significantly increased the mRNA expression of MyHC I in the longissimus dorsi (LD) muscle of growing-finishing Min pigs (p < 0.05). (4) The cecal bacteria were detected using 16S rDNA, and the proportion of Lactobacillus was increased gradually at the genus level, but there was no significant difference among the different groups. Conclusion: In conclusion, 25% SJBR can improve the growth performance and increase the abundance of intestinal beneficial bacteria, and based on this, adding bile acids can reduce the back fat thickness of growing-finishing Min pigs.

3.
Genes Genomics ; 46(4): 389-398, 2024 04.
Article in English | MEDLINE | ID: mdl-38381321

ABSTRACT

OBJECTIVE: Min pigs are a unique genetic resource among local pig breeds in China. They have more excellent characteristics in cold and stress resistance, good meat quality, and a high reproductive rate. However, the genetic structure and driving factors remain unclear in the nucleus herd. In this study, the genetic diversity of Min pigs was studied to reveal the formation mechanism of its unique genetic structure. We hope to protect and develop the genetic resources of Min pigs. METHODS: We analyzed different types of genes to identify the genetic structure and gene introgression pattern of Min pigs. The nuclear DNA dataset includes information on 21 microsatellite loci and 6 Y-chromosome genes, and the mitochondrial D-loop gene is selected to represent maternal lineages. The above genes are all from the nucleus herd of Min pigs. RESULTS: The results of genetic structure identification and analysis of potential exogenous gene introgression patterns indicate that the nucleus herd of Min pigs maintains a high level of genetic diversity (polymorphism information content = 0.713, expected heterozygosity = 0.662, observed heterozygosity = 0.612). Compared with other Asian pig breeds, the formation of Min pig breeds is more special. Gene introgression from European pig breeds to Min pigs has occurred, which is characterized by complete introgression of paternal genes and incomplete introgression of maternal genes. CONCLUSION: Gene introgression caused by cross-breeding is not the main factor leading to the formation of the current genetic structure of Min pigs, but this process has increased the level of genetic diversity in the nucleus herd. Compared with the influence of gene introgression, our research suggest that artificial selection and environmental adaptive evolution make Min pigs form unique genetic characteristics.


Subject(s)
Genetic Variation , Genetics, Population , Swine/genetics , Animals , Polymorphism, Genetic , Mitochondria/genetics , Heterozygote
4.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36982998

ABSTRACT

Pig diseases seriously threaten the health of pigs and the benefits of pig production. Previous research has indicated that Chinese native pigs, such as the Min (M) pig, has a better disease resistance ability than Large White (LW) pigs. However, the molecular mechanism of this resistance is still unclear. In our study, we used serum untargeted metabolomics and proteomics, interrogated to characterize differences in the molecular immunities between six resistant and six susceptible pigs raised in the same environment. A total of 62 metabolites were identified as being significantly exhibited in M and LW pigs. Ensemble feature selection (EFS) machine learning methods were used to predict biomarkers of metabolites and proteins, and the top 30 were selected and retained. Weighted gene co-expression network analysis (WGCNA) confirmed that four key metabolites, PC (18:1 (11 Z)/20:0), PC (14:0/P-18: 0), PC (18:3 (6 Z, 9 Z, 12 Z)/16:0), and PC (16:1 (9 Z)/22:2 (13 Z, 16 Z)), were significantly associated with phenotypes, such as cytokines, and different pig breeds. Correlation network analysis showed that 15 proteins were significantly correlated with the expression of both cytokines and unsaturated fatty acid metabolites. Quantitative trait locus (QTL) co-location analysis results showed that 13 of 15 proteins co-localized with immune or polyunsaturated fatty acid (PUFA)-related QTL. Moreover, seven of them co-localized with both immune and PUFA QTLs, including proteasome 20S subunit beta 8 (PSMB8), mannose binding lectin 1 (MBL1), and interleukin-1 receptor accessory protein (IL1RAP). These proteins may play important roles in regulating the production or metabolism of unsaturated fatty acids and immune factors. Most of the proteins could be validated with parallel reaction monitoring, which suggests that these proteins may play an essential role in producing or regulating unsaturated fatty acids and immune factors to cope with the adaptive immunity of different pig breeds. Our study provides a basis for further clarifying the disease resistance mechanism of pigs.


Subject(s)
Disease Resistance , Proteomics , Swine , Animals , Gene Expression Profiling , Fatty Acids, Unsaturated , Cytokines
5.
Front Vet Sci ; 10: 1295723, 2023.
Article in English | MEDLINE | ID: mdl-38192721

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes porcine epidemic diarrhea (PED), a highly infectious disease, which has resulted in huge economic losses for the pig industry. To date, the pathogenic and immune response mechanism was not particularly clear. The purpose of this study was to investigate the pathogenic and immune responses of pigs infected with PEDV.In this study, 12 Min pigs were randomly selected without taking colostrum. At 3 days old, eight piglets were infected with 1 mL of PEDV solution (10 TCID50/ml), and the remaining four piglets were handled by 1 mL of 0.9% normal saline. Within the age of 7 days old, four piglets died and were considered as the death group. Correspondingly, four alive individuals were classified into the resistance group. Tissues of the duodenum, jejunum, ileum, colon, cecum, and rectum of piglets in the three groups were collected to measure the PEDV content. Additionally, the jejunum was used for the measurements and analyses of Hematoxylin-eosinstaining (HE), immunohistochemical sections, and transcriptomics. The phenotypes of Min piglets infected with PEDV showed that the viral copy numbers and jejunal damage had significant differences between the death and resistance groups. We also observed the transcriptome of the jejunum, and the differentially expressed (DE) analysis observed 6,585 DE protein-coding genes (PCGs), 3,188 DE long non-coding RNAs (lncRNAs), and 350 DE microRNAs (miRNAs), which were mainly involved in immune response and metabolic pathways. Furthermore, the specific expressed molecules for each group were identified, and 97 PCGs,108 lncRNAs, and 51 miRNAs were included in the ceRNA-regulated networks. By weighted gene co-expression network analysis (WGCNA) and transcription factor (TF) prediction, 27 significant modules and 32 significant motifs (E-value < 0.05) annotated with 519 TFs were detected. Of these TFs, 53 were DE PCGs. In summary, the promising key PCGs, lncRNAs, and miRNAs related to the pathogenic and immunological response of pigs infected with PEDV were detected and provided new insights into the pathogenesis of PEDV.

6.
Biology (Basel) ; 11(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36552219

ABSTRACT

Long-term selection or evolution is an important factor governing the development of disease resistance in pigs. To better clarify the molecular mechanisms underlying different levels of disease resistance, we used transcriptomics and proteomics analysis to characterize differences in the immunities between six resistant (Min pig) and six susceptible (Large White, LW) pigs which were raised in the same environment. A total of 135 proteins and 791 genes were identified as being differentially expressed between the Large White and Min pig groups. Protein expression clustering and functional analysis revealed that proteins related to immune system process, humoral immune response, the B cell receptor signaling pathway, lymphocyte-mediated immunity, and innate immune responses were more highly expressed in Min pigs. Transcriptome gene set enrichment analysis was used to reveal that pathways of cell adhesion molecules and antigen processing and presentation are significantly enriched in Min pigs. Integrated proteomics and transcriptomics data analysis identified 16 genes that are differentially expressed at both the mRNA and protein levels. In addition, 13 out of these 16 genes were related to the quantitative trait loci of immune diseases, including neural EGFL-like 2 (NELL2) and lactate dehydrogenase B (LDHB), which are involved in innate immunity. Correlation analysis between the genes/proteins and cytokines shows upregulated proteins in LW pigs in association with immunosuppressive/pro-inflammatory cytokines, such as interleukin (IL) 10, IL6, and tumor necrosis factor alpha. This was further validated using parallel reaction monitoring analysis. In summary, we discovered several potential candidate pathways and key genes/proteins involved in determining differences in disease resistance between the two studied pig breeds, which could provide new insights into the breeding of pigs for disease resistance.

7.
Electron. j. biotechnol ; 48: 29-35, nov. 2020. ilus, tab, graf
Article in English | LILACS | ID: biblio-1254696

ABSTRACT

BACKGROUND: Cellulose as a potential feed resource hinders its utilization because of its complex structure, and cellulase is the key to its biological effective utilization. Animal endogenous probiotics are more susceptible to colonization in the intestinal tract, and their digestive enzymes are more conducive to the digestion and absorption of feed in young animals. Min pigs are potential sources of cellulase probiotics because of the high proportion of dietary fiber in their feed. In this study, the cellulolytic bacteria in the feces of Min pigs were isolated and screened. The characteristics of enzymes and cellulase production were studied, which provided a theoretical basis for the rational utilization of cellulase and high-fiber food in animal production. RESULTS: In our study, 10 strains of cellulase producing strains were isolated from Min pig manure, among which the M2 strain had the best enzyme producing ability and was identified as Bacillus velezensis. The optimum production conditions of cellulase from strain M2 were: 2% inoculum, the temperature of 35°C, the pH of 5.0, and the liquid loading volume of 50 mL. The optimum temperature, pH and time for the reaction of cellulase produced by strain M2 were 55°C, 4.5 and 5 min, respectively. CONCLUSIONS: Min pigs can be used as a source of cellulase producing strains. The M2 strain isolated from feces was identified as Bacillus velezensis. The cellulase from M2 strain had a good activity and the potential to be used as feed additive for piglets.


Subject(s)
Animals , Swine, Miniature , Bacteria/enzymology , Cellulase/biosynthesis , Bacillus , Dietary Fiber , Probiotics , Digestion , Feces , Animal Feed
SELECTION OF CITATIONS
SEARCH DETAIL
...