Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
J Environ Manage ; 370: 122674, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39357436

ABSTRACT

Proper management of mine waste plays a crucial role in minimizing environmental impacts. One potential solution to tackle this problem involves transforming mine waste rock into soil to facilitate the process of mine restoration. The aim of this study was to assess the mineralogical, chemical, and physical characteristics of technosol derived from phosphate mine waste dumps. Following this evaluation, a novel rehabilitation strategy was proposed. For this purpose, a total of 32 samples were systematically collected across a 4 ha area of technosols, which had been established in accordance with the waste rock soil rehabilitation strategy involving geomorphic reshaping. According to the findings, phosphate mining left the soil with a sandy texture, resulting in a degraded soil structure with severely unfavorable crop growth conditions, notably poor stability, and low water retention. The chemistry of the studied soils was characterized by the dominance of CaO (29.02 wt%± 1.01) > SiO2 (27.61 wt% ± 0.61) > P2O5 (11.34 wt% ± 0.23) > MgO (5.97 wt%±0.16). Mineralogically, the samples were mainly formed by quartz, dolomite, calcite, apatite, and clay minerals. The prevalence of dolomite played a significant role in enhancing the accessibility of Mg as an essential nutrient and the occurrence of apatite in the soil resulted in the presence of P2O5. However, the abundance of Ca was linked to three major minerals: calcite, apatite, and dolomite. X-ray fluorescence analyses demonstrated that the concentrations of Fe2O3, K2O, and SO3 did not exceed 2 wt%.Organic matter, represented by SOC <0.2% and N < 0.02%, demonstrated an extraordinary deficiency in the study area. The analysis of element bioavailability confirmed that the soil was rich in Ca (10383,26 mg/kg), Mg (278,47 mg/kg), Zn (12,82 mg/kg), and Cu (3,7 mg/kg) but deficient in other essential nutrients such as P, K, S, Mn, and Fe. Our research results provide a set of recommendations aimed at enhancing existing mine rehabilitation practices applicable to both pre- and post-rehabilitation phases, leveraging automated mineralogy and circular economy principles. Notably, we propose a rehabilitation strategy to be implemented prior to the geomorphic reshaping phase, which is intended to reduce costs and efforts associated with soil reconstitution.

2.
Ambio ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073747

ABSTRACT

Recognizing the prevailing negative public opinion on mining, it is important to understand how firsthand encounters with mining activities might influence these perceptions. This study investigates how field trips to open pit coal mines and their reclamation sites in the Czech Republic affected the attitudes of 148 university students toward mining and mine reclamation. Using pre and post trip questionnaires, we observed significant changes: Students became less neutral about mining, saw it as a temporary disruptive activity, expressed reduced concern for social conflicts in mining areas, and showed increased support for the ecological restoration of post mining sites. These findings underscore the transformative impact of direct engagement with mine reclamation activities on shaping attitudes. Understanding these effects offers promise for positively shifting public perceptions of mining practices, emphasizing the potential for constructive changes in attitudes through field experiences with reclamation efforts in the Global North.

3.
Sci Total Environ ; 931: 172958, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38714255

ABSTRACT

Mining activities put the Brazilian savannas, a global biodiversity hotspot, in danger of species and soil carbon losses. Experiments employing biosolids have been applied to rejuvenate this degraded ecosystem, but a lingering question yet to be answered is whether the microbiota that inhabits these impoverished soils can be recovered towards its initial steady state after vegetation recovery. Here, we selected an 18-year-old restoration chronosequence of biosolids-treated, untreated mining and native soils to investigate the soil microbiota recovery based on composition, phylogeny, and diversity, as well as the potential factors responsible for ecosystem recovery. Our results revealed that the soil microbiota holds a considerable recovery potential in the degraded Cerrado biome. Biosolids application not only improved soil health, but also led to 41.7 % recovery of the whole microbial community, featuring significantly higher microbiota diversity and enriched groups (e.g., Firmicutes) that benefit carbon storage compared to untreated mining and native soils. The recovered community showed significant compositional distinctions from the untreated mining or native soils, rather than phylogenetic differences, with physiochemical properties explaining 55 % of the overall community changes. This study advances our understanding of soil microbiota dynamics in response to disturbance and restoration by shedding light on its recovery associated with biosolid application in a degraded biodiverse ecosystem.


Subject(s)
Microbiota , Soil Microbiology , Soil , Brazil , Soil/chemistry , Mining , Biodiversity , Ecosystem , Environmental Restoration and Remediation/methods
4.
J Hazard Mater ; 468: 133730, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38368681

ABSTRACT

The ecological restoration of rare earth mines and the management of rare earth tailings have consistently posed global challenges, constraining the development of the rare earth industry. In this study, Zeolite A is efficiently prepared from the tailings of an ion-type rare earth mine in the southern Jiangxi Province of China. The resulting Zeolite A boasts exceptional qualities, including high crystallinity, a substantial specific surface area, and robust thermal stability. The optimum conditions for Zeolite synthesis are experimental determination and the adsorption properties of Zeolite A for typical pollutants (Cd2+, Cu2+, NH4+, PO43- and F-) in rare earth mines. The synthesised Zeolite A material is found to have strong adsorption properties. The adsorption mechanism is mainly cation exchange, and the priority of adsorption of pollutants is Cu2+> Cd2+ > NH4+ > PO43- > F-. Notably, the sodium Zeolite A material synthesized at room temperature can be effectively recycled multiple times. In summary, we propose a method to synthesise low cost and high adsorption zeolites using rare earth tailings. This will facilitate the reduction of rare earth tailings and the rehabilitation of rare earth mines. Our method has great potential as a rehabilitation technology for rare earth mines.

5.
J Environ Manage ; 337: 117736, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36933531

ABSTRACT

Examples of successful mine closure and acceptable regional transitioning of mining areas are scarce. The recent changes to the environmental, social and governance (ESG) obligations of mining companies should help to ensure that water and land resources as well as post-mining employment opportunities are considered as a part of mine closure. Integrating microalgae production into mine closure plans is a potential opportunity for mining companies to improve many ESG outcomes. Mine sites with sufficient suitable land and water resources in high solar radiation geographies may be able to economically grow microalgae to capture atmospheric CO2, re-purpose saline mine waters, treat acidic and near-neutral pH metalliferous waters as well as produce soil ameliorants (biofertiliser, biostimulants and/or biochar) to improve mine rehabilitation outcomes. Microalgae production facilities may also provide an alternative industry and employment opportunities to help transition regional mining towns that have become reliant on mining activities. The potential economic, environmental and social benefits of using mine-influenced water for microalgae production may offer an opportunity to successfully close and transition some mining landscapes.


Subject(s)
Microalgae , Soil , Metals , Mining , Water , Environmental Monitoring
6.
J Fungi (Basel) ; 8(10)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36294552

ABSTRACT

Opencast limestone mines or limestone quarries are considered challenging ecosystems for soil fungi as they are highly degraded land with specific conditions, including high temperature, prolonged sunlight exposure, and a lack of organic matter, moisture, and nutrients in soil. In such ecosystems, certain fungi can survive and have a crucial function in maintaining soil ecosystem functions. Unfortunately, we know very little about taxonomic diversity, potential functions, and the ecology of such fungi, especially for a limestone quarry in a tropical region. Here, we characterized and compared the living soil fungal communities in an opencast limestone mine, including mining site and its associated rehabilitation site (9 months post-rehabilitation), with the soil fungal community in a reference forest, using the amplicon sequencing of enrichment culture. Our results showed that living fungal richness in the quarry areas was significantly lower than that in the reference forest, and their community compositions were also significantly different. Living fungi in the mining sites mostly comprised of Ascomycota (Eurotiomycetes and Sordariomycetes) with strongly declined abundance or absence of Basidiomycota and Mucoromycota. After nine months of rehabilitation, certain taxa were introduced, such as Hypoxylon spp. and Phellinus noxius, though this change did not significantly differentiate fungal community composition between the mining and rehabilitation plots. The majority of fungi in these plots are classified as saprotrophs, which potentially produce all fifteen soil enzymes used as soil health indicators. Network analysis, which was analyzed to show insight into complex structures of living fungal community in the limestone quarry, showed a clear modular structure that was significantly impacted by different soil properties. Furthermore, this study suggests potential taxa that could be useful for future rehabilitation.

7.
Sci Total Environ ; 848: 157704, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35908695

ABSTRACT

Dryland soil degradation is increasing due to global change and traditional restoration methods are not successful due to water scarcity. Thus, an alternative technology based on inoculating biocrust-forming cyanobacteria on degraded soils has emerged. Biocrusts are communities of mosses, lichens, cyanobacteria or fungi that colonize soil surface forming a stable and fertile layer. Previous studies have shown the benefits of inoculating cyanobacteria to restore soils at a small scale. However, to face field restoration projects, it is necessary to produce high quantities of biomass at an affordable cost. In this work, we analyze if the previously tested cyanobacteria Scytonema hyalinum, Tolypothrix distorta (heterocystous strains) and Trichocoleus desertorum (a bundle-forming one) can be produced with agricultural fertilizers. Different culture media were used: two containing pure chemicals (BG11 and BG110, this N-free medium was used just for heterocystous strains) and two containing fertilizers (BG11-F and MM-F). The performance of the cultures was monitored by measuring the biomass concentration and photosynthetic stress. Afterwards, we analyzed their capacity to induce biocrusts and improve soil properties by inoculating the biomass on a mine substrate indoors and measuring, three months later, the albedo, chlorophyll a and organic carbon content. Results show that the bundle-forming cyanobacterium was unable to grow in the media tested, whereas both heterocystous cyanobacteria grew in all of them and induced the formation of biocrusts improving the organic carbon substrate content. The best results for S. hyalinum were found using the MM-F medium, and for T. distorta using a medium containing pure chemicals (BG11). However, results were also positive when using a medium containing fertilizers (BG11-F). Thus, agricultural fertilizers can be used to undertake the production of heterocystous cyanobacteria for large scale restoration in drylands. On the other hand, more research is needed to find sustainable techniques to produce biomass of bundle-forming cyanobacteria.


Subject(s)
Cyanobacteria , Desert Climate , Carbon , Chlorophyll A , Culture Media , Ecosystem , Fertilizers , Nitrogen Fixation , Soil/chemistry , Soil Microbiology
8.
J Hazard Mater ; 424(Pt B): 127430, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34678563

ABSTRACT

Populus yunnanensis Dode, a facultative metallophytic poplar, exhibits afforestation potential in barren mine tailing areas. However, the interactions and functional roles of arbuscular mycorrhizal fungus (AMF) in P. yunnanensis adaptability to heavy metal stress remain unclear. Physiological and molecular responses of P. yunnanensis plantlets to AMF (Funneliformis mosseae) under cadmium (Cd) stress (50 mg kg-1) were investigated. Results showed attenuation of Cd phytotoxicity effects on cell organelles upon AMF inoculation, which also reduced the Cd concentration in the poplar leaves, stems, and roots. Under Cd stress, AMF-blocking of metal transporter (e.g., Ca2+ channel) activity occurred, decreasing root cell Cd influx by reducing H+ efflux. Bioaugmentation of rhizosphere sediments by AMF to stabilize metals with a decreasing DTPA-extractable Cd also occurred. The AMF inoculation promoted Cd conversion into inactive, less phytotoxic forms, and helped to maintain ion homeostasis and relieve nutritional ion (e.g., Ca, Mg) disorders caused by excessive Cd. Leaf enzyme and non-enzyme antioxidant systems were triggered. Root and leaf physiological response patterns differed. The AMF regulated the poplar functional genes, and nine metal-responsive gene clusters were identified. We suggest that AMF is a functional component of P. yunnanensis phenotype extension, contributing to strong adaptability to unfavorable mine tailings conditions.


Subject(s)
Mycorrhizae , Populus , Soil Pollutants , Cadmium/analysis , Cadmium/toxicity , Plant Roots/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity
9.
Environ Geochem Health ; 44(5): 1581-1603, 2022 May.
Article in English | MEDLINE | ID: mdl-33835362

ABSTRACT

The highly rugged mountainous land topography of the Novorossiysk industrial agglomeration (NW Caucasus, Krasnodar Krai, Russia) and arid climate limit the restoration abilities of disturbed mine lands. Abandoned waste-rock dumps of a marl quarry occupy an area of ca. 150,000 m2 next to the cement plant, residential districts, and a commercial seaport. To assess the eco-risk, topsoil horizons of urban and mine-site Technosols and background Rendzinas were sampled and analyzed; measurements of particulate matter fractions PM1, PM2.5, PM4, and PM10 were conducted throughout the agglomeration. Fugitive dust emission from the unreclaimed marl dumps raises the PM2.5 content in the air by a factor of 2.68 on average. The high sorption capacity of the fine eluvium results in the accumulation of urban emissions by the dust and contributes to the subsequent soil pollution; the Cumulative Pollution Index of pedochemical anomalies reaches the high-risk level over the areas of up to 5 km2. Environmental threats caused by the mine dumps can be assessed more reliably by means of land zoning based on accumulated environmental damage indicators and the debris flow and waterspout risk calculation. To abate the technogenic impact caused by the mine spoils, reclamation actions must be taken including soil stabilization on sensitive sites by application of geosynthetic cover, hydroseeding of the mixture of soil improvers and seeds of herbaceous plants on the slopes, and anti-erosion plantation of cades (Juniperus oxycedrus L.) and smoke trees (Cotinus coggygria Scop.) at subhorizontal surfaces.


Subject(s)
Soil Pollutants , Soil , Dust/analysis , Environmental Monitoring , Environmental Pollution , Particulate Matter/toxicity , Plants/chemistry , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity
10.
Chemosphere ; 281: 130981, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34289627

ABSTRACT

Native plants in metal pollution sites have great potentials for mine rehabilitation. In the presented work, we investigated Vanadium (V) concentrations of soils and plants (Heteropogon contortus) in Majiatian V-Ti magnetite tailing reservoir in Panzhihua, Southwestern China. The objectives were to explore the V accumulation mode of H. contortus and its driving factors, as well as the phytoremediation potential of H. contortus. As the results, H. contortus accumulated 37.53 mg/kg and 8.69 mg/kg of V in root and aerial part, respectively. With the increase of rehabilitation age, root V concentrations decreased, while aerial part V concentrations remained constant. The significant negative correlations between root V and soil V, acid-soluble V (VHAc) (P < 0.05) indicated that increasing soil V and VHAc concentrations drove the V accumulation mode of H. contortus. Soil properties had a little influence on the V accumulation mode of H. contortus. Therefore, H. contortus might be not the suitable plant extractant to remove V from mine tailing for its lower V accumulation capacity. On the other hand, it can tolerate high V stress through elimination and detoxification/isolation V. Furthermore, the settlement of H. contortus increased the content of soil organic matter and might thus improve the soil quality. The cover of H. contortus is also beneficial to reduce the dispersion of the tailings and prevent contaminating surrounding soil. Therefor it showed a great potential to serve as a pioneer plant in the remediation of V-rich tailing reservoirs and other V-contaminated sites with similar poor soil condition.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , China , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Vanadium
11.
J Environ Manage ; 294: 113014, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34144319

ABSTRACT

Bauxite mining operations are increasingly sited on Indigenous-owned land, particularly in tropical areas, including northern Australia. The environmental impacts of bauxite mining are significant. Native vegetation, including commercially valuable forests, is cleared and typically windrowed and burnt. For many Indigenous Australians, mining of their land creates much concern about biocultural, community health and livelihood impacts from the loss of access to traditional lands and resources, and the ability to 'care for country'. Improved pre-mining utilisation of forest resources and effective mine rehabilitation can mitigate some of these impacts and it is important to Indigenous communities that they are engaged in these processes. But Indigenous peoples' expectations are rarely considered or adequately addressed in site clearing activities or mine completion criteria, and there is limited guidance on how their expected outcomes can be monitored and evaluated for mine closure and relinquishment. This paper reports on a case-study of the Western Cape York Peninsula bauxite mining region in northern Australia. The paper reviews mine rehabilitation in the case-study region, including related Indigenous forest livelihoods initiatives, presents local Indigenous peoples' expectations for pre- and post-mining forest and landscape management as an integrated mining-community forestry 'vision', and discusses implications for mine completion criteria, mine closure and relinquishment. The findings highlight the need for Indigenous peoples' full and transparent free, prior and informed consent participation in all aspects of mine closure planning, and for further research to trial the development and assessment of mine completion criteria linked to local biocultural landscape restoration and Indigenous livelihoods. The findings can inform mining policymakers, regulators and industry professionals on the design, implementation and monitoring of mine completion criteria and associated pre- and post-mining management that will improve environmental outcomes and socio-cultural benefits for Indigenous communities impacted by mining.


Subject(s)
Aluminum Oxide , Mining , Australia , Forestry , Forests
12.
J Environ Manage ; 287: 112258, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33735672

ABSTRACT

Around the world, the development of acceptable and achievable completion criteria is a necessary part of mine closure planning and fundamental to the successful transition of mined land to a post-mining use. Without adequate completion criteria, a mining company cannot proceed to the process of relinquishment, which is the ultimate goal of most mine closure processes. Despite the central role of completion criteria, there is still a need to build capacity and understanding of how to set targets and develop measurable completion criteria that are accepted by all stakeholders involved. We investigate how completion criteria are currently developed in one of Australia's major mining jurisdictions: Western Australia. Through an industry consultation process that involved interviews and a survey with a total of 102 participants from mining companies, consulting businesses, and relevant regulators, we highlight key challenges and opportunities that the sector faces to successfully define clear, achievable, and agreed completion criteria. This is one of the few industry-wide investigations to capture and analyze the perspectives of stakeholders involved in writing and assessing mine closure completion criteria. Results show that some major challenges included inconsistent coordination within and between stakeholder groups, a lack of knowledge or data about restoration, and an overreliance on status quo practices and post-mining land uses. Our work shows that ongoing research on ecological restoration and technological innovations is necessary, but that additional organizational and regulatory barriers need to be addressed to achieve a consistent, coordinated, multi-stakeholder approach to define completion criteria and to advance successful mine rehabilitation and relinquishment.


Subject(s)
Knowledge , Mining , Humans , Western Australia
13.
J Environ Manage ; 282: 111912, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33461087

ABSTRACT

In many mining-intensive areas around the world, knowledge-sharing among companies is critical to advance best-practices in mine rehabilitation and closure. The academic literature documents innovative, best-practices options, yet these are often not accessible to field practitioners. Published mine closure plans provide relevant examples of standards accepted by regulators, however, regulations vary with jurisdiction and can change over time, limiting the utility of these plans. There is, therefore, a need for greater transparency and accessibility of practical knowledge to inform the definition of achievable completion criteria. The purpose of this study is to provide an overview of best-practices for the purpose of defining mine completion criteria. The methods comprise: i) a qualitative meta-analysis of the global peer-reviewed literature; and ii) three in-depth case studies in Western Australia. The research identifies ten key best-practices that could be potentially applied by mining proponents to guide the definition of successful completion criteria. These include: multiple references, monitoring and corrective actions, science-informed completion criteria, holistic rehabilitation, dynamic targets, leading indicators, integration of rehabilitation with mine operations, innovation-guided completion criteria, specific objectives and indicators and risk-based completion criteria. These best-practices are further examined through recent mine rehabilitation and closure programs of mid-to-large mining operators in Western Australia. Our findings provide the first comprehensive review of best-practices towards the definition of mine completion criteria, which are relevant to industries requiring rehabilitation of disturbed lands across Australian and international jurisdictions.


Subject(s)
Knowledge , Mining , Australia , Western Australia
14.
Environ Monit Assess ; 192(6): 390, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32447464

ABSTRACT

Impacted areas by iron mining may face challenges in the management of phosphate fertilization and reduced efficiency of rehabilitation practices, thus extending the time required for the rehabilitation of these areas. The objective of this study was to evaluate phosphorus (P) lability in soils of native forest and ferriferous canga areas (savanna vegetation above ironstone outcrops covering iron ore deposits) and in iron mine waste piles undergoing rehabilitation. Benches of the analysed waste pile differ in age of rehabilitation: as the initial rehabilitation stage (INI), we consider benches with fewer than 3 years of rehabilitation; the intermediate stage (INT) were benches with up to 5 years of rehabilitation; and the advanced rehabilitation stage (ADV) corresponds to benches with more than 8 years of rehabilitation activities. Organic and inorganic P fractions were analysed in these areas by chemical fractionation and were classified according to the degree of soil lability. The results show that in the canga environment, there was a predominance of inorganic fractions of moderate lability and moderate stability, with a strong dependency of the soil organic matter (SOM) on the P fractions, whereas there was a greater participation of the moderately labile organic fractions in the forest than in the canga. On the other hand, in the rehabilitation areas, there was an increase in the labile organic and inorganic fractions as the rehabilitation process advanced. The distribution of P in areas undergoing rehabilitation indicates that there is a tendency for P levels to resemble those of native environments, such as the forests.


Subject(s)
Environmental Monitoring , Iron , Phosphorus , Forests , Soil
15.
Integr Environ Assess Manag ; 15(2): 190-208, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30677215

ABSTRACT

Environmental information is acquired and assessed during the environmental impact assessment process for surface-strip coal mine approval. However, integrating these data and quantifying rehabilitation risk using a holistic multidisciplinary approach is seldom undertaken. We present a rehabilitation risk assessment integrated network (R2 AIN™) framework that can be applied using Bayesian networks (BNs) to integrate and quantify such rehabilitation risks. Our framework has 7 steps, including key integration of rehabilitation risk sources and the quantification of undesired rehabilitation risk events to the final application of mitigation. We demonstrate the framework using a soil compaction BN case study in the Witbank Coalfield, South Africa and the Bowen Basin, Australia. Our approach allows for a probabilistic assessment of rehabilitation risk associated with multidisciplines to be integrated and quantified. Using this method, a site's rehabilitation risk profile can be determined before mining activities commence and the effects of manipulating management actions during later mine phases to reduce risk can be gauged, to aid decision making. Integr Environ Assess Manag 2019;15:190-208. © 2019 SETAC.


Subject(s)
Coal Mining , Environmental Restoration and Remediation , Soil , Australia , Bayes Theorem , Risk Assessment , South Africa
16.
Sci Total Environ ; 636: 1149-1154, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29913577

ABSTRACT

Despite significant efforts to restore dryland ecosystems worldwide, the rate of success of restoration is extremely low in these areas. The role of cyanobacteria from soil biocrusts in reestablishing soil functions of degraded land has been highlighted in recent years. These organisms are capable of improving soil structure and promoting soil N and C fixation. Nevertheless, their application to restore functions of reconstructed soils in dryland restoration programs is yet to be harnessed. In this study, we used microcosms under laboratory conditions to analyse the effects of inoculating soil substrates used in post-mine restoration with a mixture of N-fixing cyanobacteria isolated from soil biocrust (Nostoc commune, Tolypothrix distorta and Scytonema hyalinum) on i) the recovery of the biocrust, and ii) the carbon sequestration and mineralisation rates of these substrates. Soils were collected from an active mine site in the mining-intensive biodiverse Pilbara region (north-west Western Australia) and consisted of previously stockpiled topsoil, overburden waste material, a mixture of both substrates, and a natural soil from an undisturbed area. Our results showed that cyanobacteria rapidly colonised the mine substrates, with biocrust coverage ranging from 23.8 to 52.2% and chlorophyll a concentrations of up to 12.2 µg g-1 three months after inoculation. Notably, soil organic C contents increased 3-fold (P < 0.001) in the mine waste substrate (from 0.6 g kg-1 to 1.9 g kg-1) during this period of time. Overall, our results showed that cyanobacteria inoculation can rapidly modify properties of reconstructed soil substrates, underpinning the potential key role of these organisms as bio-tools to initiate recovery of soil functions in infertile, reconstructed soil substrates.


Subject(s)
Biodegradation, Environmental , Cyanobacteria/physiology , Soil Microbiology , Biodiversity , Carbon , Carbon Sequestration , Chlorophyll/analysis , Chlorophyll/metabolism , Chlorophyll A , Mining , Soil/chemistry , Western Australia
17.
Sci Total Environ ; 601-602: 109-121, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28550724

ABSTRACT

Landscape Evolution Modelling (LEM) technologies provide a means by which it is possible to simulate the long-term geomorphic stability of a conceptual rehabilitated landform. However, simulations rarely consider the potential effects of anthropogenic climate change and consequently risk not accounting for the range of rainfall variability that might be expected in both the near and far future. One issue is that high resolution (both spatial and temporal) rainfall projections incorporating the potential effects of greenhouse forcing are required as input. However, projections of rainfall change are still highly uncertain for many regions, particularly at sub annual/seasonal scales. This is the case for northern Australia, where a decrease or an increase in rainfall post 2030 is considered equally likely based on climate model simulations. The aim of this study is therefore to investigate a spatial analogue approach to develop point scale hourly rainfall scenarios to be used as input to the CAESAR - Lisflood LEM to test the sensitivity of the geomorphic stability of a conceptual rehabilitated landform to potential changes in climate. Importantly, the scenarios incorporate the range of projected potential increase/decrease in rainfall for northern Australia and capture the expected envelope of erosion rates and erosion patterns (i.e. where erosion and deposition occurs) over a 100year modelled period. We show that all rainfall scenarios produce sediment output and gullying greater than that of the surrounding natural system, however a 'wetter' future climate produces the highest output. Importantly, incorporating analogue rainfall scenarios into LEM has the capacity to both improve landform design and enhance the modelling software. Further, the method can be easily transferred to other sites (both nationally and internationally) where rainfall variability is significant and climate change impacts are uncertain.

18.
J Environ Radioact ; 151 Pt 3: 593-600, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26100675

ABSTRACT

Radon-222 exhalation flux densities from two different substrates of several metres thickness, waste rock and waste rock mixed with approximately 30% lateritic material, were measured over a period of five years in the wet-dry tropics of Northern Australia. Fourteen measurement campaigns using activated charcoal canisters (n > 1000) covered both dry and wet seasons and showed differences in seasonal and long term trends of the (222)Rn exhalation flux densities normalised to the (226)Ra activity concentrations of the substrate. Dry season (222)Rn exhalation was generally higher for the mixed substrate, due to the larger fraction of fines. Seasonality established within the first year of landform construction on the mixed substrate, due to the higher water holding capacity of the lateritic material. In contrast, waste rock only shows no seasonality until years four and five after construction, when average normalised dry season (222)Rn exhalation flux densities from waste rock increase to values (0.47 ± 0.06 mBq m(-2) s(-1) per Bq kg(-1)) similar to the mixed substrate (0.64 ± 0.08 mBq m(-2) s(-1) per Bq kg(-1)), likely due to an increase in fines from rapid weathering of the schistose waste rock. Volumetric water content has been used to parametrize relative (222)Rn exhalation and we determined that wet season (222)Rn exhalation is about 40% of the dry season exhalation.


Subject(s)
Radon/analysis , Soil Pollutants, Radioactive/analysis , Charcoal/chemistry , Mining , Northern Territory , Radiation Monitoring , Seasons , Uranium
19.
J Environ Manage ; 161: 173-180, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26172107

ABSTRACT

In most countries the mining industry is required to rehabilitate disturbed land with native vegetation. A typical approach is to stockpile soils during mining and then use this soil to recreate landforms after mining. Soil that has been stockpiled for an extended period typically contains little or no organic matter and nutrient, making soil rehabilitation a slow and difficult process. Here, we take freshwater macroalgae (Oedogonium) cultivated in waste water at a coal-fired power station and use it as a feedstock for the production of biochar, then use this biochar to enhance the rehabilitation of two types of stockpiled soil - a ferrosol and a sodosol - from the adjacent coal mine. While the biomass had relatively high concentrations of some metals, due to its cultivation in waste water, the resulting biochar did not leach metals into the pore water of soil-biochar mixtures. The biochar did, however, contribute essential trace elements (particularly K) to soil pore water. The biochar had very strong positive effects on the establishment and growth of a native plant (Kangaroo grass, Themeda australis) in both of the soils. The addition of the algal biochar to both soils at 10 t ha(-1) reduced the time to germination by the grass and increased the growth and production of plant biomass. Somewhat surprisingly, there was no beneficial effect of a higher application rate (25 t ha(-1)) of the biochar in the ferrosol, which highlights the importance of matching biochar application rates to the requirements of different types of soil. Nevertheless, we demonstrate that algal biochar can be produced from biomass cultivated in waste water and used at low application rates to improve the rehabilitation of a variety of soils typical of coal mines. This novel process links biomass production in waste water to end use of the biomass in land rehabilitation, simultaneously addressing two environmental issues associated with coal-mining and processing.


Subject(s)
Charcoal/chemistry , Mining , Soil , Biomass , Fresh Water , Metals , Poaceae , Seaweed/chemistry , Soil Pollutants/analysis , Trace Elements , Wastewater
20.
Sci Total Environ ; 518-519: 189-200, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25756674

ABSTRACT

Pigs (Sus scrofa) are recognised as having significant ecological impacts in many areas of the world including northern Australia. The full consequences of the introduction of pigs are difficult to quantify as the impacts may only be detected over the long-term and there is a lack of quantitative information on the impacts of feral pigs globally. In this study the effect of feral pigs is quantified in an undisturbed catchment in the monsoonal tropics of northern Australia. Over a three-year period, field data showed that the areal extent of pig disturbance ranged from 0.3-3.3% of the survey area. The mass of material exhumed through these activities ranged from 4.3 t ha(-1) yr(-1) to 36.0 t ha(-1) yr(-1). The findings demonstrate that large introduced species such as feral pigs are disturbing large areas as well as exhuming considerable volumes of soil. A numerical landscape evolution and soil erosion model was used to assess the effect of this disturbance on catchment scale erosion rates. The modelling demonstrated that simulated pig disturbance in previously undisturbed areas produced lower erosion rates compared to those areas which had not been impacted by pigs. This is attributed to the pig disturbance increasing surface roughness and trapping sediment. This suggests that in this specific environment, disturbance by pigs does not enhance erosion. However, this conclusion is prefaced by two important caveats. First, the long term impact of soil disturbance is still very uncertain. Secondly, modelling results show a clear differentiation between those from an undisturbed environment and those from a post-mining landscape, in which pig disturbance may enhance erosion.


Subject(s)
Environmental Monitoring , Geological Phenomena , Introduced Species , Models, Theoretical , Soil , Animals , Australia
SELECTION OF CITATIONS
SEARCH DETAIL