Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
mSystems ; 9(6): e0004824, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38767377

ABSTRACT

Probiotics and synbiotics have been intensively used in animal husbandry due to their advantageous roles in animals' health. However, there is a paucity of research on probiotic and synbiotic supplementation from maternal gestation to the postnatal growing phases of offspring piglets. Thus, we assessed the effects of dietary supplementation of these two additives to sows and offspring piglets on skeletal muscle and body metabolism, colonic microbiota composition, and metabolite profiles of offspring piglets. Pregnant Bama mini-pigs and their offspring piglets (after weaning) were fed either a basal diet or a basal diet supplemented with antibiotics, probiotics, or synbiotics. At 65, 95, and 125 days old, eight pigs per group were euthanized and sampled for analyses. Probiotics increased the intramuscular fat content in the psoas major muscle (PMM) at 95 days old, polyunsaturated fatty acid (PUFA) and n-3 PUFA levels in the longissimus dorsi muscle (LDM) at 65 days old, C16:1 level in the LDM at 125 days old, and upregulated ATGL, CPT-1, and HSL expressions in the PMM at 65 days old. Synbiotics increased the plasma HDL-C level at 65 days old and TC level at 65 and 125 days old and upregulated the CPT-1 expression in the PMM at 125 days old. In addition, probiotics and synbiotics increased the plasma levels of HDL-C at 65 days old, CHE at 95 days old, and LDL-C at 125 days old, while decreasing the C18:1n9t level in the PMM at 65 days old and the plasma levels of GLU, LDH, and TG at 95 days old. Microbiome analysis showed that probiotic and synbiotic supplementation increased colonic Actinobacteria, Firmicutes, Verrucomicrobia, Faecalibacterium, Pseudobutyrivibrio, and Turicibacter abundances. However, antibiotic supplementation decreased colonic Actinobacteria, Bacteroidetes, Prevotella, and Unclassified_Lachnospiraceae abundances. Furthermore, probiotic and synbiotic supplementation was associated with alterations in 8, 7, and 10 differential metabolites at three different age stages. Both microbiome and metabolome analyses showed that the differential metabolic pathways were associated with carbohydrate, amino acid, and lipid metabolism. However, antibiotic supplementation increased the C18:1n9t level in the PMM at 65 days old and xenobiotic biodegradation and metabolism at 125 days old. In conclusion, sow-offspring's diets supplemented with these two additives showed conducive effects on meat flavor, nutritional composition of skeletal muscles, and body metabolism, which may be associated with the reshaping of colonic microbiota and metabolites. However, antibiotic supplementation has negative effects on colonic microbiota composition and fatty acid composition in the PMM. IMPORTANCE: The integral sow-offspring probiotic and synbiotic supplementation improves the meat flavor and the fatty acid composition of the LDM to some extent. Sow-offspring probiotic and synbiotic supplementation increases the colonic beneficial bacteria (including Firmicutes, Verrucomicrobia, Actinobacteria, Faecalibacterium, Turicibacter, and Pseudobutyrivibrio) and alters the colonic metabolite profiles, such as guanidoacetic acid, beta-sitosterol, inosine, cellobiose, indole, and polyamine. Antibiotic supplementation in sow-offspring's diets decreases several beneficial bacteria (including Bacteroidetes, Actinobacteria, Unclassified_Lachnospiraceae, and Prevotella) and has a favorable effect on improving the fatty acid composition of the LDM to some extent, while presenting the opposite effect on the PMM.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Lipid Metabolism , Muscle, Skeletal , Probiotics , Synbiotics , Animals , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Lipid Metabolism/drug effects , Lipid Metabolism/physiology , Female , Swine , Synbiotics/administration & dosage , Probiotics/administration & dosage , Probiotics/pharmacology , Pregnancy , Muscle, Skeletal/metabolism , Muscle, Skeletal/microbiology , Muscle, Skeletal/drug effects , Colon/microbiology , Colon/metabolism
2.
Front Microbiol ; 15: 1398919, 2024.
Article in English | MEDLINE | ID: mdl-38690359

ABSTRACT

Introduction: Adequate crude protein (CP) content in diets plays a crucial role in the intestinal health of the animal. This study investigated the impacts of CP content in diets on the intestinal microbiome and metabolome profiles in growing Huanjiang mini-pigs. Methods: A total of 360 pigs with similar body weight (BW) were allocated for three independent feeding trials based on three different BW stages, including (i) 5-10 kg BW, diets consisting of 14, 16, 18, 20, and 22% CP content; (ii) 10-20 kg BW, diets consisting of 12, 14, 16, 18, and 20% CP content; and (iii) 20-30 kg BW, diets consisting of 10, 12, 14, 16, and 18% CP content. These experiments lasted 28, 28, and 26 days, respectively. Results: The results showed that the Shannon and Simpson indices were decreased (p < 0.05) in the ileum of pigs in response to the 14-18% CP compared with the 20% CP content at 5-10 kg BW stage, while diets containing 12 and 14% CP had higher Chao1 (p < 0.05) and Shannon (p = 0.054) indices compared with 18% CP at 20-30 kg BW stage. Compared with the 20% CP, the diet containing 16% CP displayed an increasing trend (p = 0.089) of Firmicutes abundance but had decreased (p = 0.056) Actinobacteria abundance in the jejunum at 5-10 kg BW stage. In addition, a diet containing 16% CP had higher Lactobacillus abundance in the jejunum and ileum compared with the 18, 20, and 22% CP, while had lower Sphingomonas and Pelomonas abundances in the jejunum and Streptococcus abundance in the ileum compared with the diet containing 22% CP (p < 0.05). Diets containing lower CP content altered differential metabolites in the small intestine at the early stage, while higher CP content had less impact. Conclusion: These findings suggest that a diet containing lower CP content (16% CP) may be an appropriate dietary CP content for 5-10 kg Huanjiang mini-pigs, as 16% CP content in diet has shown beneficial impacts on the intestinal microbiome and metabolome profiles at the early growth stage of pigs.

3.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373009

ABSTRACT

Large animal experiments are important for preclinical studies of regenerative stem cell transplantation therapy. Therefore, we investigated the differentiation capacity of pig skeletal muscle-derived stem cells (Sk-MSCs) as an intermediate model between mice and humans for nerve muscle regenerative therapy. Enzymatically extracted cells were obtained from green-fluorescence transgenic micro-mini pigs (GFP-Tg MMP) and sorted as CD34+/45- (Sk-34) and CD34-/45-/29+ (Sk-DN) fractions. The ability to differentiate into skeletal muscle, peripheral nerve, and vascular cell lineages was examined via in vitro cell culture and in vivo cell transplantation into the damaged tibialis anterior muscle and sciatic nerves of nude mice and rats. Protein and mRNA levels were analyzed using RT-PCR, immunohistochemistry, and immunoelectron microscopy. The myogenic potential, which was tested by Pax7 and MyoD expression and the formation of muscle fibers, was higher in Sk-DN cells than in Sk-34 cells but remained weak in the latter. In contrast, the capacity to differentiate into peripheral nerve and vascular cell lineages was significantly stronger in Sk-34 cells. In particular, Sk-DN cells did not engraft to the damaged nerve, whereas Sk-34 cells showed active engraftment and differentiation into perineurial/endoneurial cells, endothelial cells, and vascular smooth muscle cells, similar to the human case, as previously reported. Therefore, we concluded that Sk-34 and Sk-DN cells in pigs are closer to those in humans than to those in mice.


Subject(s)
Endothelial Cells , Muscle Fibers, Skeletal , Mice , Humans , Rats , Animals , Swine , Mice, Nude , Swine, Miniature , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Cell Differentiation/genetics , Stem Cells/metabolism , Cells, Cultured , Sciatic Nerve
4.
Anim Reprod ; 20(1): e20220090, 2023.
Article in English | MEDLINE | ID: mdl-36922987

ABSTRACT

RFX2 plays critical roles in mammalian spermatogenesis and cilium maturation. Here, the testes of 12-month-old adult boars of Banna mini-pig inbred line (BMI) were subjected to whole-transcriptome sequencing. The results indicated that the average expression (raw count) of RFX2 gene in BMI testes was 16138.25, and the average expression value of the corresponding transcript ENSSSCT00000043271.2 was 123.1898. The CDS of RFX2 obtained from BMI testes was 2,817 bp (GenBank accession number: OL362242). Gene structure analysis showed that RFX2 was located on chromosome 2 of the pig genome with 19 exons. Protein structure analysis indicated that RFX2 contains 728 amino acids with two conserved domains. Phylogenetic analysis revealed that RFX2 was highly conserved with evolutionary homologies among mammalian species. Other analyses, including PPI networks, KEGG, and GO, indicated that BMI RFX2 had interactions with 43 proteins involving various functions, such as in cell cycle, spermatid development, spermatid differentiation, cilium assembly, and cilium organization, etc. Correlation analysis between these proteins and the transcriptome data implied that RFX2 was significantly associated with FOXJ1, DNAH9, TMEM138, E2F7, and ATR, and particularly showed the highest correlation with ATR, demonstrating the importance of RFX2 and ART in spermatogenesis. Functional annotation implied that RFX2 was involved in 17 GO terms, including three cellular components (CC), six molecular functions (MF), and eight biological processes (BP). The analysis of miRNA-gene targeting indicated that BMI RFX2 was mainly regulated by two miRNAs, among which four lncRNAs and five lncRNAs competitively bound ssc-miR-365-5p and ssc-miR-744 with RFX2, respectively. Further, the dual-luciferase report assay indicated that the ssc-miR-365-5p and ssc-miR-744 significantly reduced luciferase activity of RFX2 3'UTR in the 293T cells, suggesting that these two miRNAs regulated the expression of RFX2. Our results revealed the important role of RFX2 in BMI spermatogenesis, making it an intriguing candidate for follow-up studies.

5.
Biol Reprod ; 108(3): 465-478, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36477198

ABSTRACT

In mammals, testis and epididymis are critical components of the male reproductive system for androgen production, spermatogenesis, sperm transportation, as well as sperm maturation. Here, we report single-molecule real-time sequencing data from the testis and epididymis of the Banna mini-pig inbred line (BMI), a promising laboratory animal for medical research. We obtained high-quality full-length transcriptomes and identified 9879 isoforms and 8761 isoforms in the BMI testis and epididymis, respectively. Most of the isoforms we identified have novel exon structures that will greatly improve the annotation of testis- and epididymis-expressed genes in pigs. We also found that 3055 genes (over 50%) were shared between BMI testis and epididymis, indicating widespread expression profiles of genes related to reproduction. We characterized extensive alternative splicing events in BMI testis and epididymis and showed that 96 testis-expressed genes and 79 epididymis-expressed genes have more than six isoforms, revealing the complexity of alternative splicing. We accurately defined the transcribed isoforms in BMI testis and epididymis by combining Pacific Biotechnology Isoform-sequencing (PacBio Iso-Seq) and Illumina RNA Sequencing (RNA-seq) techniques. The refined annotation of some key genes governing male reproduction will facilitate further understanding of the molecular mechanisms underlying BMI male sterility. In addition, the high-confident identification of 548 and 669 long noncoding RNAs (lncRNAs) in these two tissues has established a candidate gene set for future functional investigations. Overall, our study provides new insights into the role of the testis and epididymis during BMI reproduction, paving the path for further studies on BMI male infertility.


Subject(s)
Epididymis , Testis , Male , Animals , Swine/genetics , Testis/metabolism , Epididymis/metabolism , Swine, Miniature/genetics , Swine, Miniature/metabolism , Transcriptome , Semen/metabolism , Protein Isoforms/metabolism , Animals, Laboratory/genetics , Animals, Laboratory/metabolism
6.
Neural Regen Res ; 18(7): 1505-1511, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36571355

ABSTRACT

Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes, which affect the potency of the functional recovery after spinal cord injury (SCI). Gene therapy for spinal cord injury is proposed as a promising therapeutic strategy to induce positive changes in remodeling of the affected neural tissue. In our previous studies for delivering the therapeutic genes at the site of spinal cord injury, we developed a new approach using an autologous leucoconcentrate transduced ex vivo with chimeric adenoviruses (Ad5/35) carrying recombinant cDNA. In the present study, the efficacy of the intravenous infusion of an autologous genetically-enriched leucoconcentrate simultaneously producing recombinant vascular endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) was evaluated with regard to the molecular and cellular changes in remodeling of the spinal cord tissue at the site of damage in a model of mini-pigs with moderate spinal cord injury. Experimental animals were randomly divided into two groups of 4 pigs each: the therapeutic (infused with the leucoconcentrate simultaneously transduced with a combination of the three chimeric adenoviral vectors Ad5/35-VEGF165, Ad5/35-GDNF, and Ad5/35-NCAM1) and control groups (infused with intact leucoconcentrate). The morphometric and immunofluorescence analysis of the spinal cord regeneration in the rostral and caudal segments according to the epicenter of the injury in the treated animals compared to the control mini-pigs showed: (1) higher sparing of the grey matter and increased survivability of the spinal cord cells (lower number of Caspase-3-positive cells and decreased expression of Hsp27); (2) recovery of synaptophysin expression; (3) prevention of astrogliosis (lower area of glial fibrillary acidic protein-positive astrocytes and ionized calcium binding adaptor molecule 1-positive microglial cells); (4) higher growth rates of regenerating ßIII-tubulin-positive axons accompanied by a higher number of oligodendrocyte transcription factor 2-positive oligodendroglial cells in the lateral corticospinal tract region. These results revealed the efficacy of intravenous infusion of the autologous genetically-enriched leucoconcentrate producing recombinant VEGF, GDNF, and NCAM in the acute phase of spinal cord injury on the positive changes in the post-traumatic remodeling nervous tissue at the site of direct injury. Our data provide a solid platform for a new ex vivo gene therapy for spinal cord injury and will facilitate further translation of regenerative therapies in clinical neurology.

7.
Pharmaceutics ; 14(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36297644

ABSTRACT

The natural limitations of regeneration in the CNS are major problems for the treatment of neurological disorders, including ischaemic brain strokes. Among the approaches being actively developed to inhibit post-ischaemic negative consequences is the delivery of therapeutic genes encoding neuroprotective molecules to the brain. Unfortunately, there are currently no proven and available medicines that contain recombinant human genes for the treatment of ischaemic cerebral stroke. Of particular interest is the development of treatments for patients at risk of ischaemic stroke. In the present study, we propose a proof of concept for the use of an autologous, genetically enriched leucoconcentrate temporally secreting recombinant vascular endothelial growth factor (VEGF), glial-cell-line-derived neurotrophic factor (GDNF) and the neural cell adhesion molecule (NCAM) for the treatment of stroke. In a mini-pig ischaemic stroke model, genetically enriched leucoconcentrate was infused 4 h after surgery (gene therapy in acute phase) or 2 days before stroke modelling (preventive gene therapy). On day 21, after the stroke modelling, the post-ischaemic brain recovery was examined by morphologic and immunofluorescence analysis. The benefits of treating a stroke with genetically enriched leucoconcentrate both for preventive purposes and in the acute phase were confirmed by an improved performance in behavioural tests, higher preservation of brain tissue and positive post-ischaemic brain remodelling in the peri-infarct area. These results suggest that the employment of autologous leucocytes enabling the temporary production of the recombinant therapeutic molecules to correct the pathological process in the CNS may be one of the breakthrough approaches in gene therapy.

8.
Front Pharmacol ; 13: 849102, 2022.
Article in English | MEDLINE | ID: mdl-36133821

ABSTRACT

Post-traumatic osteoarthritis is a special type of osteoarthritis and a common disease, with few effective treatments available. α2-Macroglobulin (α2M) is important to chondral protection in post-traumatic osteoarthritis. However, its injection into xenogeneic joint cavities involves safety hazards, limiting clinical applications. Exploring serum α2M-enriching strategies and the therapeutic effect and mechanism of α2M-rich serum (α2MRS) autologous joint injection to treat post-traumatic osteoarthritis has significant value. In the present study, a unique filtration process was used to obtain α2MRS from human and mini pig serum. We evaluated the potential of α2MRS in protecting against post-surgery cartilage degeneration. We identify the potential of α2MRS in reducing the expression of inflammatory cytokines and factors that hasten cartilage degeneration in post-operative conditions leading to post-traumatic osteoarthritis. The potential of α2MRS was analyzed in interleukin-1ß induced human chondrocytes and mini pig models. In the chondrocyte model, α2MRS significantly promoted human chondrocyte proliferation and reduced apoptosis and chondrocyte catabolic cytokine gene transcription and secretion. The anterior cruciate ligament autograft reconstruction model of mini pigs was randomized into groups, operated on, and injected with α2MRS or saline. The results showed that α2MRS injection significantly suppressed the levels of inflammatory factors, improved gait, and showed significantly lower cartilage degeneration than the groups that did not receive α2MRS injections. This study highlights the chondroprotective effects of α2MRS, elucidated its potential applications against cartilage degeneration, and could provide a basis for the clinical translation of α2MRS.

9.
J Appl Microbiol ; 133(2): 515-528, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35396768

ABSTRACT

AIM: Probiotics could improve the health, growth, and development of host or their foetuses/offspring via regulating gut microbiota. The present study was conducted to determine the effects of maternal probiotics supplementation on gut microbiota and metabolites of sows and their suckling piglets, as well as plasma biochemical parameters, oxidative/anti-oxidative indexes, and inflammatory cytokine levels of suckling piglets. METHODS AND RESULTS: A total of 32 pregnant Bama mini-pigs were selected and randomly divided into two groups. The sows were fed a basal diet (control group) or a basal diet supplemented with probiotics (probiotics group) from mating to day 21 of lactation. Samples from sows were collected on day 105 of pregnancy and day 21 of lactation and from piglets on day 21 of lactation. The results showed that probiotics supplementation increased the faecal abundances of Ruminococcus, Bacteroides, and Anaeroplasma and decreased Tenericutes on day 105 of pregnancy while increased the abundances of Actinobacteria and Anaerostipes and decreased Proteobacteria and Desulfovibrio on day 21 of lactation. In addition, probiotics supplementation decreased the faecal levels of tryptamine, putrescine, and cadaverine on day 105 of pregnancy and isovalerate and skatole on day 21 of lactation while increased butyrate level on day 21 of lactation. Further studies showed that maternal probiotics supplementation decreased the plasma levels of AMM, TC, LDL-C, Ala, Tau, MDA, H2 O2 , IL-1ß, IL-2, IL-6, and IFN-α of suckling piglets. Moreover, maternal probiotics supplementation increased the abundances of Deferribacteres, Fusobacteria, and Fusobacterium while decreased Anaerostipes in piglet's colon. Spearman's correlation analysis revealed a potential link between gut microbiota alterations and their metabolites. CONCLUSIONS: Dietary probiotics supplementation during pregnancy and lactation periods could improve sow status, alleviate oxidative stress and inflammation response, and improve nutrient metabolism of piglets by altering the gut microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY: The probiotics alter maternal and offspring's gut microbiota involving in offspring's physiological and metabolic changes, and present a new perspective that the effects of gut microbiota changes induced by probiotics supplementation will help in addressing the growth and development and health problem of their foetuses/offspring.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Animal Feed/analysis , Animals , Animals, Suckling , Antioxidants/pharmacology , Diet/veterinary , Dietary Supplements/analysis , Female , Lactation , Pregnancy , Probiotics/analysis , Swine , Swine, Miniature
10.
Tissue Eng Part C Methods ; 28(5): 193-201, 2022 05.
Article in English | MEDLINE | ID: mdl-35262400

ABSTRACT

Craniomaxillofacial bone defects represent a clinical challenge in the fields of maxillofacial surgery and (implant) dentistry. Regeneration of these bone defects requires the application of bone graft materials that facilitate new bone formation in a safe, reliable, and predictive manner. In addition to autologous bone graft, several types of (synthetic) bone substitute materials have become clinically available, and still major efforts are focused on improving such bone substitute materials by optimizing their properties. Given the regulatory necessity to evaluate the performance of new bone substitute materials for craniomaxillofacial bone regeneration in a large animal model with similarity to human bone before clinical application, we here describe a mini-pig mandibular bone defect model that allows for the creation of multiple (critical-size) bone defects within the mandibular body of a single animal. As examples of bone substitute materials, we utilize both the clinically used BioOss granules and an experimental calcium phosphate cement for filling the created defects. Regarding the latter, its advantages are the injectable application within the defect site, in which the material rapidly sets, and the tailorable degradation properties via the inclusion of hydrolytically degrading polymeric particles. For both bone substitute materials, we show the suitability of the bone defect model to assess bone regeneration via histology and micro-computed tomography. Impact statement Given the regulatory necessity to evaluate the performance of new bone substitute materials for craniomaxillofacial bone regeneration in a large animal model with similarity to the human bone before clinical application, we here describe a mini-pig mandibular bone defect model that allows for the creation of multiple (critical-size) bone defects within the mandibular body of a single animal that can be used for the evaluation of the bone regenerative capacity of new bone grafting materials as well as tissue-engineered products for alveolar bone regeneration.


Subject(s)
Bone Substitutes , Animals , Bone Regeneration , Mandible/diagnostic imaging , Mandible/pathology , Swine , Swine, Miniature , X-Ray Microtomography
11.
Pharm Dev Technol ; 27(3): 331-340, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35264063

ABSTRACT

Dapagliflozin base and a commercial dapagliflozin propanediol hydrate cocrystal (DPF-PDHC) were highly hygroscopic and thermally unstable. In this study, to address this limitation, we prepared a novel dapagliflozin di-L-proline cocrystal (DPF-LPC) and evaluated its physicochemical characterization compared with DPF-PDHC. After the preparation of the DPF-LPC-loaded tablet, its dissolution, stability and bioequivalence in beagle dogs and mini-pigs were assessed. DPF-LPC was well prepared with a dapagliflozin base and L-proline in a molar ratio of 1:2. Similar to DPF-PDHC, DPF-LPC was highly lipophilic and crystalline in nature. However, these two cocrystals exhibited different melting points and crystalline structures, indicating their different cocrystal forms. Moreover, DPF-LPC exhibited less hygroscopicity and lower water content than DPF-PDHC. The DPF-LPC-loaded tablet composed of DPF-LPC, Comprecel M102, lactose monohydrate, crospovidone, magnesium stearate, and Opadry (coating) at a weight ratio of 15.6:104.4:100.0:8.0:2.0:7.0, was dissolution-equivalent to the commercial tablet. Moreover, it provided lower impurities than the commercial tablet, indicating its better stability. In the two animals, there were no significant differences in the plasma concentrations, AUC, Cmax, and Tmax values, suggesting that they were bioequivalent. Therefore, the novel DPF-LPC-loaded tablet with excellent stability and bioequivalence may be used as a potential alternative to the commercial DPF-PDHC-loaded tablet.


Subject(s)
Proline , Animals , Benzhydryl Compounds , Dogs , Glucosides , Solubility , Swine , Swine, Miniature , Tablets/chemistry
12.
Eur J Trauma Emerg Surg ; 48(4): 3279-3285, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35201371

ABSTRACT

PURPOSE: The increasing number of implant-associated infections during trauma and orthopedic surgery caused by biofilm-forming Staphylococcus aureus in combination with an increasing resistance of conventional antibiotics requires new therapeutic strategies. One possibility could be testing for different therapeutic strategies with differently coated plates. Therefore, a clinically realistic model is required. The pig offers the best comparability to the human situation, thus it was chosen for this model. The present study characterizes a novel model of a standardized low-grade acute osteitis with bone defect in the femur in mini-pigs, which is stabilized by a titanium locking plate to enable further studies with various coatings. METHODS: A bone defect was performed on the femur of 7 Aachen mini-pigs and infected with Methicillin-resistant S. aureus (MRSA ATCC 33592). The defect zone was stabilized with a titanium plate. After 14 days, a plate change, wound debridement and lavage were performed. Finally, after 42 days, the animals were lavaged and debrided again, followed by euthanasia. The fracture healing was evaluated radiologically and histologically. RESULTS: A local osteitis with radiologically visible lysis of the bone could be established. The unchanged high Colony-forming Units (CFU) in lavage, the significant differences in Interleukin (IL)-6 in blood compared to lavage and the lack of increase in Alkaline Phosphates (ALP) in serum over the entire observation period show the constant local infection. CONCLUSION: The study shows the successful induction of local osteitis with lysis of the bone and the lack of enzymatic activity to mineralize the bone. Therefore, this standardized mini-pig model can be used in further clinical studies, to investigate various coated implants, bone healing, biofilm formation and immune response in implant-associated osteitis.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Osteitis , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Humans , Models, Theoretical , Osteitis/drug therapy , Osteitis/etiology , Staphylococcal Infections/drug therapy , Swine , Swine, Miniature , Titanium/therapeutic use
13.
Animal Model Exp Med ; 5(1): 81-88, 2022 02.
Article in English | MEDLINE | ID: mdl-35213788

ABSTRACT

BACKGROUND: Currently, increasing attention is being paid to the important role of intestinal microbiome in diabetes. However, few studies have evaluated the characteristics of gut microbiome in diabetic miniature pigs, despite it being a good model animal for assessing diabetes. METHODS: In this study, a mini-pig diabetes model (DM) was established by 9-month high-fat diet (HFD) combined with low-dose streptozotocin, while the animals fed standard chow diet constituted the control group. 16S ribosomal RNA (rRNA) gene sequencing was performed to assess the characteristics of the intestinal microbiome in diabetic mini-pigs. RESULTS: The results showed that microbial structure in diabetic mini-pigs was altered, reflected by increases in levels of Coprococcus_3 and Clostridium_sensu_stricto_1, which were positively correlated with diabetes, and decreases in levels of the bacteria Rikenellaceae, Clostridiales_vadinBB60_group, and Bacteroidales_RF16_group, which were inversely correlated with blood glucose and insulin resistance. Moreover, PICRUSt-predicted pathways related to the glycolysis and Entner-Doudoroff superpathway, enterobactin biosynthesis, and the l-tryptophan biosynthesis were significantly elevated in the DM group. CONCLUSION: These results reveal the composition and predictive functions of the intestinal microbiome in the mini-pig diabetes model, further verifying the relationship between HFD, gut microbiome, and diabetes, and providing novel insights into the application of the mini-pig diabetes model in gut microbiome research.


Subject(s)
Diabetes Mellitus , Gastrointestinal Microbiome , Swine, Miniature , Animals , Diabetes Mellitus/genetics , Gastrointestinal Microbiome/genetics , Genes, rRNA , RNA, Ribosomal, 16S/genetics , Swine/microbiology , Swine, Miniature/microbiology
14.
J Orthop Surg Res ; 16(1): 594, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34649596

ABSTRACT

BACKGROUND: Varieties of animals were used to study osteoarthritis pathogenesis. The Diannan small-ear pig, which is native to Yunnan, China, is thought to have an articular anatomy similar to that of humans and is more likely to be a source of pathological tissues than other animals. The aim of this study was to determine whether this animal can serve as a more effective osteoarthritis model and explore the role of SDF-1/CXCR4 signaling pathway in the development of Osteoarthritis in animals. METHODS: Twenty-seven adult pigs were randomly divided into three groups and underwent the Hulth procedure, papain articular injection, and conventional breeding. After 4, 8, and 12 weeks, cartilage tissues from knee joint were extracted for general and histological observation, immunofluorescence, and biochemical analysis. Synovium was taken out for stromal cell-derived factor-1 analysis. RESULTS: Histopathological observation showed obvious cartilage loss in two experimental groups, this cartilage loss was more severe in the chemical groups. Synovial stromal cell-derived factor1 levels increased over time in all groups. mRNA and protein levels of matrix metalloproteinase-3 were much higher in the chemical groups than in the other groups, whereas levels of collagen type II and aggrecan were significantly lower in the chemical groups than in the other groups. Immunofluorescence assays of collagen type II revealed an apparent reduction in this marker in the chemical groups compared with the other groups. CONCLUSIONS: These results indicated that the Diannan small-ear pig can be used as an effective osteoarthritis model. In addition, it is much more convenient and much faster to induce osteoarthritis by intra-articular injection of papain, which is a method worthy of being promoted.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , China , Collagen Type II , Disease Models, Animal , Osteoarthritis/drug therapy , Papain , Swine
15.
Elife ; 102021 09 28.
Article in English | MEDLINE | ID: mdl-34581269

ABSTRACT

Management of salivary gland hypofunction caused by irradiation (IR) therapy for head and neck cancer remains lack of effective treatments. Salivary glands, especially the parotid gland, actively uptake dietary nitrate and secrete it into saliva. Here, we investigated the effect of dietary nitrate on the prevention and treatment of IR-induced parotid gland hypofunction in miniature pigs, and elucidated the underlying mechanism in human parotid gland cells. We found that nitrate administration prevented IR-induced parotid gland damage in a dose-dependent manner, by maintaining the function of irradiated parotid gland tissue. Nitrate could increase sialin expression, a nitrate transporter expressed in the parotid gland, making the nitrate-sialin feedback loop that facilitates nitrate influx into cells for maintaining cell proliferation and inhibiting apoptosis. Furthermore, nitrate enhanced cell proliferation via the epidermal growth factor receptor (EGFR)-protein kinase B (AKT)-mitogen-activated protein kinase (MAPK) signaling pathway in irradiated parotid gland tissue. Collectively, nitrate effectively prevented IR-induced xerostomia via the EGFR-AKT-MAPK signaling pathway. Dietary nitrate supplementation may provide a novel, safe, and effective way to resolve IR-induced xerostomia.


Head and neck cancers are commonly treated using radiotherapy, where a beam of high-energy radiation is targeted at the tumour. This often severely damages the surrounding salivary glands, leading to chronic dry mouth and impairing a patient's sense of taste, nutrient intake, speech and immune system. Despite this significant impact on quality of life, there is no effective treatment yet for this side effect. In the body, salivary glands are one of the primary users of a compound known as nitrate, which is commonly found in the diet. In the glands, it is ushered into cells thanks to a protein known as sialin. The nutrient supports the activity and maintenance of the glands, before it is released in the saliva. Feng, Wu et al. therefore decided to test whether nitrate could offer protection during neck and head radiotherapy. The experiments used miniature pigs, which have similar salivary glands to humans. The animals that received sodium nitrate before and after exposure to radiation preserved up to 85% of their saliva production. By comparison, without any additional nitrate, saliva production fell to 20% of pre-radiation levels. To understand how this protective effect emerged, Feng, Wu et al. added nitrate to cells from a human salivary gland known as the parotid. This led to the cells producing more sialin, creating a feedback loop which increases the amount of nitrate in the salivary glands. Further examination then showed that the compound promotes growth of cells and reduce their death. These findings therefore suggest that clinical studies may be worthwhile to test if nitrate could be used to prevent dry mouth in head and neck cancer patients who undergo radiotherapy.


Subject(s)
Nitrates/metabolism , Parotid Gland/radiation effects , Radiotherapy/adverse effects , Swine, Miniature/physiology , Xerostomia/prevention & control , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Nitrates/administration & dosage , Parotid Gland/metabolism , Parotid Gland/physiopathology , Swine , Xerostomia/etiology
16.
Front Nutr ; 8: 728477, 2021.
Article in English | MEDLINE | ID: mdl-34513907

ABSTRACT

Betaine is widely used as feed additives in animal husbandry as it can cause many benefits such as improving antioxidant ability, growth performance, and carcass traits. However, there are limited studies about the effects of betaine on the Bama mini-pigs. The present study was conducted to evaluate the effects of dietary betaine on carcass traits, meat quality, and nitrogen metabolism of pigs. Twenty-six pregnant Bama mini-pigs and then 104 weaned piglets were assigned for experimental treatments. The plasma and muscle samples were collected at 65-, 95-, and 125-d-old pigs, respectively. The results showed that betaine addition in the sow-offspring diets increased the lean meat rate in the 65-d-old pigs, whereas carcass weight, carcass yield, and loin-eye area were increased in the 95-d-old pigs, and carcass weight and backfat thickness in the 125-d-old pigs. Dietary betaine addition in the sow-offspring diets increased the contents of plasma Asp of 65-d-old, Met of 95- and 125-d-old, and Sar of 125-d-old pigs. Moreover, betaine addition increased the contents of Met, His, Ile, and Phe in Longissimus thoracis et lumborum, whereas those contents were decreased in biceps femoris and psoas major muscles at different stages. Betaine addition in the sow and piglets' diets regulated the muscle fiber-type and myogenic regulatory gene expressions. In summary, betaine addition in the sow and sow-offspring diets could improve the carcass traits and meat quality by altering the plasma biochemical parameters, amino acid composition, and gene expressions of skeletal muscle.

17.
Anim Nutr ; 7(2): 376-383, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34258425

ABSTRACT

The objective of the study is to evaluate and compare the effects of betaine or glycine on carcass trait, meat quality and lipid metabolism of finishing Huan Jiang mini-pigs. Betaine called trimethylglycine is a methyl derivative of glycine, but few researches were conducted to compare the impact of dietary betaine and glycine on pigs. One hundred and forty-four Huan Jiang mini-pigs (body weight = 10.55 ± 0.15 kg; 70 d) were randomly divided to 3 treatment groups (basal diet, glycine or betaine). Results indicated that dietary betaine increased the average daily gain (ADG) and final weight (P < 0.05). Dietary glycine or betaine markedly reduced average backfat thickness (P < 0.05) and heightened lean percentage (P < 0.01) compared to the control group. Moreover, in comparison with the control group, betaine significantly improved the redness (a∗) and tenderness (shear force) of the longissimus dorsi (LD) muscle (P < 0.05), whereas glycine only raised the value of a∗ of the LD muscle (P < 0.05). These results showed that diet supplemented with 0.25% betaine and equimolar amounts of glycine could regulate cascass trait and meat quality of finishing Huan Jiang mini-pigs, and the effect of betaine was superior to that of glycine.

18.
Eur J Pharm Sci ; 159: 105741, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33540039

ABSTRACT

Dermal microdialysis (dMD) can measure the rate and extent to which a topically administered active pharmaceutical ingredient (API) becomes available in the dermis. Using multiple test-sites on the same subject, and replicate probes at each test-site, it is feasible to compare the cutaneous pharmacokinetics of an API from different topical dermatological drug products in parallel on the same subject with this technique. This study design would help to reduce variability. However, there are technical considerations related to the dMD experimental methods that must be characterized and optimized to ensure that an in vivo dMD study is selective, sensitive, discriminating, and reproducible. The goals of this study were to assess: the minimum distance required between test-sites to prevent cross-talk between probes due to potential lateral-diffusion; the sensitivity of the dMD method to detect differences in the local concentration of metronidazole (MTZ) among single escalating doses; the ability to discriminate between the two different formulations; and the stability of the dMD-probes over 48 h. Results indicate that lateral-diffusion and systemic redistribution of the API following topical application of the drug product were negligible, thus MTZ measured by dMD can be selectively attributed to the dermal bioavailability of the API from the applied topical dose. The dMD methodology was able to detect differences in the bioavailability of MTZ from the cream compared to the gel when applied at the same dose, as well as among different doses of the same formulation over a 48-hour sampling duration; therefore, the method is sensitive. The percentage loss of D3-MTZ from the probe compared to its original concentration in the perfusate indicates that the probe performance was stable over the 48 h.


Subject(s)
Metronidazole , Skin Absorption , Animals , Biological Availability , Microdialysis , Skin/metabolism , Swine , Swine, Miniature
19.
Radiat Oncol ; 16(1): 30, 2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33549130

ABSTRACT

BACKGROUND: Radiation-induced brain injury is a common concern for survivors of adult and pediatric brain cancer. Pre-clinically, rodent models are the standard approach to evaluate mechanisms of injury and test new therapeutics for this condition. However, these rodent models fail to recapitulate the radiological and histological characteristics of the clinical disease. METHODS: Here we describe a hemispheric mini-pig model of radiation-induced brain injury generated with a clinical 6 MV photon irradiator and evaluated with a clinical 3T MRI. Two pairs of Yucatan mini-pigs each received either 15 Gy or 25 Gy to the left brain hemisphere. Quality of intensity modulated radiation therapy treatment plans was evaluated retrospectively with parameters reported according to ICRU guidelines. The pigs were observed weekly to check for any outright signs of neurological impairment. The pigs underwent anatomical MRI examination before irradiation and up to 6 months post-irradiation. Immediately after the last imaging time point, the pigs were euthanized and their brains were collected for histopathological assessment. RESULTS: Analysis of the dose volume histograms showed that 93% of the prescribed dose was delivered to at least 93% of the target volume in the left hemisphere. Organs at risk excluded from the target volume received doses below clinical safety thresholds. For the pigs that received a 25 Gy dose, progressive neurological impairment was observed starting at 2 months post-irradiation leading to the need for euthanasia by 3-4 months. On MRI, these two animals presented with diffuse white matter pathology consistent with the human disease that progressed to outright radiation necrosis and severe brain swelling. Histology was consistent with the final MRI evaluation. The pigs that received a 15 Gy dose appeared normal all the way to 6 months post-irradiation with no obvious neurological impairment or lesions on MRI or histopathology. CONCLUSION: Based on our results, a mini-pig model of radiation-induced brain injury is feasible though some optimization is still needed. The mini-pig model produced lesions on MRI that are consistent with the human disease and which are not seen in rodent models. Our data shows that the ideal radiation dose for this model likely lies between 15 and 25 Gy.


Subject(s)
Brain Injuries/pathology , Cerebrum/radiation effects , Gamma Rays/adverse effects , Radiation Injuries, Experimental/pathology , Animals , Brain Injuries/etiology , Magnetic Resonance Imaging , Male , Radiation Injuries, Experimental/etiology , Swine , Swine, Miniature
20.
Exp Biol Med (Maywood) ; 246(8): 986-995, 2021 04.
Article in English | MEDLINE | ID: mdl-33467911

ABSTRACT

Acute kidney injury is a serious health hazard disease due to its complex etiology and lack of effective treatments, resulting in high medical costs and high mortality. At present, a large number of basic research studies on acute kidney injury have been carried out. However, acute kidney injury models established in rodents sometimes do not simulate the course of human disease well. Research in large animal models of acute kidney injury is relatively rare, and methods to build a mature model of acute kidney injury have failed. Because its kidney anatomy and morphology are very similar to those in humans, the mini pig is an ideal animal in which to model kidney disease. Nephrotoxic drug-induced acute kidney injury has a high incidence. In this study, we established models of acute kidney injury induced by two drugs (gentamicin and cisplatin). Finally, the model of cisplatin-induced acute kidney injury was developed successfully, but we found the model of gentamycin-induced acute kidney injury was not reproducible. Compared to other models, these models better represent acute kidney injury caused by antibiotics and chemotherapeutic drugs and provide a basis for the study of new treatments for acute kidney injury in a large animal model.


Subject(s)
Acute Kidney Injury , Cisplatin/adverse effects , Disease Models, Animal , Gentamicins/adverse effects , Swine, Miniature/metabolism , Swine/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Cisplatin/pharmacology , Gentamicins/pharmacology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...