Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 252
Filter
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000148

ABSTRACT

The metabolism of glioma cells exhibits significant heterogeneity and is partially responsible for treatment outcomes. Given this variability, we hypothesized that the effectiveness of treatments targeting various metabolic pathways depends on the bioenergetic profiles and mitochondrial status of glioma cells. To this end, we analyzed mitochondrial biomass, mitochondrial protein density, oxidative phosphorylation (OXPHOS), and glycolysis in a panel of eight glioma cell lines. Our findings revealed considerable variability: mitochondrial biomass varied by up to 3.2-fold, the density of mitochondrial proteins by up to 2.1-fold, and OXPHOS levels by up to 7.3-fold across the cell lines. Subsequently, we stratified glioma cell lines based on their mitochondrial status, OXPHOS, and bioenergetic fitness. Following this stratification, we utilized 16 compounds targeting key bioenergetic, mitochondrial, and related pathways to analyze the associations between induced changes in cell numbers, proliferation, and apoptosis with respect to their steady-state mitochondrial and bioenergetic metrics. Remarkably, a significant fraction of the treatments showed strong correlations with mitochondrial biomass and the density of mitochondrial proteins, suggesting that mitochondrial status may reflect glioma cell sensitivity to specific treatments. Overall, our results indicate that mitochondrial status and bioenergetics are linked to the efficacy of treatments targeting metabolic pathways in glioma.


Subject(s)
Biomass , Energy Metabolism , Glioma , Mitochondria , Mitochondrial Proteins , Oxidative Phosphorylation , Glioma/metabolism , Glioma/pathology , Humans , Cell Line, Tumor , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Cell Proliferation , Glycolysis , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Apoptosis
2.
Int J Nanomedicine ; 19: 6463-6483, 2024.
Article in English | MEDLINE | ID: mdl-38946882

ABSTRACT

Purpose: Mitochondrial oxidative stress is an important factor in cell apoptosis. Cerium oxide nanomaterials show great potential for scavenging free radicals and simulating superoxide dismutase (SOD) and catalase (CAT) activities. To solve the problem of poor targeting of cerium oxide nanomaterials, we designed albumin-cerium oxide nanoclusters (TPP-PCNLs) that target the modification of mitochondria with triphenyl phosphate (TPP). TPP-PCNLs are expected to simulate the activity of superoxide dismutase, continuously remove reactive oxygen species, and play a lasting role in radiation protection. Methods: First, cerium dioxide nanoclusters (CNLs), polyethylene glycol cerium dioxide nanoclusters (PCNLs), and TPP-PCNLs were characterized in terms of their morphology and size, ultraviolet spectrum, dispersion stability and cellular uptake, and colocalization Subsequently, the anti-radiation effects of TPP-PCNLs were investigated using in vitro and in vivo experiments including cell viability, apoptosis, comet assays, histopathology, and dose reduction factor (DRF). Results: TPP-PCNLs exhibited good stability and biocompatibility. In vitro experiments indicated that TPP-PCNLs could not only target mitochondria excellently but also regulate reactive oxygen species (ROS)levels in whole cells. More importantly, TPP-PCNLs improved the integrity and functionality of mitochondria in irradiated L-02 cells, thereby indirectly eliminating the continuous damage to nuclear DNA caused by mitochondrial oxidative stress. TPP-PCNLs are mainly targeted to the liver, spleen, and other extramedullary hematopoietic organs with a radiation dose reduction factor of 1.30. In vivo experiments showed that TPP-PCNLs effectively improved the survival rate, weight change, hematopoietic function of irradiated animals. Western blot experiments have confirmed that TPP-PCNLs play a role in radiation protection by regulating the mitochondrial apoptotic pathway. Conclusion: TPP-PCNLs play a radiologically protective role by targeting extramedullary hematopoietic organ-liver cells and mitochondria to continuously clear ROS.


Subject(s)
Apoptosis , Cerium , Hematopoiesis , Mitochondria , Reactive Oxygen Species , Cerium/chemistry , Cerium/pharmacology , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Mice , Apoptosis/drug effects , Apoptosis/radiation effects , Hematopoiesis/drug effects , Hematopoiesis/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Cell Survival/drug effects , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemistry , Humans , Radiation Protection/methods , Cell Line
3.
Adv Healthc Mater ; : e2401061, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849128

ABSTRACT

Photodynamic therapy targeting mitochondria represents a promising therapeutic strategy for fighting diverse types of cancers. However, the currently available photosensitizers (PSs) suffer from insufficient therapeutic potency, limited mitochondria delivery efficiency, and the inability to treat invisible metastatic distal cancers. Herein, an active self-mitochondria-targeting heptapeptide cyanine (HCy) immunomodulator (I2HCy-QAP) is reported for near-infrared II (NIR-II) fluorescence imaging-guided photodynamic immunotherapy of primary and distal metastatic cancers. The I2HCy-QAP is designed by introducing a quaternary ammonium salt with a phenethylamine skeleton (QAP) into the iodinated HCy photosensitizer. The I2HCy-QAP can precisely target mitochondria due to the lipophilic cationic QAP unit, present strong NIR-II fluorescence tail emission, and effectively generate singlet oxygen 1O2 under NIR laser irradiation, thereby inducing mitochondria-targeted damages and eliciting strong systemic immunogenic cell death immune responses. The combination of the I2HCy-QAP-mediated photodynamic immunotherapy with anti-programmed death-1 antibody therapy achieves remarkable therapeutic efficacy against both primary and distal metastatic cancers with significant inhibition of lung metastasis in a triple-negative breast cancer model. This work provides a new concept for designing high-performance NIR emissive cyanine immunomodulators for NIR-II fluorescence-guided photodynamic immunotherapy.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124524, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38824759

ABSTRACT

On basis of their unique chemical and photophysical properties, and excellent biological activities, quinoliziniums have been widely used in various research fields. Herein, modular synthetic strategies for efficient synthesis of novel fluorescent quinoliziniums by using one-pot and stepwise rhodium(III)-catalyzed C-H annulations were developed. In the one-pot synthesis, the reaction between 2-aryl-4-quinolones (1) and 1,2-diarylalkynes (2) proceeded in a chemo- and regioselective manner to give quinolinone-fused isoquinolines (3) and pentacyclic-fused pyranoquinoliziniums (4). The structural diversity of pentacyclic-fused pyranoquinoliziniums (4) was expanded by the stepwise synthesis from 3 and 2, allowing the strategic incorporation of electron-donating (OMe and OH) and electron-withdrawing (Cl) substituents on the top and bottom parts of the pyranoquinoliziniums (4). These newly synthesized pyranoquinoliziniums (4) exhibited tunable absorptions (455-532 nm), emissions (520-610 nm), fluorescence lifetime (0.3-5.6 ns), large Stokes shifts (up to 120 nm), and excellent fluorescence quantum yields (up to 0.73) upon adjusting the different substituents. The the unique arrangement of N and O atoms and extended π-conjugation of 4 could cause the relocation of HOMO comparing with our previous quinoliziniums. Importantly, pyranoquinoliziniums (4a-4g and 4i) targeted the mitochondria, while 4h was localized in lysosome. Due to the remarkable photophysical properties and the potential for organelle targeting of the novel class of quinoliziniums, they could be further applied for biological, chemical and material applications.

5.
Chemistry ; : e202401277, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847268

ABSTRACT

The clinical practice of photodynamic therapy of cancer (PDT) is mostly limited to superficial types of skin cancer. The major reason behind this limited applicability is the need for light in the photogeneration of ROS, and in particular singlet oxygen. In order to circumvent this major roadblock, we designed and synthesized naphthalene-derived endoperoxides with mitochondria targeting triphenylphosphonium moieties. Here, we show that these compounds release singlet oxygen by thermal cycloreversion, and initiate cell death with IC50 < 10 µM in cancer cell cultures. The mouse 4T1 breast tumor model study, where the endoperoxide compound was introduced intraperitoneally, also showed highly promising results, with negligible systemic toxicity. Targeted delivery of singlet oxygen to cancer cell mitochondria could be the breakthrough needed to transform Photodynamic Therapy into a broadly applicable methodology for cancer treatment by keeping the central tenet and discarding problematic dependencies on oxygen or external light.

6.
Talanta ; 277: 126355, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838563

ABSTRACT

Acute liver injury (ALI) is a frequent and devastating liver disease that has been made more prevalent by the excessive use of chemicals, drugs, and alcohol in modern life. Hypochlorous acid (HClO), an important biomarker of oxidative stress originating mainly from the mitochondria, has been shown to be intimately connected to the development and course of ALI. Herein, a novel BODIPY-based NIR ratiometric fluorescent probe Mito-BS was constructed for the specific recognition of mitochondrial HClO. The probe Mito-BS can rapidly respond to HClO within 20 s with a ratiometric fluorescence response (from 680 nm to 645 nm), 24-fold fluorescence intensity ratio enhancement (I645/I680), a wide pH adaptation range (5-9) and the low detection limit (31 nM). The probe Mito-BS has been effectively applied to visualize endogenous and exogenous HClO fluctuations in living zebrafish and cells based on its low cytotoxicity and prominent mitochondria-targeting ability. Furthermore, the fluorescent probe Mito-BS makes it possible to achieve the non-invasive in-situ diagnosis of ALI through in mice, and provides a feasible strategy for early diagnosis and drug therapy of ALI and its complications.

7.
Cancer Metab ; 12(1): 13, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702787

ABSTRACT

BACKGROUND: Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell's mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. METHODS: B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. RESULTS: Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. CONCLUSIONS: We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.

8.
Biomaterials ; 309: 122609, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38754290

ABSTRACT

The challenge of drug resistance in intrahepatic cholangiocarcinoma (ICC) is intricately linked with lipid metabolism reprogramming. The hepatic lipase (HL) and the membrane receptor CD36 are overexpressed in BGJ398-resistant ICC cells, while they are essential for lipid uptake, further enhancing lipid utilization in ICC. Herein, a metal-organic framework-based drug delivery system (OB@D-pMOF/CaP-AC, DDS), has been developed. The specifically designed DDS exhibits a successive targeting property, enabling it to precisely target ICC cells and their mitochondria. By specifically targeting the mitochondria, DDS produces reactive oxygen species (ROS) through its sonodynamic therapy effect, achieving a more potent reduction in ATP levels compared to non-targeted approaches, through the impairment of mitochondrial function. Additionally, the DDS strategically minimizes lipid uptake through the incorporation of the anti-HL drug, Orlistat, and anti-CD36 monoclonal antibody, reducing lipid-derived energy production. This dual-action strategy on both mitochondria and lipids can hinder energy utilization to restore drug sensitivity to BGJ398 in ICC. Moreover, an orthotopic mice model of drug-resistant ICC was developed, which serves as an exacting platform for evaluating the multifunction of designed DDS. Upon in vivo experiments with this model, the DDS demonstrated exceptional capabilities in suppressing tumor growth, reprogramming lipid metabolism and improving immune response, thereby overcoming drug resistance. These findings underscore the mitochondria-targeted DDS as a promising and innovative solution in ICC drug resistance.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Drug Delivery Systems , Drug Resistance, Neoplasm , Lipid Metabolism , Mitochondria , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Drug Resistance, Neoplasm/drug effects , Lipid Metabolism/drug effects , Cell Line, Tumor , Mice , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/metabolism , CD36 Antigens/metabolism , Metal-Organic Frameworks/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Nude , Reactive Oxygen Species/metabolism , Mice, Inbred BALB C , Lipase/metabolism
9.
Colloids Surf B Biointerfaces ; 238: 113890, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608462

ABSTRACT

A promising therapeutic strategy in cancer treatment merges photodynamic therapy (PDT) induced apoptosis with ferroptosis, a form of programmed cell death governed by iron-dependent lipid peroxidation. Given the pivotal role of mitochondria in ferroptosis, the development of photosensitizers that specifically provoke mitochondrial dysfunction and consequentially trigger ferroptosis via PDT is of significant interest. To this end, we have designed and synthesized a novel nanoparticle, termed FECTPN, tailored to address this requisite. FECTPN harnesses a trifecta of critical attributes: precision mitochondria targeting, photoactivation capability, pH-responsive drug release, and synergistic apoptosis-ferroptosis antitumor treatment. This nanoparticle was formulated by conjugating an asymmetric silicon phthalocyanine, Chol-SiPc-TPP, with the ferroptosis inducer Erastin onto a ferritin. The Chol-SiPc-TPP is a chemically crafted entity featuring cholesteryl (Chol) and triphenylphosphine (TPP) functionalities bonded axially to the silicon phthalocyanine, enhancing mitochondrial affinity and leading to effective PDT and subsequent apoptosis of cells. Upon cellular uptake, FECTPN preferentially localizes to mitochondria, facilitated by Chol-SiPc-TPP's targeting mechanics. Photoactivation induces the synchronized release of Chol-SiPc-TPP and Erastin in the mitochondria's alkaline domain, driving the escalation of both ROSs and lipid peroxidation. These processes culminate in elevated antitumor activity compared to the singular application of Chol-SiPc-TPP-mediated PDT. A notable observation is the pronounced enhancement in glutathione peroxidase-4 (GPX4) expression within MCF-7 cells treated with FECTPN and subjected to light exposure, reflecting intensified oxidative stress. This study offers compelling evidence that FECTPN can effectively induce ferroptosis and reinforces the paradigm of a synergistic apoptosis-ferroptosis pathway in cancer therapy, proposing a novel route for augmented antitumor treatments.


Subject(s)
Antineoplastic Agents , Apoptosis , Ferroptosis , Indoles , Mitochondria , Nanoparticles , Organosilicon Compounds , Photochemotherapy , Photosensitizing Agents , Indoles/chemistry , Indoles/pharmacology , Apoptosis/drug effects , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Ferroptosis/drug effects , Nanoparticles/chemistry , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Particle Size , Cell Survival/drug effects , Surface Properties
10.
Adv Mater ; 36(28): e2402182, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663035

ABSTRACT

Photosensitizers (PSs) with aggregation-induced emission (AIE) characteristics are competitive candidates for bioimaging and therapeutic applications. However, their short emission wavelength and nonspecific organelle targeting hinder their therapeutic effectiveness. Herein, a donor-acceptor modulation approach is reported to construct a series of ionic AIE photosensitizers with enhanced photodynamic therapy (PDT) outcomes and fluorescent emission in the second near-infrared (NIR-II) window. By employing dithieno[3,2-b:2',3'-d]pyrrole (DTP) and indolium (In) as the strong donor and acceptor, respectively, the compound DTP-In exhibits a substantial redshift in absorption and fluorescent emission reach to NIR-II region. The reduced energy gap between singlet and triplet states in DTP-In also increases the reactive oxygen species (ROS) generation rate. Further, DTP-In can self-assemble in aqueous solutions, forming positively charged nanoaggregates, which are superior to conventional encapsulated nanoparticles in cellular uptake and mitochondrial targeting. Consequently, DTP-In aggregates show efficient photodynamic ablation of 4T1 cancer cells and outstanding tumor theranostic in vivo under 660 nm laser irradiation. This work highlights the potential of molecular engineering of donor-acceptor AIE PSs with multiple functionalities, thereby facilitating the development of more effective strategies for cancer therapy.


Subject(s)
Infrared Rays , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Photochemotherapy/methods , Animals , Mice , Cell Line, Tumor , Humans , Indoles/chemistry , Indoles/pharmacology , Nanoparticles/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology
11.
ACS Appl Mater Interfaces ; 16(15): 18252-18267, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581365

ABSTRACT

Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.


Subject(s)
Drug Delivery Systems , Nanoparticles , Phosphatidylethanolamines , Polyethylene Glycols , Doxorubicin/pharmacology , Nitric Oxide , Phototherapy , Nanoparticles/therapeutic use , Mitochondria , Lipids , Cell Line, Tumor
12.
Bioorg Chem ; 147: 107325, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583247

ABSTRACT

Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Glycolysis , Oxidative Phosphorylation , Humans , Oxidative Phosphorylation/drug effects , Glycolysis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Animals , Iridium/chemistry , Iridium/pharmacology , Structure-Activity Relationship , Reactive Oxygen Species/metabolism , Dose-Response Relationship, Drug , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
13.
Talanta ; 274: 125982, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38554483

ABSTRACT

Hydrogen sulfide exhibits crucial functions in many biological and physiological processes. The abnormal levels of H2S have been revealed to be associated with numerous human diseases. The majority of existing fluorescent probes toward H2S may still need to be improved in terms of single output signal, water solubility, biotoxicity and photostability. The construction of a ratiometric fluorescent probe based on metal complex is one effective strategy for avoiding the mentioned problems for precisely detecting H2S. Herein, we report an iridium(III) complex-based ratiometric luminescence probe (Ir-PNBD), which is designed by coupling the 7-nitro-2,1,3-benzoxadiazoles (NBD) to one of the bipyridine ligands of Ir (III) complex luminophore through a piperazition moiety. Ir-PNBD owns high selectivity and sensitivity toward H2S, and an excellent ability to target mitochondria. Moreover, Ir-PNBD was further successfully utilized to visualize exogenous and endogenous H2S in HeLa cells and zebrafish. Our work offers new opportunities to gain deeper insights into the construction of transition metal complex-based ratiometric luminescent probes and expands their applications in biomedical imaging and disease diagnosis.


Subject(s)
Coordination Complexes , Fluorescent Dyes , Hydrogen Sulfide , Iridium , Zebrafish , Hydrogen Sulfide/analysis , Iridium/chemistry , Animals , Humans , HeLa Cells , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Optical Imaging , Molecular Structure
14.
Mikrochim Acta ; 191(4): 181, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38446252

ABSTRACT

Silica nanoparticles (SiNPs) with a chemically modified surface typically have a complicated chemical composition, which can significantly differ from their intended design. In this study, we systematically studied the effects of two surface modification methods on active-targeting of intracellular organelles of SiNPs: (1) the widely used step-by-step approach, which involves modifying SiNPs in two steps, i.e., the outer surface of SiNPs was firstly modified with amino groups and then these amino groups were linked with targeting groups, and (2) a newly developed one-step approach in which the ligand-silane complex is initially synthesized, followed by chemically immobilizing the complex on the surface of SiNPs. In the one-step approach, the molar ratio of reactants was precisely tuned so that there are no reactive groups left on the outer surface of SiNPs. Two essential organelles, mitochondria and the nucleus, were selected to compare the targeting performances of SiNPs synthesized via these two approaches. By characterizing physicochemical properties, including structural properties, the number of amino groups, surface charge, polydispersity, and cell colocalization, we demonstrated that SiNPs synthesized via the one-step approach with no residual linkage groups on their surface showed significantly improved mitochondria- and nucleus-targeting performances. This precise control of surface properties allows for optimized biological behavior and active-targeting efficiency of SiNPs. We anticipate that such simple and efficient synthetic strategies will enable the synthesis of effective SiNPs for active-targeting organelles in various biological applications.


Subject(s)
Mitochondria , Nanoparticles , Coloring Agents , Silanes , Silicon Dioxide
15.
Photochem Photobiol ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38433310

ABSTRACT

Mitochondria play an essential role in cancer treatment by providing apoptotic signals. Hexyl aminolevulinate, an FDA-approved diagnosis for non-muscle invasive bladder cancer, induces the production of protoporphyrin IX (PpIX) preferentially by mitochondria in cancer cells. Photosensitizer PpIX upon illumination can release active chemotherapy drugs from singlet oxygen-activatable prodrugs. Prodrugs placed close enough to PpIX formed in mitochondria can improve the antitumor efficiency of PpIX-PDT. The preferred uptake of prodrugs by cancer cells and tumors can further enhance the selective damage of cancer cells over non-cancer cells and surrounding normal tissues. Mitochondriotropic prodrugs of anticancer drugs, such as paclitaxel and SN-38, were synthesized using rhodamine, a mitochondrial-targeting moiety. In vitro, the mitochondrial targeting helped achieve preferential cellular uptake in cancer cells. In RT112 cells (human bladder cancer cells), intracellular prodrug concentrations were 2-3 times higher than the intracellular prodrug concentrations in BdEC cells (human bladder epithelial cells), after 2 h incubation. In an orthotopic rat bladder tumor model, mitochondria-targeted prodrugs achieved as much as 34 times higher prodrug diffusion in the tumor area compared to the nontumor bladder area. Overall, mitochondria targeting made prodrugs more effective in targeting cancer cells and tumors over non-tumor areas, thereby reducing nonspecific toxicity.

16.
Mater Today Bio ; 26: 101029, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38545262

ABSTRACT

Multi-drug resistance (MDR) in advanced breast cancer (ABC) is triggered by the high expression of P-glycoprotein (P-gp), which reduces intracellular concentration of anti-tumor drugs, in turn preventing oxidative stress damage to cytoplasmic and mitochondrial membranes. It is therefore of clinical relevance to develop P-gp-specific targeted nanocarriers for the treatment of drug resistant ABC. Herein, a drug carrier targeting CD44 and mitochondria was synthesised for the delivery of encequidar (ER, P-gp inhibitor) and paclitaxel (PTX). HT@ER/PTX nanoparticles (ER:PTX molar ratio 1:1) had excellent P-gp inhibition ability and targeted mitochondria to induce apoptosis in MCF-7/PTX cells in vitro. Furthermore, HT@ER/PTX nanocarriers showed more anti-tumor efficacy than PTX (Taxol®) in a xenograft mouse model of MCF-7/PTX cells; the tumor inhibitory rates of HT@ER/PTX nanoparticles and Taxol® were 72.64% ± 4.41% and 32.36% ± 4.09%, respectively. The survival of tumor-bearing mice administered HT@ER/PTX nanoparticles was prolonged compared to that of the mice treated with Taxol®. In addition, HT@ER/PTX not only inhibited P-gp-mediated removal of toxic lipid peroxidation byproducts resulting from anti-tumor drugs but also upregulated the expression of mitochondrial dynamics-related protein, fostering oxidative stress damage, which induced activation of the Caspase-3 apoptosis pathway. Our findings indicate that mitochondria targeted co-delivery of anti-tumor drugs and P-gp inhibitors could be a practical approach in treating multi-drug resistance in ABC.

17.
Front Bioeng Biotechnol ; 12: 1361966, 2024.
Article in English | MEDLINE | ID: mdl-38410166

ABSTRACT

The mitochondria act as the main producers of reactive oxygen species (ROS) within cells. Elevated levels of ROS can activate the mitochondrial apoptotic pathway, leading to cell apoptosis. In this study, we devised a molecular prodrug named CTT2P, demonstrating notable efficacy in facilitating mitochondrial apoptosis. To develop nanomedicine, we enveloped CTT2P within bovine serum albumin (BSA), resulting in the formulation known as CTT2P@B. The molecular prodrug CTT2P is achieved by covalently conjugating mitochondrial targeting triphenylphosphine (PPh3), photosensitizer TPPOH2, ROS-sensitive thioketal (TK), and chemotherapeutic drug camptothecin (CPT). The prodrug, which is chemically bonded, prevents the escape of drugs while they circulate throughout the body, guaranteeing the coordinated dispersion of both medications inside the organism. Additionally, the concurrent integration of targeted photodynamic therapy and cascade chemotherapy synergistically enhances the therapeutic efficacy of pharmaceutical agents. Experimental results indicated that the covalently attached prodrug significantly mitigated CPT cytotoxicity under dark conditions. In contrast, TPPOH2, CTT2, CTT2P, and CTT2P@B nanoparticles exhibited increasing tumor cell-killing effects and suppressed tumor growth when exposed to light at 660 nm with an intensity of 280 mW cm-2. Consequently, this laser-triggered, mitochondria-targeted, combined photodynamic therapy and chemotherapy nano drug delivery system, adept at efficiently promoting mitochondrial apoptosis, presents a promising and innovative approach to cancer treatment.

18.
Small ; 20(25): e2307261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38225702

ABSTRACT

Conventional photodynamic therapy (PDT) of rheumatoid arthritis (RA) faces a dilemma: low-power is insufficient to kill pro-inflammatory cells while high-power exacerbates inflammation. Herein, mitochondrial targeting is introduced in PDT of RA to implement a "less-is-more" strategy, where higher apoptosis in pro-inflammatory cells are achieved with lower laser power. In arthritic rats, chlorine 6-loaded and mitochondria-targeting liposomes (Ce6@M-Lip) passively accumulated in inflamed joints, entered pro-inflammatory macrophages, and actively localized to mitochondria, leading to enhanced mitochondrial dysfunction under laser irradiation. By effectively disrupting mitochondria, pro-inflammatory macrophages are more susceptible to PDT, resulting in increased apoptosis initiation. Additionally, it identifies that high-power irradiation caused cell rupture and release of endogenous danger signals that recruited and activated additional macrophages. In contrast, under low-power irradiation, mitochondria-targeting Ce6@M-Lip not only prevented inflammation but also reduced pro-inflammatory macrophage infiltration and pro-inflammatory cytokine secretion. Overall, targeting mitochondria reconciled therapeutic efficacy and inflammation, thus enabling efficacious yet inflammation-sparing PDT for RA. This highlights the promise of mitochondrial targeting to resolve the dilemma between anti-inflammatory efficacy and inflammatory exacerbation in PDT by implementing a "less-is-more" strategy.


Subject(s)
Arthritis, Rheumatoid , Liposomes , Mitochondria , Photochemotherapy , Animals , Photochemotherapy/methods , Mitochondria/metabolism , Mitochondria/drug effects , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Liposomes/chemistry , Macrophages/metabolism , Macrophages/drug effects , Rats , Apoptosis/drug effects , Inflammation/drug therapy , Inflammation/pathology
19.
J Colloid Interface Sci ; 659: 320-329, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38176241

ABSTRACT

The efficacy of imaging-guided photodynamic therapy (PDT) is compromised by the attenuation of fluorescence and decline in reactive oxygen species (ROS) generation efficiency in the physiological environment of conventional photosensitizers, limited near-infrared (NIR) absorption, and high systemic cytotoxicity. This paper presents the synthesis of two cyclometalated Ir (III) complexes (Ir-thpy and Ir-ppy) by using a triphenylamine derivative (DPTPA) as the primary ligand and their encapsulation into an amphiphilic phospholipid to form nanoparticles (NPs). These complexes exhibit aggregation-induced emission features and remarkably enhanced ROS generation compared to Chlorin e6 (Ce6). Moreover, Ir-thpy NPs possess the unique ability to selectively target mitochondria, leading to depolarization of the mitochondrial membrane potential and ultimately triggering apoptosis. Notably, Ir-thpy NPs exhibit exceptional photocytotoxicity even towards cisplatin-resistant A549/DDP tumor cells. In vivo two-photon imaging verified the robust tumor-targeting efficacy of Ir-thpy NPs. The in vivo results unequivocally demonstrate that Ir-thpy NPs exhibit excellent tumor ablation along with remarkable biocompatibility. This study presents a promising approach for the development of multifunctional Ir-NPs for two-photon imaging-guided PDT and provides novel insights for potential clinical applications in oncology.


Subject(s)
Nanoparticles , Photochemotherapy , Iridium/pharmacology , Reactive Oxygen Species , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Mitochondria , Cell Line, Tumor
20.
Bioorg Chem ; 143: 107020, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176374

ABSTRACT

Abnormally high levels of copper in tumors stimulate malignant proliferation and migration of cancer cells, which proposes a formidable challenge for the thorough therapy of malignant tumors. In this work, we developed a reliable, mitochondria-targeted near-infrared aggregation-induced emission fluorescent probe, TTQ-Th, whose thiourea moiety specifically could recognize mitochondria even both upon loss of mitochondrial membrane potential or in fixated cells, and can capture copper overexpressed by tumor cells, leading to severe copper deficiency. In parallel, TTQ-Th can generate sufficient reactive oxygen species (ROS) upon photoexcitation, while copper deficiency inhibits expression of related copper-based enzymes, resulting in a decline in ATP production. Such energy deficiency, combined with reduced MMP and elevated oxidative stress can lead to critical cell oncosis. Both in vitro and intracellular experiments can illustrate that the elevated ROS has remarkable damage to tumor cells and contributes to the elimination of the primary tumor, while copper deficiency further hinder tumor cell migration and induces G0/G1 cell cycle arrest in a dose-dependent manner, which is an efficacious strategy for the treatment of malignant tumors.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Copper/pharmacology , Copper/metabolism , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...