Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 460
Filter
1.
ACS Appl Bio Mater ; 7(7): 4795-4803, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958186

ABSTRACT

Metallic nanoparticles are promising candidates for anticancer therapies. Among the different metallic systems studied, copper is an affordable and biologically available metal with a high redox potential. Copper-based nanoparticles are widely used in anticancer studies owing to their ability to react with intracellular glutathione (GSH) to induce a Fenton-like reaction. However, considering the high metastatic potential and versatility of the tumor microenvironment, modalities with a single therapeutic agent may not be effective. Hence, to enhance the efficiency of chemotherapeutic drugs, repurposing them or conjugating them with other modalities is essential. Omeprazole is an FDA-approved proton pump inhibitor used in clinics for the treatment of ulcers. Omeprazole has also been studied for its ability to sensitize cancer cells to chemotherapy and induce apoptosis. Herein, we report a nanosystem comprising of copper nanoparticles encapsulating omeprazole (CuOzL) against B16 melanoma cells. The developed nanoformulation exerted significant synergistic anticancer activity when compared with either copper nanoparticles or omeprazole alone by inducing cell death through excessive ROS generation and subsequent mitochondrial damage.


Subject(s)
Antineoplastic Agents , Copper , Drug Screening Assays, Antitumor , Metal Nanoparticles , Mitochondria , Omeprazole , Particle Size , Copper/chemistry , Copper/pharmacology , Omeprazole/chemistry , Omeprazole/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Metal Nanoparticles/chemistry , Mice , Animals , Cell Survival/drug effects , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Materials Testing , Reactive Oxygen Species/metabolism , Humans , Apoptosis/drug effects , Melanoma/drug therapy , Melanoma/pathology , Cell Line, Tumor
2.
Toxicology ; 506: 153877, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969275

ABSTRACT

Cetylpyridinium chloride (CPC) is a quaternary ammonium compound used widely in health and personal care products. Meanwhile, due to its increasing use, its potential adverse health effects are emerging as a topic of public concern. In this study, we first administered CPC by pharyngeal aspiration to determine the survival level (the maximum concentration at which no death is observed) and then administered CPC to mice repeatedly for 28 days using the survival level as the highest concentration. CPC increased the total number of pulmonary cells secreting pro- and anti-inflammatory cytokines and chemokines. Infiltration of inflammatory cells, production of foamy alveolar macrophages, and chronic inflammatory lesions were found in the lung tissue of male and female mice exposed to the highest dose of CPC. We also investigated the toxicity mechanism using BEAS-2B cells isolated from normal human bronchial epithelium. At 6 h after exposure to CPC, the cells underwent non-apoptotic cell death, especially at concentrations greater than 2 µg/mL. The expression of the transferrin receptor was remarkably enhanced, and the expression of proteins that contribute to intracellular iron storage was inhibited. The expression of both mitochondrial SOD and catalase increased with CPC concentration, and PARP protein was cleaved, suggesting possible DNA damage. In addition, the internal structure of mitochondria was disrupted, and fusion between damaged organelles was observed in the cytoplasm. Most importantly, lamellar body-like structures and autophagosome-like vacuoles were found in CPC-treated cells, with enhanced expression of ABCA3 protein, a marker for lamellar body, and a docking score between ABCA3 protein and CPC was considered to be approximately -6.8969 kcal/mol. From these results, we propose that mitochondrial damage and iron depletion may contribute to CPC-induced non-apoptotic cell death and that pulmonary accumulation of cell debris may be closely associated with the inflammatory response. Furthermore, we hypothesize that the formation of lamellar body-like structures may be a trigger for CPC-induced cell death.

3.
Int Immunopharmacol ; 138: 112527, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38950457

ABSTRACT

BACKGROUND: Sepsis-associated acute kidney injury (SA-AKI) represents a frequent complication of in critically ill patients. The objective of this study is to illuminate the potential protective activity of Micheliolide (MCL) and its behind mechanism against SA-AKI. METHODS: The protective potential of MCL on SA-AKI was investigated in lipopolysaccharide (LPS) treated HK2 cells and SA-AKI mice model. The mitochondrial damage was determined by detection of reactive oxygen species and membrane potential. The Nrf2 silencing was achieved by transfection of Nrf2-shRNA in HK2 cells, and Nrf2 inhibitor, ML385 was employed in SA-AKI mice. The mechanism of MCL against SA-AKI was evaluated through detecting hallmarks related to inflammation, mitophagy and Nrf2 pathway via western blotting, immunohistochemistry, and enzyme linked immunosorbent assay. RESULTS: MCL enhanced viability, suppressed apoptosis, decreased inflammatory cytokine levels and improved mitochondrial damage in LPS-treated HK2 cells, and ameliorated renal injury in SA-AKI mice. Moreover, MCL could reduce the activation of NLRP3 inflammasome via enhancing mitophagy. Additionally, Nrf2 deficiency reduced the suppression effect of MCL on NLRP3 inflammasome activation and blocked the facilitation effect of MCL on mitophagy in LPS-treated HK2 cells, the consistent is true for ML385 treatment in SA-AKI mice. CONCLUSIONS: MCL might target Nrf2 and further reduce the NLRP3 inflammasome activation via enhancing mitophagy, which alleviated SA-AKI.

4.
Brain Res ; 1842: 149102, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969084

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Accumulation of ß-amyloid (Aß) in the brain has been recognized as a key factor in the onset and progression of Alzheimer's disease (AD).The accumulation of Aß in the brain catalyzes the production of reactive oxygen species (ROS), which in turn triggers oxidative damage to cellular components such as DNA, lipids, and proteins. In the present study, we investigated the protective effect of Ganoderic acid A (GA.A) against Aß42-induced apoptosis in PC12 cells. Changes in mitochondrial membrane potential indicated that GA.A treats mitochondrial dysfunction by decreasing Aß42 deposition and inhibiting neural protofiber tangle formation. Changes in intracellular Ca2+ and caspase-3 indicated that GA.A reduced mitochondrial damage by Aß42 in PC12 cells, thereby decreasing ROS accumulation and reducing Aß protofiber-induced cytotoxicity. These features suggest that GA.A has great potential as an effective neuroprotective drug in the treatment of Alzheimer's disease.

5.
Redox Rep ; 29(1): 2373657, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39023011

ABSTRACT

OBJECTIVES: Intestinal ischemia-reperfusion (I/R) injury is a multifactorial and complex clinical pathophysiological process. Current research indicates that the pathogenesis of intestinal I/R injury involves various mechanisms, including ferroptosis. Methane saline (MS) has been demonstrated to primarily exert anti-inflammatory and antioxidant effects in I/R injury. In this study, we mainly investigated the effect of MS on ferroptosis in intestinal I/R injury and determined its potential mechanism. METHODS: In vivo and in vitro intestinal I/R injury models were established to validate the relationship between ferroptosis and intestinal I/R injury. MS treatment was applied to assess its impact on intestinal epithelial cell damage, intestinal barrier disruption, and ferroptosis. RESULTS: MS treatment led to a reduction in I/R-induced intestinal epithelial cell damage and intestinal barrier disruption. Moreover, similar to treatment with ferroptosis inhibitors, MS treatment reduced ferroptosis in I/R, as indicated by a decrease in the levels of intracellular pro-ferroptosis factors, an increase in the levels of anti-ferroptosis factors, and alleviation of mitochondrial damage. Additionally, the expression of Nrf2/HO-1 was significantly increased after MS treatment. However, the intestinal protective and ferroptosis inhibitory effects of MS were diminished after the use of M385 to inhibit Nrf2 in mice or si-Nrf2 in Caco-2 cells. DISCUSSION: We proved that intestinal I/R injury was mitigated by MS and that the underlying mechanism involved modulating the Nrf2/HO-1 signaling pathway to decrease ferroptosis. MS could be a promising treatment for intestinal I/R injury.


Subject(s)
Ferroptosis , Heme Oxygenase-1 , Methane , NF-E2-Related Factor 2 , Reperfusion Injury , Signal Transduction , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Ferroptosis/drug effects , NF-E2-Related Factor 2/metabolism , Animals , Signal Transduction/drug effects , Mice , Heme Oxygenase-1/metabolism , Methane/pharmacology , Male , Humans , Saline Solution/pharmacology , Intestines/drug effects , Intestines/injuries , Mice, Inbred C57BL , Membrane Proteins
6.
Drug Chem Toxicol ; : 1-12, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38859707

ABSTRACT

The herbicide triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) is already considered an environmental problem due to damage caused by incorrect disposal, leaching, and aerial dispersion, which may pose risks to the environment and human health. Studies have evaluated metabolism, absorption, excretion, and active transport but there is no clear information about its mode of action (MoA) and its cytotoxic action potential remains unknown. In this context, mitochondria have been used to assess the toxicity of xenobiotics, for this reason, to identify the toxic mechanism of triclopyr, hepatic mitochondria from Wistar rats were exposed in vitro to different concentrations of triclopyr (0.5-500 µM). There was neither formation/accumulation of reactive oxygen and nitrogen species, nor lipid peroxidation or changes in the mitochondrial antioxidant system, in addition to proper functioning of oxidative phosphorylation and ATP production. Changes were found in NAD(P)H oxidation, membrane potential dissipation and mitochondrial calcium gradient. These results demonstrate that mitochondria suffer damage related to their bioenergetics and redox status but not to their structure when exposed to concentrations of triclopyr considered higher than those described as found in the environment so far.HighlightsTriclopyr has a low mitochondrial uncoupling potential.The damage caused to the bioenergetics and redox state of the mitochondria is related to concentrations considered higher than those found in the environment.Even at high concentrations, triclopyr was not able to change the structure of the organelle after exposure.Oxidative phosphorylation and ATP production were not impaired after exposure.NAD(P)H oxidation resulted in potential membrane dissipation and mitochondrial calcium gradient dissipation.Triclopyr does not have RONS-forming properties, as well as it does not peroxide membrane lipids, it preserves membrane sulfhydryl groups and maintains the normality of the GSH/GSSG ratio.

7.
Chemosphere ; : 142651, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901702

ABSTRACT

Sodium p-perfluorous nonenoxybenzene sulfonate (OBS)-one of the main alternatives to perfluorooctane sulfonate-has been increasingly detected in both aquatic environments and human bodies. Therefore, the pathogenic risks of OBS exposure warrant attention, especially its central nervous system toxicity mechanism under long-term exposure. In this study, the effects and mechanisms of OBS on the zebrafish brain at 40 days post exposure were examined. The results demonstrated that at 3.2 µg/L, OBS had no significant effect on the zebrafish brain, but 32 µg/L OBS caused depression or poor social behavior in zebrafish and reduced both their memory and survival ability. These changes were accompanied by histological damage and cell apoptosis. Furthermore, OBS caused the accumulation of excessive reactive oxygen species in the fish brain, leading to oxidative stress and subsequently cell apoptosis. Moreover, an imbalance of both inflammatory factors (IL-6, IL-1ß, IL-10, TNF-α, and NF-κB) and neurotransmitters (GABA and Glu) led to neuroinflammation. Additionally, 32 µg/L OBS induced decreases in mitochondrial membrane potential and Na+-K+-ATPase activity, leading to both mitochondrial structural damage and the emergence of mitochondrial autophagosomes, partly explaining the neurotoxicity of OBS. These results help to analyze the target sites and molecular mechanisms of OBS neurotoxicity and provide a basis for the scientific evaluation of its health risks to humans.

8.
Exp Gerontol ; 194: 112496, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38897394

ABSTRACT

PURPOSE: Osteoporosis is linked to impaired function of osteoblasts, and decreased expression of METTL14 may result in abnormal differentiation of these bone-forming cells. However, the specific impact of METTL14 on osteoblast differentiation and its underlying mechanisms are not yet fully understood. METHODS AND RESULTS: This study discovered a positive correlation between METTL14 expression and bone formation in specimens from osteoporosis patients and ovariectomized (OVX) mice. Additionally, METTL14 targeting of SLC25A3 contributed to the restoration of mitochondrial ROS levels and mitochondrial membrane potential in osteoblasts and promoted osteoblast differentiation. Moreover, in vivo experiments showed that METTL14 enhanced bone formation, and therapeutic introduction of METTL14 countered the decrease in bone formation in OVX mice. CONCLUSIONS: Overall, these findings emphasize the crucial role of the METTL14/SLC25A3 signaling axis in osteoblast activity, suggesting that this axis could be a potential target for improving osteoporosis.

9.
Article in English | MEDLINE | ID: mdl-38837810

ABSTRACT

The most effective drug, doxorubicin (DOX), is widely used worldwide for clinical application as an anticancer drug. DOX-induced cytotoxicity is characterized by mitochondrial dysfunction. There is no alternative treatment against DOX-induced cardiac damage despite intensive research in the present decades. Ohwia caudata has emerged as a potential herbal remedy that prevents from DOX-induced cytotoxicity owing to its pharmacological action of sustaining mitochondrial dynamics by attenuating oxidative stress and inducing cellular longevity. However, its underlying mechanisms are unknown. The novel treatment provided here depends on new evidence from DOX-treated H9c2 cells, which significantly enhanced insulin-like growth factor (IGF) II receptor (IGF-IIR) pathways that activated calcineurin and phosphorylated dynamin-related protein 1 (p-Drp1) at ser616 (p-Drp1[ser616]); cells undergo apoptosis due to these factors, which translocate to mitochondria and disrupt their function and integrity, and in terms of herbal medicine treatment, which significantly blocked these phenomena. Thus, our findings indicate that maintaining integrity of mitochondria is an essential element in lowering DOX-induced cytotoxicity, which further emphasizes that our herbal medicine can successfully block IGF-IIR pathways and could potentially act as an alternative mechanism in terms of cardioprotective against doxorubicin.

10.
Mol Cell Endocrinol ; 592: 112309, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852657

ABSTRACT

Angiotensin II (Ang II) is a protein hormone capable of physiologically regulating blood pressure through diverse mechanisms. Ang II is mainly produced by the liver at homeostatic levels. However, excessive production of Ang II is closely associated with a series of pathological events in the body. The endothelial dysfunction is one of these pathological events that can drive vascular anomalies. The excessive exposure of endothelial cells (ECs) to Ang II may induce endothelial dysfunction via diverse mechanisms. One of these mechanisms is Ang II-mediated mitochondrial oxidative stress. In this mini-review, we aimed to discuss the molecular mechanisms of Ang II-mediated endothelial dysfunction through mitochondrial oxidative stress and the protective role of nitric oxide in ECs. Deciphering these mechanisms may disclose novel therapeutic strategies to prevent endothelial dysfunction and associated diseases induced by elevated leves of Ang II in the blood.

11.
Biomark Res ; 12(1): 59, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853246

ABSTRACT

BACKGROUND: Pyroptosis belongs to a unique type of programmed cell death among which GSDME is reported to exert anti-tumor immunity. However, the underlying mechanisms of how to boost tumor-infiltrating lymphocytes and whether it could benefit the efficacy of ICIs are still unknown. METHODS: CRC samples were used to analyze its relationship with CD8+T cells. GSDME in mouse CRC cell lines CT26/MC38 was overexpressed. The infiltration of CD8+T cells in grafted tumors was determined by multiplex flow cytometric analysis and immunohistochemistry. Transcriptomic analysis was performed in cell lines to define key signatures related to its overexpression. The mechanism of how mtDNA was released by GSDME-induced mitochondrial damage and activated cGAS-STING pathway was observed. Whether GSDME benefited ICIs and the relationships with the genotypes of CRC patients were investigated. RESULTS: It had favorable prognostic value in CRC and was positively associated with increased number and functionality of CD8+T cells both in human samples and animal models. This was due to mitochondrial damage and activation of cGAS-STING-IFNß pathway for the recruitment of CD8+T cells. Mechanically, GSDME overexpression enhanced N-GSDME level, leading to the mitochondrial damage and mtDNA was released into cytosol. Finally, GSDME benefited with ICIs and exhibited positive relationships with MSI in CRC patients. CONCLUSION: We presented the mechanism of GSDME in anti-tumor immunity through activating cGAS-STING-IFNß axis mediated by mitochondrial damage, leading to more infiltration of CD8+T cells with synergistic efficacy with ICIs.

12.
Neuropsychiatr Dis Treat ; 20: 1321-1330, 2024.
Article in English | MEDLINE | ID: mdl-38933096

ABSTRACT

Purpose: In this study, we investigated the differences in clinical biochemical values and mitochondrial mass between schizophrenia patients with and without COVID-19, so as to provide assistance to the treatment and management of COVID-19 positive patients with schizophrenia. Patients and methods: We undertook an exploratory, retrospective review of patient data from Dec. 6, 2022, to Jan. 31, 2023. A total of 1696 inpatients with psychosis (921 schizophrenia patients and 775 diagnosed with other mental diseases) during this period were identified. Finally, 60 schizophrenia patients were enrolled in our study, and 20 of them were infected with syndrome coronavirus 2 (SARS-CoV-2). The serum biochemical levels and single-cell mitochondrial mass (SCMM) of the T lymphocytes of all schizophrenia patients were analyzed. Results: The serum levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatinine (Cr) and lactate dehydrogenase (LDH) were significantly higher in schizophrenia patients with COVID-19 (SCZ-C) group. In addition, the SCZ-C group showed lower CD3+, CD3+CD4+ and CD3+CD8+ cell counts and higher SCMM of T lymphocytes compared to SCZ group. Furthermore, positive correlations were found between the T-cell subpopulation counts and positive symptom scores on the Positive and Negative Syndrome Scale (PANSS). Conclusion: Our study findings showed that schizophrenia patients with COVID-19 have a phenotype of mitochondrial damage in T lymphocytes and higher serum levels of AST, ALP, Cr and LDH, which might provide evidence for treating individuals with schizophrenia during subsequent spread of infectious disease.

13.
Acta Biomater ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936754

ABSTRACT

Traditional cancer chemotherapy suffers from low efficacy and severe side effects, limiting its use as a first-line treatment. To address this issue, we investigated a novel way to induce lipid peroxidation (LPO), which plays an essential role in ferroptosis and may be useful against cancer cells and tumors. In this study, a pH-responsive synergistic cancer therapy nanoplatform was prepared using CaCO3 co-loaded with oleanolic acid (OA) and lipoxygenase (LOX), resulting in the formation OLCaP NP. This nanoplatform exhibited good drug release properties in an acidic tumor environment owing to the presence of CaCO3. As a result of acidic stimulation at tumor sites, the OLCaP NP released OA and LOX. OA, a chemotherapeutic drug with anticancer activity, is already known to promote the apoptosis of cancer cells, and LOX is a natural enzyme that catalyzes the oxidation of polyunsaturated fatty acids, leading to the accumulation of lipid peroxides and promoting the apoptosis of cancer cells. More importantly, OA upregulated the expression of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4), which promoted enzyme-mediated LPO. Based on our combined chemotherapy and nanocatalytic therapy, the OLCaP NP not only had remarkable antitumor ability but also upregulated ACSL4 expression, allowing further amplification of LPO to inhibit tumor growth. These findings demonstrate the potential of this nanoplatform to enhance the therapeutic efficacy against tumors by inducing oxidative stress and disrupting lipid metabolism, highlighting its clinical potential for improved cancer treatment. STATEMENT OF SIGNIFICANCE: This study presents a novel nanoplatform that combines oleanolic acid (OA), a chemotherapeutic drug, and lipoxygenase (LOX), which oxidizes polyunsaturated fatty acids to trigger apoptosis, for targeted cancer therapy. Unlike traditional treatments, our nanoplatform exhibits pH-responsive drug release, specifically in acidic tumor environments. This innovation enhances the therapeutic effects of OA and LOX, upregulating acyl-CoA synthetase long-chain family member 4 expression and amplifying lipid peroxidation to promote tumor cell apoptosis. Our findings significantly advance the existing literature by demonstrating a synergistic approach that combines chemotherapy and nanocatalytic therapy. The scientific impact of this work lies in its potential to improve cancer treatment efficacy and specificity, offering a promising strategy for clinical applications and future research in cancer therapy.

14.
ACS Nano ; 18(26): 16790-16807, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38869479

ABSTRACT

The smaller size fraction of plastics may be more substantially existing and detrimental than larger-sized particles. However, reports on nanoplastics (NPs), especially their airborne occurrences and potential health hazards to the respiratory system, are scarce. Previous studies limit the understanding of their real respiratory effects, since sphere-type polystyrene (PS) nanoparticles differ from NPs occurring in nature with respect to their physicochemical properties. Here, we employ a mechanical breakdown method, producing NPs directly from bulk plastic, preserving NP properties in nature. We report that among four relatively high abundance NP materials PS, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polyethylene (PE) with a size of 100 nm, PVC induced slightly more severe lung toxicity profiles compared to the other plastics. The lung cytotoxicity of NPs is higher than that of commercial PS NPs and comparable to natural particles silicon dioxide (SiO2) and anatase titanium dioxide (TiO2). Mechanistically, BH3-interacting domain death agonist (Bid) transactivation-mediated mitochondrial dysfunction and nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy or ferroptosis are likely common mechanisms of NPs regardless of their chemical composition. This study provides relatively comprehensive data for evaluating the risk of atmospheric NPs to lung health.


Subject(s)
Mitochondria , Nanoparticles , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Animals , Nanoparticles/chemistry , Ferritins/metabolism , Ferritins/chemistry , Mice , Lung/metabolism , Lung/pathology , Lung/drug effects , Microplastics/chemistry , Particle Size , Polystyrenes/chemistry , Ferroptosis/drug effects
15.
Heliyon ; 10(11): e31667, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882385

ABSTRACT

Objective: Bisphenol A (BPA) is a common environmental endocrine disruptor that negatively impairs male reproductive ability. This study aimed to explore the alterations in serum metabolomics that occur following BPA exposure and the mechanism via which BPA induces the death of testicular cells in a male mouse model. Methods: The mice were classified into two groups: BPA-exposed and control groups, and samples were collected for metabolomic determination, semen quality analysis, electron microscopy, enzyme-linked immunosorbent assay, quantitative real-time PCR, pathological staining, and Western blot analysis. Results: BPA exposure caused testicular damage and significantly decreased sperm quality in mice. Combined with non-target metabolomic analysis, this was closely related to ferroptosis induced by abnormal metabolites of arachidonic acid and phosphatidylcholine, and the expression of its related genes, acyl CoA synthetase 4, glutathione peroxidase 4, lysophosphatidylcholine acyltransferase 3, and phosphatidylethanolamine-binding protein 1 were altered. Conclusion: BPA induced ferroptosis, caused testicular damage, and reduced fertility by affecting lipid metabolism in male mice. Inhibiting ferroptosis may potentially function as a therapeutic strategy to mitigate the male reproductive toxicity induced by BPA.

16.
ACS Chem Neurosci ; 15(13): 2470-2483, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38874606

ABSTRACT

In Alzheimer's disease (AD), reactive oxygen species (ROS) plays a crucial role, which is produced from molecular oxygen with extracellular deposited amyloid-ß (Aß) aggregates through the reduction of a Cu2+ ion. In the presence of a small amount of redox-active Cu2+ ion, ROS is produced by the Aß-Cu2+ complex as Aß peptide alone is unable to generate excess ROS. Therefore, Cu2+ ion chelators are considered promising therapeutics against AD. Here, we have designed and synthesized a series of Schiff base derivatives (SB) based on 2-hydroxy aromatic aldehyde derivatives and dopamine. These SB compounds contain one copper chelating core, which captures the Cu2+ ions from the Aß-Cu2+ complex. Thereby, it inhibits copper-induced amyloid aggregation as well as amyloid self-aggregation. It also inhibits copper-catalyzed ROS production through sequestering of Cu2+ ions. The uniqueness of our designed ligands has the dual property of dopamine, which not only acts as a ROS scavenger but also chelates the copper ion. The crystallographic analysis proves the power of the dopamine unit. Therefore, dual exploration of dopamine core can be considered as potential therapeutics for future AD treatment.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Chelating Agents , Copper , Dopamine , Reactive Oxygen Species , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Reactive Oxygen Species/metabolism , Dopamine/metabolism , Copper/metabolism , Copper/chemistry , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Chelating Agents/pharmacology , Schiff Bases/pharmacology , Schiff Bases/chemistry
17.
Microb Pathog ; 192: 106719, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810768

ABSTRACT

Cimicifugae rhizoma is a traditional Chinese herbal medicine in China, and modern pharmacological research showed that it has obvious antiviral activity. Many polysaccharides have been proved to have immune enhancement and antiviral activity, but there are few studies on the biological activity of Cimicifuga rhizoma polysaccharide (CRP). The aim was to explore the character of CRP and its effects on improving immune activity and inhibiting transmissible gastroenteritis virus (TGEV). The monosaccharide composition, molecular weight, fourier transform infrared spectra and electron microscopy analysis of CRP was measured. The effect of CRP on immune activity in lymphocytes and RAW264.7 cells were studied by colorimetry, FITC-OVA fluorescent staining and ELISA. The effect of CRP on TGEV-infected PK-15 cells was determined using Real-time PCR, Hoechst fluorescence staining, trypan blue staining, acridine orange staining, Annexin V-FITC/PI fluorescent staining, DCFH-DA loading probe, and JC-1 staining. Network pharmacology was used to predict the targets of CRP in enhancing immunity and anti-TGEV, and molecular docking was used to further analyze the binding mode between CPR and core targets. The results showed that CRP was mainly composed of glucose and galactose, and its molecular weight was 64.28 kDa. The content of iNOS and NO in CRP group were significantly higher than the control group. CRP (125 and 62.5 µg/mL) could significantly enhance the phagocytic capacity of RAW264.7 cells, and imprive the content of IL-1ß content compared with control group. 250 µg/mL of CRP possessed the significant inhibitory effect on TGEV, which could significantly reduce the apoptosis compared to TGVE group and inhibit the decrease in mitochondrial membrane potential compared to TGVE group. The mRNA expression of TGEV N gene in CRP groups was significantly lower than TGEV group. PPI showed that the core targets of immune-enhancing were AKT1, MMP9, HSP90AA1, etc., and the core targets of TGE were CASP3, MMP9, EGFR, etc. Molecular docking show that CRP has binding potential with target. These results indicated that CRP possessed the better immune enhancement effect and anti-TGEV activity.


Subject(s)
Antiviral Agents , Molecular Docking Simulation , Polysaccharides , Transmissible gastroenteritis virus , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , RAW 264.7 Cells , Transmissible gastroenteritis virus/drug effects , Antiviral Agents/pharmacology , Rhizome/chemistry , Interleukin-1beta/metabolism , Molecular Weight , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Cell Line , Lymphocytes/drug effects , Lymphocytes/immunology , Apoptosis/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Spectroscopy, Fourier Transform Infrared , Monosaccharides , Nitric Oxide/metabolism , Immunologic Factors/pharmacology
18.
J Transl Med ; 22(1): 494, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790051

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS: The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS: We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS: Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.


Subject(s)
DNA, Mitochondrial , Diabetic Cardiomyopathies , Fibrosis , Interleukin-1 , Myocytes, Cardiac , Animals , Female , Humans , Male , Mice , Middle Aged , Apoptosis/drug effects , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , DNA, Mitochondrial/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Interleukin-1/metabolism , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Signal Transduction/drug effects , Sirtuin 1/metabolism
19.
Free Radic Biol Med ; 222: 27-40, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815774

ABSTRACT

Liver fibrosis is a key and reversible stage in the progression of many chronic liver diseases to cirrhosis or hepatocellular carcinoma. Forsythiaside-A (FTA), a main compound isolated from Forsythiae Fructus, has an excellent liver protective activity. This study aims to investigate the efficacy of FTA in improving cholestatic liver fibrosis. Bile-duct-ligation (BDL) was conducted to induce liver fibrosis in mice. Hepatic collagen deposition was evaluated by Masson and Sirus red staining. The bile acid spectrum in the liver and serum was analyzed by mass spectrometry. Liver oxidative stress injury and mitochondria damage were observed by using Mito-Tracker Red fluorescence staining, transmission electron microscopy, etc. The level of ferrous iron (Fe2+) and the expression of ferroptosis-associated molecules were detected. The binding between FTA and its target protein was confirmed by Co-immunoprecipitation (Co-IP), cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) and surface plasmon resonance (SPR). Our results demonstrated that FTA alleviated BDL-induced liver fibrosis in mice. FTA did not decrease the elevated amount of bile acids in BDL-treated mice, but reduced the bile acid-induced mitochondrial damage, oxidative stress and ferroptosis in hepatocytes, and also induced nuclear factor erythroid 2-related factor-2 (Nrf2) activation. In Nrf2 knock-out mice, the FTA-provided protection against BDL-induced liver fibrosis was disappeared, and FTA's inhibition on mitochondrial damage, oxidative stress and ferroptosis were lowered. Further results displayed that FTA could directly bind to Kelch-like ECH-associated protein-1 (Keap1), thereby activating Nrf2. Moreover, the BDL-induced liver fibrosis was markedly weakened in liver-specific Keap1 knockout mice. Hence, this study suggests that FTA alleviated the BDL-induced liver fibrosis through attenuating mitochondrial damage and ferroptosis in hepatocytes by activating Nrf2 via directly binding to Keap1.

20.
Sci Total Environ ; 938: 173233, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763196

ABSTRACT

2-Methylisoborneol (2-MIB) is a common and widely distributed off-flavor compound in water. However, the toxic mechanisms of 2-MIB on aquatic organisms remain largely unexplored. In this study, grass carp larvae were exposed to different concentrations (0, 5, and 20 µg L-1) of 2-MIB for 96 h. The accumulation of 2-MIB in the dorsal muscle was measured. Histological analysis, ultrastructure observations, and transcriptomic sequencing were conducted on the liver tissues. The results showed that 2-MIB accumulated significantly in the fish muscle, with the accumulation increasing as the exposure concentration increased through gas chromatography-mass spectrometry (GC-MS) detection. Histological and ultrastructure observations indicated that 2-MIB caused concentration-dependent inflammatory infiltration and mitochondrial damage in the liver. Transcriptomic analysis revealed lipid metabolism disorders induced by exposure to 2-MIB in grass carp. Additionally, 5 µg L-1 2-MIB affected the neurodevelopment and cardiovascular system of grass carp larvae through extracellular matrix (ECM)-receptor interaction and focal adhesion pathway. Furthermore, several pathways related to the digestive system were significantly enriched, implying that 2-MIB may impact pancreatic secretion function, protein digestion and absorption processes. These findings provide new insights into the potential toxicological mechanisms of 2-MIB.


Subject(s)
Carps , Inflammation , Transcriptome , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Inflammation/chemically induced , Transcriptome/drug effects , Gene Expression Profiling , Camphanes/toxicity , Liver/drug effects , Liver/pathology , Larva/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...