Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 237
Filter
1.
Front Psychiatry ; 15: 1389093, 2024.
Article in English | MEDLINE | ID: mdl-39006821

ABSTRACT

Introduction: Mitochondrial diseases are known inborn errors affecting energy metabolism and are as common as chronic diseases such as diabetes, affecting approximately 1 in 5,000 people. The role of mitochondrial diseases/dysfunction has been highlighted in neurodevelopmental disorders like ASD, ADHD, intellectual disability, and speech delay, as well as various psychiatric conditions. Neurodevelopmental disorders are increasingly recognized as having behavioral and psychiatric symptoms. Our study aimed to investigate reports of mitochondrial disorders, noting neurodevelopmental disorders and psychiatric/behavioral conditions. Methods: This was done through a systematic review of literature from PubMed/MEDLINE, Scopus, and Cochrane Library up to November 2022. Results: We found 277 publications, of which 139 met the inclusion criteria. We mostly found review articles with mention of mitochondrial dysfunction/disorder in relation to ASD with brief mentions of psychiatric/behavioral comorbidities. Discussion: This suggests a need for broader research efforts beyond ASD to understand the relationship between mitochondrial disorder or dysfunction and various neurodevelopmental and psychiatric/behavioral comorbidities.

2.
Eur J Neurol ; : e16405, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973423

ABSTRACT

BACKGROUND AND PURPOSE: Late-onset mitochondrial disorders are diagnostically challenging with significant heterogeneity in disease presentation. A case is reported of a 67-year-old gentleman who presented with a 3-month history of seizures, recurrent encephalopathy, ataxia and weight loss, preceded by recent initiation of haemodialysis for end-stage chronic kidney disease. METHODS: Extensive work-up including serological, cerebrospinal fluid, magnetic resonance imaging and electroencephalography was performed. Whole exome sequencing and muscle biopsy confirmed the diagnosis. RESULTS: Magnetic resonance imaging brain demonstrated a single non-enhancing T2 fluid attenuated inversion recovery hyperintense cortical/subcortical signal change in the right temporal lobe and cerebellar atrophy. Given the subacute presentation of uncertain aetiology, he was empirically treated for autoimmune/paraneoplastic encephalitis. Despite radiological resolution of the cortical abnormality 2 weeks later, there was no clinical improvement. Further collateral history unveiled a mildly ataxic gait and longstanding hearing loss suggestive of a genetic cause. Whole exome sequencing revealed a likely pathogenic, heteroplasmic mitochondrial DNA variant in the MT-TV gene, m.1659T>C, present at higher levels of heteroplasmy in muscle (91%) compared to other mitotic tissues. A high fat/protein diet and multivitamins including co-enzyme Q10 were commenced. Treatment of the nutritional deficiency and avoidance of intermittent fasting due to unreliable oral intake secondary to encephalopathy probably contributed to the clinical improvement seen over the ensuing few months, with resolution of his encephalopathy and return to his baseline gait and weight. CONCLUSION: An adult case is reported with an acute neurological presentation mimicking encephalitis, caused by a heteroplasmic m.1659T>C MT-TV variant, previously reported once in a child who displayed a different clinical phenotype.

3.
Ann Med Surg (Lond) ; 86(6): 3753-3756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846886

ABSTRACT

Introduction and importance: Cytochrome C oxidase (COX) deficiency is an uncommon inherited metabolic disorder. It is identified by a lack of the COX, also known as Complex IV. This enzyme plays a crucial role in the rate-limiting and oxygen-accepting step of the respiratory chain within the subcellular structures called mitochondria. The deficiency of COX can either be restricted to skeletal muscle tissues or can impact multiple tissues throughout the body. Case presentation: A 3-year-old girl was admitted due to muscle weakness and a decline in developmental milestones 7 days after a significant stressor. Leukodystrophy was observed in the brain magnetic resonance imaging, and genome sequencing identified a homozygous mutation in exon 1 and 7 of chromosome 17. This mutation led to a deficiency in COX10, which is a component of mitochondrial complex IV. Clinical discussion: In the medical field, inherited metabolic disorders can be complex to diagnose due to overlapping symptoms with other conditions. Mitochondria's oxidative phosphorylation system, including the COX enzyme complex, plays a crucial role in energy production. Mitochondrial disorders, including COX deficiency, can present at various stages of life with diverse symptoms. Treatment options focus on supportive care and potential benefits from supplements like coenzyme-Q10 and small-molecule therapies targeting mitochondrial function. Identifying genetic mutations is key for advancing treatments in this area. Conclusion: This report presents a unique case of developmental regression and muscle weakness in a paediatric patient, which can be attributed to a rare occurrence of type 3 nuclear mitochondrial complex IV deficiency.

4.
Mol Carcinog ; 63(8): 1467-1485, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38726928

ABSTRACT

Reactive oxygen species (ROS) are metabolic by-products of cells, and abnormal changes in their levels are often associated with tumor development. Our aim was to determine the role of collagen and calcium binding EGF domain 1 (CCBE1) in oxidative stress and tumorigenesis in non-small cell lung cancer cells (NSCLC). We investigated the tumorigenic potential of CCBE1 in NSCLC using in vitro and in vivo models of CCBE1 overexpression and knockdown. Immunohistochemical staining results showed that the expression of CCBE1 in cancer tissues was significantly higher than that in adjacent tissues. Cell counting Kit 8, clonal formation, wound healing, and transwell experiments showed that CCBE1 gene knockdown significantly inhibited the migration, invasion, and proliferation of NSCLC cell lines. In terms of mechanism, the silencing of CCBE1 can significantly promote the morphological abnormalities of mitochondria, significantly increase the intracellular ROS level, and promote cell apoptosis. This change of oxidative stress can affect cell proliferation, migration, and invasion by regulating the phosphorylation level of ERK/JNK/P38 MAPK. Specifically, the downregulation of CCBE1 inhibits the phosphorylation of ERK/P38 and promotes the phosphorylation of JNK in NSCLC, and this regulation can be reversed by the antioxidant NAC. In vivo experiments confirmed that downregulating CCBE1 gene could inhibit the growth of NSCLC in BALB/c nude mice. Taken together, our results confirm the tumorigenic role of CCBE1 in promoting tumor invasion and migration in NSCLC, and reveal the molecular mechanism by which CCBE1 regulates oxidative stress and the ERK/JNK/P38 MAPK pathway.


Subject(s)
Calcium-Binding Proteins , Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Lung Neoplasms , MAP Kinase Signaling System , Reactive Oxygen Species , Humans , Reactive Oxygen Species/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Animals , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Phosphorylation , Cell Line, Tumor , Apoptosis , Mice, Nude , p38 Mitogen-Activated Protein Kinases/metabolism , Male , Gene Expression Regulation, Neoplastic , Disease Progression , Female , Oxidative Stress , Mice, Inbred BALB C
5.
Kidney Dis (Basel) ; 10(2): 153-166, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751796

ABSTRACT

Background: Acute kidney injury (AKI) is a severe condition marked by rapid renal function deterioration and elevated mortality, with traditional biomarkers lacking sensitivity and specificity. Rare tubulointerstitial diseases encompass a spectrum of disorders, primarily including monogenic diseases, immune-related conditions, and drug-induced tubulointerstitial diseases. The clinical manifestations vary from electrolyte and acid-base imbalances to kidney function insufficiency, which is associated with AKI in up to 20% of cases. Evidence indicated that rare tubulointerstitial diseases might provide new conceptual insights and perspectives for novel biomarkers and potential therapeutic strategies for AKI. Summary: Autosomal dominant tubulointerstitial kidney disease (ADTKD) and Fanconi syndrome (FS) are rare tubulointerstitial diseases. In ADTKD, UMOD and REN are closely related to AKI by affecting oxidative stress and tubuloglomerular feedback, which provide potential new biomarkers for AKI. Both rare tubulointerstitial diseases and AKI share etiologies and treatment responses. From the mechanism standpoint, rare tubulointerstitial diseases and AKI involve tubular transporter injury, initially manifesting as tubular dysfunction in tubulointerstitial disorder and progressing to AKI because of the programmed cell death with apoptosis, pyroptosis, or necroptosis of proximal tubule cells. Additionally, mitochondrial dysfunction has been identified as a common mechanism in both tubulointerstitial diseases and AKI induced by drugs, pSS, or monoclonal diseases. In the end, both AKI and FS patients and animal models responded well to the therapy of the primary diseases. Key Messages: In this review, we describe an overview of ADTKD and FS to identify their associations with AKI. Mitochondrial dysfunction contributes to rare tubulointerstitial diseases and AKI, which might provide a potential therapeutic target.

6.
Cureus ; 16(3): e56980, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38665734

ABSTRACT

This case report presents a description of a hypertrophic left ventricle with reduced ejection fraction in a man in his mid-twenties with clinical, radiologic, and biochemical features of a rare syndrome called mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). A literature review of this uncommon syndrome and MELAS cardiomyopathy has been conducted.

7.
Indian J Otolaryngol Head Neck Surg ; 76(1): 1014-1017, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38440543

ABSTRACT

The mitochondrial disorder-Leigh syndrome is a neurodegenerative disorder often manifested with brainstem abnormalities. The case report highlights the auditory brainstem response in a child with medical findings suggestive of Leigh syndrome. The case report also emphasizes the importance of ruling out any underlying neural pathology before making a clinical impression in children with developmental delays.

9.
Epilepsy Behav Rep ; 25: 100652, 2024.
Article in English | MEDLINE | ID: mdl-38369985

ABSTRACT

Behr syndrome is associated with compound heterozygous dysfunction in OPA1 gene and typically presents with a constellation of visual impairment due to early onset optic atrophy, cerebellar ataxia, peripheral neuropathy, deafness, and gastrointestinal motility problems. Our patient with biallelic variants in OPA1 gene had delayed motor milestones, cerebellar ataxia, and optic atrophy in infancy. At the age of 7 years, he presented with recurrent episodes of super-refractory status epilepticus and metabolic stroke due to underlying mitochondrial dysfunction associated with OPA1 gene dysfunction. Besides the two rare prior case reports of focal and myoclonic seizures in patients with Behr syndrome, epilepsy in general is not well described in the typical phenotypic spectrum and to the best of our knowledge. Dramatic clinical presentation with recurrent super-refractory status epilepticus and metabolic stroke has not been reported previously. There is only one prior report of metabolic stroke in a patient with Behr syndrome due to OPA1 gene dysfunction.

10.
Mitochondrion ; 75: 101844, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237647

ABSTRACT

Genomic investigations on an infant who presented with a putative mitochondrial disorder led to identification of compound heterozygous deletion with an overlapping region of ∼142 kb encompassing two nuclear encoded genes namely ERCC8 and NDUFAF2. Investigations on fetal-derived fibroblast culture demonstrated impaired bioenergetics and mitochondrial dysfunction, which explains the phenotype and observed infant mortality in the present study. The genetic findings from this study extended the utility of whole-genome sequencing as it led to development of a MLPA-based assay for carrier screening in the extended family and the prenatal testing aiding in the birth of two healthy children.


Subject(s)
Infant Mortality , Mitochondria , Infant , Child , Pregnancy , Female , Humans , Mitochondria/genetics , Whole Genome Sequencing , Energy Metabolism , Genomics , Transcription Factors/genetics , DNA Repair Enzymes/genetics , Molecular Chaperones/genetics , Mitochondrial Proteins/genetics
11.
Front Neurol ; 14: 1265115, 2023.
Article in English | MEDLINE | ID: mdl-38073635

ABSTRACT

Background: Mitochondrial DNA (mtDNA) depletion syndromes (MDDS) are genetically and clinically variable disorders resulting from a reduction in mtDNA content in the cells, tissues, and organ systems, leading to symptoms related to energy deficits. Deficiency of the mitochondrial succinyl-CoA ligase/synthetase enzyme secondary to pathogenic variations in the SUCLG1 and SUCLA2 genes is a subtype of MDDS that presents with neurological manifestations and a specific biochemical profile. Methods: This cross-sectional series describes five patients with MDDS secondary to pathogenic variations in the SUCLG1 and SUCLA2 genes from two tertiary care centers in Canada and India. Clinical data concerning the course, investigations, and outcome were gathered through chart reviews. Results: All subjects presented in early infancy with neurological manifestations, including movement disorder, psychomotor regression, developmental delay, hearing loss, behavioral issues, or a combination thereof. Elevated methylmalonic acid metabolites, an abnormal acylcarnitine profile, and lactic acidemia were noted in the biochemical profile of each patient (n = 5/5, 100%). Molecular genetic testing disclosed the presence of pathogenic homozygous mutations in four subjects and compound heterozygosity in one subject. Conclusion: MDDS associated with SUCLG1 and SUCLA2 genes can be detected biochemically by the presence of methylmalonic aciduria besides the elevation of lactate, C3, C4DC, and C5-OH acylcarnitine. Conducting metabolic workups including MMA and acylcarnitine profiles in patients with heterogeneity of clinical symptoms associated with the presence of this biochemical marker may potentially reduce the time to diagnosis and management.

14.
Genes (Basel) ; 14(12)2023 11 29.
Article in English | MEDLINE | ID: mdl-38136976

ABSTRACT

Mitochondrial disorders are characterized by a huge clinical, biochemical, and genetic heterogeneity, which poses significant diagnostic challenges. Several studies report that more than 50% of patients with suspected mitochondrial disease could have a non-mitochondrial disorder. Thus, only the identification of the causative pathogenic variant can confirm the diagnosis. Herein, we describe the diagnostic journey of a family suspected of having a mitochondrial disorder who were referred to our Genetics Department. The proband presented with the association of cerebellar ataxia, COX-negative fibers on muscle histology, and mtDNA deletions. Whole exome sequencing (WES), supplemented by a high-resolution array, comparative genomic hybridization (array-CGH), allowed us to identify two pathogenic variants in the non-mitochondrial SYNE1 gene. The proband and her affected sister were found to be compound heterozygous for a known nonsense variant (c.13258C>T, p.(Arg4420Ter)), and a large intragenic deletion that was predicted to result in a loss of function. To our knowledge, this is the first report of a large intragenic deletion of SYNE1 in patients with cerebellar ataxia (ARCA1). This report highlights the interest in a pangenomic approach to identify the genetic basis in heterogeneous neuromuscular patients with the possible cause of mitochondrial disease. Moreover, even rare copy number variations should be considered in patients with a phenotype suggestive of SYNE1 deficiency.


Subject(s)
Cerebellar Ataxia , Mitochondrial Diseases , Humans , Female , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations , Cytoskeletal Proteins/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Nerve Tissue Proteins/genetics
15.
Am J Ophthalmol Case Rep ; 32: 101938, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37869268

ABSTRACT

Purpose: To describe a neuro-ophthalmic presentation of a phenotypically heterogeneous mitochondrial DNA variant. Observations: A 10-year-old female with gross motor developmental delay, absence seizures and ataxia subacutely developed poor near acuity and asthenopia. She was found to have accommodative insufficiency, impaired supraduction and convergence retraction nystagmus leading to a diagnosis of dorsal midbrain syndrome. Brain MRI showed highly symmetrical lesions involving the dorsal pons. Genetic testing revealed a previously undiagnosed mitochondrial DNA (mtDNA) pathogenic variant, adenine to guanine at nucleopeptide pair 8344 (A8344G). Conclusion and importance: The authors describe a unique, neuro-ophthalmic manifestation of mitochondrial disease in a pediatric patient. This report discusses the phenotypic heterogeneity of the mtDNA A8344G variant, which may include 'stroke-like episodes' involving the brainstem, thus presenting with ophthalmic manifestations.

16.
Mol Genet Metab ; 140(1-2): 107710, 2023.
Article in English | MEDLINE | ID: mdl-37903659

ABSTRACT

Iron­sulfur clusters (FeS) are one of the most primitive and ubiquitous cofactors used by various enzymes in multiple pathways. Biosynthesis of FeS is a complex multi-step process that is tightly regulated and requires multiple machineries. IBA57, along with ISCA1 and ISCA2, play a role in maturation of [4Fe-4S] clusters which are required for multiple mitochondrial enzymes including mitochondrial Complex I, Complex II, lipoic acid synthase, and aconitase. Pathogenic variants in IBA57 have been associated with multiple mitochondrial dysfunctions syndrome 3 (MMDS3) characterized by infantile to early childhood-onset psychomotor regression, optic atrophy and nonspecific dysmorphism. Here we report a female proband who had prenatal involvement including IUGR and microcephaly and developed subacute psychomotor regression at the age of 5 weeks in the setting of preceding viral infection. Brain imaging revealed cortical malformation with polymicrogyria and abnormal signal alteration in brainstem and spinal cord. Biochemical analysis revealed increased plasma glycine and hyperexcretion of multiple organic acids in urine, raising the concern for lipoic acid biosynthesis defects and mitochondrial FeS assembly defects. Molecular analysis subsequently detected compound heterozygous variants in IBA57, confirming the diagnosis of MMDS3. Although the number of MMDS3 patients are limited, certain degree of genotype-phenotype correlation has been observed. Unusual brain imaging in the proband highlights the need to include mitochondrial disorders as differential diagnoses of structural brain abnormalities. Lastly, in addition to previously known biomarkers including high blood lactate and plasma glycine levels, the increase of 2-hydroxyadipic and 2-ketoadipic acids in urine organic acid analysis, in the appropriate clinical context, should prompt an evaluation for the lipoic acid biosynthesis defects and mitochondrial FeS assembly defects.


Subject(s)
Iron-Sulfur Proteins , Mitochondrial Diseases , Thioctic Acid , Humans , Child, Preschool , Female , Infant , Lysine/metabolism , Tryptophan/metabolism , Iron-Sulfur Proteins/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Biomarkers/metabolism , Glycine/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Carrier Proteins/genetics
17.
JIMD Rep ; 64(5): 367-374, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37701333

ABSTRACT

Dihydrolipoamide dehydrogenase (DLD; E3) oxidizes lipoic acid. Restoring the oxidized state allows lipoic acid to act as a necessary electron sink for the four mitochondrial keto-acid dehydrogenases: pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, branched-chain α-keto-acid dehydrogenase, and 2-oxoadipate dehydrogenase. DLD deficiency (DLDD) is caused by biallelic pathogenic variants in DLD. Three major forms have been described: encephalopathic, hepatic, and myopathic, although DLDD patients exhibit overlapping phenotypes. Hyperlactatemia, hyperexcretion of tricarboxylic acid cycle (TCA) metabolites and branched-chain keto acids, increased plasma branched-chain amino acids and allo-isoleucine are intermittent metabolic abnormalities reported in patients with DLDD. However, the diagnostic performance of these metabolites has never been studied. Therefore, we sought to systematically evaluate the diagnostic utility of these biomarkers for DLDD. We retrospectively analyzed the results of biochemical testing of six unrelated DLDD patients, including values obtained during both well visits and acute decompensation episodes. Elevation of branched-chain amino acid concentrations was not consistently observed. We found that five of six patients in our cohort had a maximum lifetime value of allo-isoleucine of 6 µmol/L, showing that alloisoleucine elevations even during illness may be subtle. Urine organic acid analysis (UOA) during acute decompensation episodes was abnormal in all cases; however, the pattern of abnormalities had high intersubject variability. No single biomarker was universally present, even in patients experiencing metabolic decompensation. We also observed novel biochemical associations: three patients had hyperexcretion of TCA cycle metabolites during crisis; in two patients, 2-ketoadipic and 2-hydroxyadipic acids, by products of lysine degradation, were detected. We propose that these result from 2-oxoadipate dehydrogenase deficiency, an underappreciated biochemical abnormality in DLD. Given the diversity of biochemical profiles among the patients with DLDD, we conclude that accurate biochemical diagnosis relies on a high index of suspicion and multipronged biochemical analysis, including both plasma amino acid and urine organic acid quantitation during decompensation. Biochemical diagnosis during the well state is challenging. We emphasize the critical importance of multiple simultaneous biochemical tests for diagnosis and monitoring of DLDD. We also highlight the under-recognized role of DLD in the lysine degradation pathway. Larger cohorts of patients are needed to establish a correlation between the biochemical pattern and clinical outcomes, as well as a genotype-phenotype correlation.

18.
Metab Brain Dis ; 38(7): 2489-2497, 2023 10.
Article in English | MEDLINE | ID: mdl-37642897

ABSTRACT

Leigh syndrome (LS) and Leigh-like spectrum are the most common infantile mitochondrial disorders characterized by heterogeneous neurologic and metabolic manifestations. Pathogenic variants in SLC carriers are frequently reported in LS given their important role in transporting various solutes across the blood-brain barrier. SLC19A3 (THTR2) is one of these carriers transporting vitamin-B1 (vitB1, thiamine) into the cell. Targeted NGS of nuclear genes involved in mitochondrial diseases was performed in a patient belonging to a consanguineous Tunisian family with LS and revealed a homozygous c.1264 A > G (p.T422A) variant in SLC19A3. Molecular docking revealed that the p.T422A aa change is located at a key position interacting with vitB1 and causes conformational changes compromising vitB1 import. We further disclosed decreased plasma antioxidant activities of CAT, SOD and GSH enzymes, and a 42% decrease of the mtDNA copy number in patient blood.Altogether, our results disclose that the c.1264 A > G (p.T422A) variant in SLC19A3 affects vitB1 transport, induces a mtDNA depletion and reduces the expression level of oxidative stress enzymes, altogether contributing to the LS phenotype of the patient.


Subject(s)
Leigh Disease , Metabolism, Inborn Errors , Thiamine Deficiency , Humans , Consanguinity , DNA, Mitochondrial/genetics , Leigh Disease/genetics , Membrane Transport Proteins , Molecular Docking Simulation , Mutation/genetics , Oxidative Stress/genetics , Thiamine
20.
Mol Genet Metab ; 139(4): 107630, 2023 08.
Article in English | MEDLINE | ID: mdl-37392700

ABSTRACT

Primary coenzyme Q10 (CoQ10) deficiency is a group of inborn errors of metabolism caused by defects in CoQ10 biosynthesis. Biallelic pathogenic variants in COQ7, encoding mitochondrial 5-demethoxyubiquinone hydroxylase, have been reported in nine patients from seven families. We identified five new patients with COQ7-related primary CoQ10 deficiency, performed clinical assessment of the patients, and studied the functional effects of current and previously reported COQ7 variants and potential treatment options. The main clinical features included a neonatal-onset presentation with severe neuromuscular, cardiorespiratory and renal involvement and a late-onset disease presenting with progressive neuropathy, lower extremity weakness, abnormal gait, and variable developmental delay. Baker's yeast orthologue of COQ7, CAT5, is required for growth on oxidative carbon sources and cat5Δ strain demonstrates oxidative growth defect. Expression of wild-type CAT5 could completely rescue the defect; however, yeast CAT5 harboring equivalent human pathogenic variants could not. Interestingly, cat5Δ yeast harboring p.Arg57Gln (equivalent to human p.Arg54Gln), p.Arg112Trp (equivalent to p.Arg107Trp), p.Ile69Asn (equivalent to p.Ile66Asn) and combination of p.Lys108Met and p.Leu116Pro (equivalent to the complex allele p.[Thr103Met;Leu111Pro]) partially rescued the growth defects, indicating these variants are hypomorphic alleles. Supplementation with 2,4 dihydroxybenzoic acid (2,4-diHB) rescued the growth defect of both the leaky and severe mutants. Overexpression of COQ8 and 2,4-diHB supplementation synergistically restored oxidative growth and respiratory defect. Overall, we define two distinct disease presentations of COQ7-related disorder with emerging genotype-phenotype correlation and validate the use of the yeast model for functional studies of COQ7 variants.


Subject(s)
Mitochondrial Diseases , Ubiquinone , Humans , Infant, Newborn , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Ubiquinone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...