Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 350
Filter
1.
Arch Biochem Biophys ; 758: 110063, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880321

ABSTRACT

To investigate the potential molecular mechanism of miR-34a in Sjögren's syndrome (SS). Transmission electron microscopy was used to observe the salivary gland tissues of mild and severe SS patients. SS mouse model was constructed and injected with miR-34a antagonist. HSGE cells were transfected with miR-34a mimic. Starbase predicted miR-34a binding sites and validated them with dual-luciferase reporter assays. Immunohistochemistry, HE staining, CCK-8, TUNEL assay, flow cytometry, immunofluorescence and Western Blot were used to investigate the effects of miR-34a on NF-κB signaling and mitochondrial pathway of apoptosis in HSGE cells. Severe SS patients showed obvious mitochondrial damage and apoptosis in salivary glands. MiR-34a was overexpressed and NF-κB signaling is activated in salivary glands of severe SS patients. Inhibition of miR-34a alleviated salivary gland injury in SS mice, as well as inhibited the activation of NF-κB signaling and mitochondrial pathway of apoptosis. In conclusion, miR-34a promoted NF-κB signaling by targeting IκBα, thereby causing mitochondrial pathway apoptosis and aggravating SS-induced salivary gland damage.

2.
Fish Shellfish Immunol ; 150: 109624, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740228

ABSTRACT

Avermectin is one of the widely used anthelmintics in aquaculture and exhibits substantial toxicity to aquatic organisms. Silybin is extensively used for its anti-inflammatory, antioxidant and anti-apoptotic biological properties. Heart is essential for the survival of fish and plays a vital role in pumping blood oxygen and nutrients. Residual avermectin in water poses harm to carp. However, there is still insufficient research on whether silybin can mitigate the toxicity of avermectin to carp heart tissues. In this research, we established a model involving carp subjected to acute avermectin exposure and administered diets containing silybin to explore the potential protective effects of silybin against avermectin-induced cardiotoxicity. The results revealed that avermectin induced oxidative stress, inflammation, endoplasmic reticulum (ER) stress, mitochondrial pathway apoptosis and autophagy in the cardiac tissues of carp. Compared with the avermectin group, silybin significantly reduced ROS accumulation in cardiac tissues, restored antioxidant enzyme activity, inhibited mRNA transcript levels of pro-inflammatory-related factors, and attenuated ER stress, mitochondrial pathway apoptosis and autophagy. Protein-protein interaction (PPI) analysis demonstrated that silybin mitigated avermectin-induced cardiac oxidative stress, inflammation, ER stress, mitochondrial pathway apoptosis and autophagy. Silybin exerted anti-inflammatory effects through the Nuclear Factor kappa B (NF-κB) pathway, antioxidant effects through the Nuclear factor erythroid 2-related factor 2 (Nrf2) - Kelch-like ECH-associated protein 1 (Keap1) pathway, alleviated cardiac ER stress through the Glucose-regulated protein 78 (GRP78)/Activating Transcription Factor 6 (ATF6)/C/EBP homologous protein (CHOP) axis, suppressed apoptosis through the mitochondrial pathway, and inhibited excessive autophagy initiation through the PTEN-induced putative kinase 1 (PINK1)/Parkin RBR E3 ubiquitin protein ligase (PARKIN) signaling pathway. This study provided evidence supporting the protective effect of silybin against avermectin-induced cardiotoxicity in carp, highlighting its potential as a dietary additive to protect fish from adverse effects caused by avermectin exposure.


Subject(s)
Anthelmintics , Carps , Ivermectin , Protective Agents , Silybin , Silybin/pharmacology , Silybin/therapeutic use , Endoplasmic Reticulum Stress , Cardiotoxicity/drug therapy , Carps/physiology , Animals , Ivermectin/toxicity , Protective Agents/pharmacology , Protective Agents/therapeutic use , Apoptosis/drug effects , Fish Proteins/genetics , Fish Proteins/metabolism , Activating Transcription Factor 6/metabolism , Transcription Factor CHOP/metabolism , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , NF-E2-Related Factor 2/metabolism , Biomarkers/blood , Heart/drug effects , Heart/physiology , Myocardium/pathology
3.
Nat Prod Res ; : 1-4, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693720

ABSTRACT

Hydroxytyrosol acetate is one of the polyphenolic compounds in olive leaves. Hydroxytyrosol acetate has a variety of biological activities, such as antibacterial, antioxidant, anti-inflammatory, cognitive improvement and neuroprotective effects. However, there is no report on the antitumor activity and the antitumor mechanism of hydroxytyrosol acetate. In our study, we studied the antitumor activity of hydroxytyrosol acetate by MTT assay and determined the antitumor mechanism by DNA ladder assay, mitochondrial membrane potential assay and western blot assay. We found that hydroxytyrosol acetate could inhibit cell proliferation, and the inhibition rate was 78.08%. The further researches showed that hydroxytyrosol acetate could downregulate Bcl-2 protein while upregulate Bax protein. It also could induce mitochondrial depolarisation and release of cytochrome C. These results indicated that hydroxytyrosol acetate might induce BEL7402 cells apoptosis via mitochondrial pathway.

4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731935

ABSTRACT

Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.


Subject(s)
Apoptosis , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Leukemia , Lymphoma , Mitochondria , X-Linked Inhibitor of Apoptosis Protein , X-Linked Inhibitor of Apoptosis Protein/metabolism , Humans , Apoptosis/drug effects , Drug Resistance, Neoplasm/drug effects , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Leukemia/metabolism , Leukemia/drug therapy , Leukemia/pathology , Drug Resistance, Multiple/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Cell Proliferation/drug effects , Cytostatic Agents/pharmacology , Antineoplastic Agents/pharmacology
5.
Mol Divers ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733433

ABSTRACT

The avidity of cancer cells for iron highlights the potential for iron chelators to be used in cancer therapy. Herein, we designed and synthesized a novel series of 5H-[1,2,4]triazino[5,6-b]indole derivatives bearing a pyridinocycloalkyl moiety using a ring-fusion strategy based on the structure of an iron chelator, VLX600. The antiproliferative activity evaluation against cancer cells and normal cells led to the identification of compound 3k, which displayed the strongest antiproliferative activity in vitro against A549, MCF-7, Hela and HepG-2 with IC50 values of 0.59, 0.86, 1.31 and 0.92 µM, respectively, and had lower cytotoxicity against HEK293 than VLX600. Further investigations revealed that unlike VLX600, compound 3k selectively bound to ferrous ions, but not to ferric ions, and addition of Fe2+ abolished the cytotoxicity of 3k. Flow cytometry assays demonstrated that 3k arrested the cell cycle at the G1 phase and induced significant apoptosis in A549 cells in dose and time-dependent manners, corresponding to JC-1 staining assay results. Western blot analysis of Bcl-2, Bax and cleaved caspase-3 proteins further provided evidences that induction of apoptosis by 3k in A549 cells might be at least via the mitochondria pathway. These above results highlight that 3k is a valuable lead compound that deserves further investigation as an iron chelator for the treatment of cancer.

6.
Anticancer Agents Med Chem ; 24(10): 764-772, 2024.
Article in English | MEDLINE | ID: mdl-38465429

ABSTRACT

BACKGROUND: Tabersonine, a natural indole alkaloid derived from Apocynaceae plants, exhibits antiinflammatory and acetylcholinesterase inhibitory activities, among other pharmacological effects. However, its anti-tumor properties and the underlying molecular mechanisms remain underexplored. OBJECTIVE: The present study aims to investigate the anti-tumor effects of tabersonine and its mechanisms in inducing apoptosis in hepatocellular carcinoma. METHODS: The inhibitory effects of tabersonine on the viability and proliferation of liver cancer cells were evaluated using MTT assay and colony formation assay. AO/EB, Hoechst, and Annexin V-FITC/ PI staining techniques were employed to observe cell damage and apoptosis. JC-1 staining was used to detect changes in mitochondrial membrane potential. Western blot analysis was conducted to study the anti-tumor mechanism of tabersonine on liver cancer cells. Additionally, a xenograft model using mice hepatoma HepG2 cells was established to assess the anti-tumor potency of tabersonine in vivo. RESULTS AND DISCUSSION: Our findings revealed that tabersonine significantly inhibited cell viability and proliferation, inducing apoptosis in liver cancer cells. Treatment with tabersonine inhibited Akt phosphorylation, reduced mitochondrial membrane potential, promoted cytochrome c release from mitochondria to the cytoplasm, and increased the ratio of Bax to Bcl-2. These findings suggested that tabersonine induces apoptosis in liver cancer cells through the mitochondrial pathway. Furthermore, tabersonine treatment activated the death receptor pathway of apoptosis. In vivo studies demonstrated that tabersonine significantly inhibited xenograft tumor growth. CONCLUSION: Our study is the first to demonstrate that tabersonine induces apoptosis in HepG2 cells through both mitochondrial and death receptor apoptotic pathways, suggesting its potential as a therapeutic agent candidate for hepatic cancer.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Proliferation , Cell Survival , Drug Screening Assays, Antitumor , Indole Alkaloids , Liver Neoplasms , Apoptosis/drug effects , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/drug effects , Mice , Indole Alkaloids/pharmacology , Indole Alkaloids/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Molecular Structure , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C , Mice, Nude , Hep G2 Cells , Tumor Cells, Cultured
7.
World J Gastrointest Oncol ; 16(2): 398-413, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38425403

ABSTRACT

BACKGROUND: Prohibitin 1 (PHB1) has been identified as an antiproliferative protein that is highly conserved and ubiquitously expressed, and it participates in a variety of essential cellular functions, including apoptosis, cell cycle regulation, proliferation, and survival. Emerging evidence indicates that PHB1 may play an important role in the progression of hepatocellular carcinoma (HCC). However, the role of PHB1 in HCC is controversial. AIM: To investigate the effects of PHB1 on the proliferation and apoptosis of human HCC cells and the relevant mechanisms in vitro. METHODS: HCC patients and healthy individuals were enrolled in this study according to the inclusion and exclusion criteria; then, PHB1 levels in the sera and liver tissues of these participates were determined using ELISA, RT-PCR, and immunohistochemistry. Human HepG2 and SMMC-7721 cells were transfected with the pEGFP-PHB1 plasmid and PHB1-specific shRNA (shRNA-PHB1) for 24-72 h. Cell proliferation was analysed with an MTT assay. Cell cycle progression and apoptosis were analysed using flow cytometry (FACS). The mRNA and protein expression levels of the cell cycle-related molecules p21, Cyclin A2, Cyclin E1, and CDK2 and the cell apoptosis-related molecules cytochrome C (Cyt C), p53, Bcl-2, Bax, caspase 3, and caspase 9 were measured by real-time PCR and Western blot, respectively. RESULTS: Decreased levels of PHB1 were found in the sera and liver tissues of HCC patients compared to those of healthy individuals, and decreased PHB1 was positively correlated with low differentiation, TNM stage III-IV, and alpha-fetoprotein ≥ 400 µg/L. Overexpression of PHB1 significantly inhibited human HCC cell proliferation in a time-dependent manner. FACS revealed that the overexpression of PHB1 arrested HCC cells in the G0/G1 phase of the cell cycle and induced apoptosis. The proportion of cells in the G0/G1 phase was significantly increased and the proportion of cells in the S phase was decreased in HepG2 cells that were transfected with pEGFP-PHB1 compared with untreated control and empty vector-transfected cells. The percentage of apoptotic HepG2 cells that were transfected with pEGFP-PHB1 was 15.41% ± 1.06%, which was significantly greater than that of apoptotic control cells (3.65% ± 0.85%, P < 0.01) and empty vector-transfected cells (4.21% ± 0.52%, P < 0.01). Similar results were obtained with SMMC-7721 cells. Furthermore, the mRNA and protein expression levels of p53, p21, Bax, caspase 3, and caspase 9 were increased while the mRNA and protein expression levels of Cyclin A2, Cyclin E1, CDK2, and Bcl-2 were decreased when PHB1 was overexpressed in human HCC cells. However, when PHB1 was upregulated in human HCC cells, Cyt C expression levels were increased in the cytosol and decreased in the mitochondria, which indicated that Cyt C had been released into the cytosol. Conversely, these effects were reversed when PHB1 was knocked down. CONCLUSION: PHB1 inhibits human HCC cell viability by arresting the cell cycle and inducing cell apoptosis via activation of the p53-mediated mitochondrial pathway.

8.
Cell Rep ; 43(3): 113899, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38446666

ABSTRACT

Insulin-mechanistic target of rapamycin (mTOR) signaling drives anabolic growth during organismal development; its late-life dysregulation contributes to aging and limits lifespans. Age-related regulatory mechanisms and functional consequences of insulin-mTOR remain incompletely understood. Here, we identify LPD-3 as a megaprotein that orchestrates the tempo of insulin-mTOR signaling during C. elegans aging. We find that an agonist insulin, INS-7, is drastically overproduced from early life and shortens lifespan in lpd-3 mutants. LPD-3 forms a bridge-like tunnel megaprotein to facilitate non-vesicular cellular lipid trafficking. Lipidomic profiling reveals increased hexaceramide species in lpd-3 mutants, accompanied by up-regulation of hexaceramide biosynthetic enzymes, including HYL-1. Reducing the abundance of HYL-1, insulin receptor/DAF-2 or mTOR/LET-363, normalizes INS-7 levels and rescues the lifespan of lpd-3 mutants. LPD-3 antagonizes SINH-1, a key mTORC2 component, and decreases expression with age. We propose that LPD-3 acts as a megaprotein brake for organismal aging and that its age-dependent decline restricts lifespan through the sphingolipid-hexaceramide and insulin-mTOR pathways.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Aging , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Forkhead Transcription Factors/metabolism , Insulin/metabolism , Longevity/physiology , TOR Serine-Threonine Kinases/metabolism
9.
Clin Exp Pharmacol Physiol ; 51(3): e13843, 2024 03.
Article in English | MEDLINE | ID: mdl-38302075

ABSTRACT

This study explores the potential mechanisms of obstructive sleep apnoea (OSA) complicates type 2 diabetes mellitus (T2DM) by which chronic intermittent hypoxia (CIH) induces insulin resistance and cell apoptosis in the pancreas through oxidative stress. Four- and eight-week CIH rat models were established, and Tempol (100 mg/kg/d), was used as an oxidative stress inhibitor. This study included five groups: 4-week CIH, 4-week CIH-Tempol, 8-week CIH, 8-week CIH-Tempol and normal control (NC) groups. Fasting blood glucose and insulin levels were measured in the serum. The expression levels of 8-hidroxy-2-deoxyguanosine (8-OHdG), tribbles homologue 3 (TRB3), c-Jun N-terminal kinase (JNK), phosphorylated JNK (p-JNK), insulin receptor substrate-1 (IRS-1), phosphorylated IRS-1 (Ser307) (p-IRS-1ser307 ), protein kinase B (AKT), phosphorylated AKT (Ser473) (p-AKTser473 ), B cell lymphoma protein-2 (Bcl-2), cleaved-caspase-3 (Cl-caspase-3), and the islet cell apoptosis were detected in the pancreas. CIH induced oxidative stress in the pancreas. Compared with that in the NC group and CIH-Tempol groups individually, the homeostasis model assessment of insulin resistance (HOMA-IR) and apoptosis of islet cells was increased in the CIH groups. CIH-induced oxidative stress increased the expression of p-IRS-1Ser307 and decreased the expression of p-AKTSer473 . The expression levels of TRB3 and p-JNK were higher in the CIH groups than in both the CIH-Tempol and NC groups. Meanwhile, the expressions of Cl-caspase-3 and Bcl-2 were upregulated and downregulated, respectively, in the CIH groups. Hence, the present study demonstrated that CIH-induced oxidative stress might not only induce insulin resistance but also islet cell apoptosis in the pancreas through TRB3 and p-JNK.


Subject(s)
Cyclic N-Oxides , Diabetes Mellitus, Type 2 , Insulin Resistance , Spin Labels , Animals , Rats , Apoptosis , Caspase 3/metabolism , Diabetes Mellitus, Type 2/metabolism , Hypoxia/complications , Oxidative Stress , Pancreas/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Mitogen-Activated Protein Kinase 8/metabolism
10.
Curr Med Chem ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38357946

ABSTRACT

BACKGROUND AND OBJECTIVES: Hesperetin (HSE) is a natural flavonoid derived from the hydrolysis of Hesperidin, which is mainly found in traditional natural Chinese herbs, such as Chenpi and Hovenia caryophyllus. HSE displays anti-inflammatory and antioxidant activities. However, its potential mechanism of action on bladder cancer (BLCA) remains unknown. The aim of this study was to investigate the potential mechanism of action of HSE on BLCA cells. METHODS: Network pharmacology analysis was used to construct a composite target network, combined with Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify HSE-induced cell death patterns and signaling pathway alterations. Cytotoxicity evaluation was determined by CCK-8 assay. A clone formation assay was performed to assess cell proliferative capacity. Scratch and Transwell assays were performed to evaluate cell migration and invasion ability. Hoechst 33342 staining was visualized to observe morphological features of apoptosis. Apoptosis, cycle distribution, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) changes were examined by flow cytometry. Western blot analysis was performed to analyze the expression of key proteins associated with cell proliferation, apoptosis, cycle block, PI3K/AKT/FoxO3a and endoplasmic reticulum (ER) stress-mitochondrial pathways. RESULTS: Network pharmacology analysis was performed to identify 155 potential candidate targets of HSE-BLCA, and further topological analysis was performed to obtain 34 hub-gene. Enrichment analysis yielded patterns of death and key pathways, revealing that the anti-BLCA effect of HSE may be related to the positive regulation of PI3K/AKT/FoxO3a and ER stress-mitochondrial pathways. in vitro results showed that HSE blocked cell proliferation, migration, and invasion in a concentration-dependent manner and triggered apoptosis, G0/G1 phase blockade, ROS production, and MMP depolarization. In addition, Western blot results showed that HSE downregulated phosphorylated (p)-3-phosphoinositide-dependent kinase-1 (PI3K), phosphorylated (p)-AKT serine/threonine kinase 1 (AKT), phosphorylated (p)-Forkhead box O 3a (FoxO3a), anti-apoptotic proteins, proliferation-associated proteins, and cell cycle promoters, whereas the levels of proteins related to the expression of cell cycle regulators, pro-apoptotic proteins, and ER stress-mitochondrial pathway were up-regulated in BLCA cells by the intervention of HSE. PI3K agonist (YS-49) and ER stress inhibitor (4-PBA) partially or completely reversed HSE-mediated proliferation, apoptosis, and cycle blockade in BLCA cells. CONCLUSION: The anticancer effects of HSE in BLCA may be attributed to its coordination of actions, inhibiting cell proliferation, migration, and invasion, inducing apoptosis, G0/G1 phase arrest, generating reactive oxygen species, causing MMP loss, and engaging the caspase protein family. These actions are likely mediated through the PI3K/AKT/FoxO3a and ER stress-mitochondrial pathways. Thus, our findings suggest that HSE is a promising novel therapeutic candidate for the prevention and treatment of BLCA.

11.
Bioorg Chem ; 145: 107210, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364551

ABSTRACT

Hecogenin (HCG), a steroidal sapogenin, possesses good antitumor properties. However, the application of HCG for cancer treatment has been hindered primarily by its moderate potency. In this study, we incorporated triphenylphosphonium cation (TPP+) at the C-3 and C-12 positions through different lengths of alkyl chains to target mitochondria and enhance the efficacy and selectivity of the parent compound. Cytotoxicity screening revealed that most of the target compounds exhibited potent antiproliferative activity against five human cancer cell lines (MKN45, A549, HCT-116, MCF-7, and HepG2). Structure-activity relationship studies indicated that the TPP+ group significantly enhanced the antiproliferative potency of HCG. Among these compounds, 3c demonstrated remarkable potency against MKN45 cells with an IC50 value of 0.48 µM, significantly more effective than its parent compound HCG (IC50 > 100 µM). Further investigations into the mechanism of action revealed that 3c induced apoptosis of MKN45 cells through the mitochondrial pathway. In a zebrafish xenograft model, 3c inhibited the proliferation of MKN45 cells. Overall, these results suggest that 3c, with potent antiproliferative activity, may serve as a valuable scaffold for developing new antitumor agents.


Subject(s)
Antineoplastic Agents , Organophosphorus Compounds , Sapogenins , Animals , Humans , Molecular Structure , Sapogenins/pharmacology , Zebrafish , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Apoptosis , Drug Design
12.
Apoptosis ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281280

ABSTRACT

The overuse of antibiotics in both humans and livestock has led to the antibiotic resistance phenomenon which is now considered one of the biggest problems in the modern world. Some antibiotics used to control or prevent infections in livestock poultry were registered a long time ago, and as a result, data on the possible side effects of their use, both for birds and humans, are incomplete and should be updated. An example of such an antibiotic is enrofloxacin which has been widely used in poultry since 1989. Data in recent years have begun to indicate that this antibiotic induces the process of apoptosis in diverse types of eukaryotic cells. Unfortunately, such studies have never been conducted on chicken models even though it is in poultry that this antibiotic is most commonly used. Therefore, the purpose of this work was to investigate whether enrofloxacin induces apoptosis in chicken cells of the UMNSAH/DF-1 line and to study the molecular mechanism of its action. The results of these experiments indicated that enrofloxacin induces apoptosis in chicken cells but not in human HEK-293 and PC3 cells. This induction was accompanied by changes in the morphology and size of mitochondria, the process of apoptosome formation and activation of executive caspases, which clearly indicates the role of the mitochondrial pathway in the induction of apoptosis by enrofloxacin. This study is the first to show the toxicity of enrofloxacin against chicken cells and to demonstrate the exact mechanism of its action. The results presented in this work show the need to monitor the concentration of antibiotic residues in poultry foods as well as to study their impact on public health to guarantee consumer safety and prevent the phenomenon of antibiotic resistance in bacteria.

13.
Article in English | MEDLINE | ID: mdl-38013045

ABSTRACT

Glucosinolates (GLS) in cruciferous vegetables are anti-nutritional factors. Excessive or long-term intake of GLS-containing feed is harmful to animal health and may cause kidney damage. Phenethyl isothiocyanate (PEITC) is a GLS. In this study, we investigated the inhibitory effect of PEITC on a porcine kidney (PK-15) cell line and explored the mechanism of PEITC-induced apoptosis. We found that PEITC could affect cell viability and induce cell apoptosis after incubating cells for 24 h. High concentrations of PEITC can induce intracellular ROS accumulation, resulting in impaired mitochondrial function (decreased MMP, decreased ATP) and DNA damage (increased 8-OHdG), cytochrome c in mitochondria is released into the cytoplasm and activates mitochondrial pathway apoptosis-related proteins (Bcl-2 family and caspase-9, -3). Meanwhile, PEITC could induce intracellular Ca2+ accumulation, disrupt ER homeostasis, and activate the expression levels of three ER-resident transmembrane proteins orchestrating the UPR (PERK, IRE-1α and ATF6) and ER-related proteins (GRP78 and CHOP), thereby activating ERS-pathway apoptosis-related proteins (caspase-12, -7). Our results showed that low concentration (2.5 µM) of PEITC had no damaging effect on cells. In comparison, a high concentration (10 µM) of PEITC could induce cell damage in porcine kidney cells and induce apoptosis in PK-15 cells via the Mitochondrial ROS-associated ERS pathway.


Subject(s)
Apoptosis Regulatory Proteins , Apoptosis , Animals , Swine , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial , Apoptosis Regulatory Proteins/metabolism , Mitochondria , Kidney/metabolism , Cell Line, Tumor
14.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-999165

ABSTRACT

ObjectiveTo explore the mechanism of Buzhong Yiqitang-containing serum in alleviating the cisplatin resistance in human non-small cell lung cancer (A549/DDP) cells via regulating the nuclear factor E2-related factor 2 (Nrf2)/reactive oxygen species (ROS) signaling pathway. MethodThe serum containing Buzhong Yiqitang was prepared and A549/DDP cells were cultured and randomly grouped: blank (10% blank serum), cisplatin (10% blank serum+20 mg·L-1 cisplatin), Buzhong Yiqitang (10% Buzhong Yiqitang-containing serum+20 mg·L-1 cisplatin), ML385 (10% blank serum+5 μmol·L-1 ML385+20 mg·L-1 cisplatin), Buzhong Yiqitang+ML385 (10% Buzhong Yiqitang-containing serum+5 μmol·L-1 ML385+20 mg·L-1 cisplatin), tertiary butylhydroquinone (TBHQ) (10% blank serum+5 μmol·L-1 TBHQ+20 mg·L-1 cisplatin), and Buzhong Yiqitang+TBHQ (10% Buzhong Yiqitang-containing serum+5 μmol·L-1 TBHQ+20 mg·L-1 cisplatin). The median inhibitory concentration (IC50) of cisplatin in each group was determined by the cell counting kit-8 (CCK-8) method and the resistance index (RI) was calculated. The apoptosis rate was detected by flow cytometry. The ROS content of each group was determined with the DCFH-DA fluorescence probe. Western blot was employed to determine the protein levels of Nrf2, cleaved cysteinyl aspartate-specific protease-3 (cleaved Caspase-3), cytochrome C (Cyt C), and B-cell lymphoma-2 (Bcl-2). ResultCompared with those in the cisplatin group, the IC50 and RI of A549/DDP cells to cisplatin in Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 groups decreased (P˂0.05). Compared with the blank group, the cisplatin, Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 groups showed increased apoptosis rate of A549/DDP cells (P˂0.05). Compared with the blank group, cisplatin promoted the expression of Nrf2 (P˂0.05). Compared with the cisplatin group, Buzhong Yiqitang, ML385, and Buzhong Yiqitang+ML385 inhibited the expression of Nrf2 (P<0.05), elevated the ROS level (P˂0.05), up-regulated the protein levels of cleaved Caspase-3 and Cyt C, and down-regulated the protein level of Bcl-2 (P<0.05), which were the most significant in the Buzhong Yiqitang+ML385 group. Compared with the cisplatin group, the TBHQ group showed increased IC50 and RI of cisplatin (P<0.05), decreased apoptosis rate of A549/DDP cells (P<0.05), up-regulated protein levels of Nrf2 and Bcl-2 (P<0.05), lowered level of ROS (P˂0.05), and down-regulated protein levels of cleaved Caspase-3 and Cyt C (P<0.05). Compared with the TBHQ group, Buzhong Yiqitang+TBHQ decreased the IC50 and RI of cisplatin in A549/DDP cells (P<0.05), increased the apoptosis rate (P<0.05), down-regulated the protein levels of Nrf2 and Bcl-2 (P<0.05), increased ROS (P˂0.05), and up-regulated the protein levels of cleaved Caspase-3 and Cyt C (P<0.05). ConclusionBuzhong Yiqitang induced apoptosis by inhibiting Nrf2/ROS pathway to alleviate cisplatin resistance in A549/DDP cells.

15.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(10): 1789-1795, 2023 Oct 20.
Article in Chinese | MEDLINE | ID: mdl-37933656

ABSTRACT

OBJECTIVE: To investigate the inhibitory effect of low- intensity pulsed ultrasound (LIPUS) on apoptosis of splenic lymphocytes in rats with sepsis and explore its possible mechanism. METHODS: Seventy-eight female SD rats were randomly divided into LIPUS group, cecal ligation and puncture (CLP) group and sham-operated group (Sham) (n=26), and in the former two groups, rat model of sepsis were established by CLP. Immediately after the operation, the rats in LIPUS group received pulsed ultrasound therapy with an ultrasound intensity of 200 mW/cm2, irradiation time of 20 min, and frequency of 0.37 MHz. The survival of the rats in each group was observed within 72 h after CLP. The changes in splenic lymphocyte counts were observed using HE staining, and apoptosis of the splenic lymphocytes was detected using TUNEL assay and flow cytometry. The expression levels of Bcl-2, Bcl2-associated X protein (Bax) and caspase-3 were detected by immunohistochemistry, Western blotting and RT-qPCR. RESULTS: All the rats in the sham-operated group survived for over 72 h. The survival rates of the rats was significantly higher in LIPUS group than in CLP group (P<0.05). Compared with those in CLP group, the apoptosis rate of the splenic lymphocytes in LIPUS group was significantly decreased (P<0.05), the protein and mRNA expression levels of Bcl-2 were increased (P<0.05), and the protein and mRNA expression levels of Bax and caspase-3 were decreased (P<0.05). CONCLUSIONS: LIPUS inhibits apoptosis of splenic lymphocytes in septic SD rats possibly by regulating the key molecules in the mitochondrial pathway, thereby improving the survival rate and prolonging the survival time of the rats.


Subject(s)
Lymphocytes , Sepsis , Rats , Female , Animals , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism , Caspase 3 , Proto-Oncogene Proteins c-bcl-2 , Apoptosis , Sepsis/metabolism , Ultrasonic Waves , RNA, Messenger
16.
Heliyon ; 9(11): e21847, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034812

ABSTRACT

Lead (Pb) is a heavy metal that can have harmful effects on the environment, which has severe cytotoxicity in many animal tissues. N-acetylcysteine (NAC) has antioxidant activity, reducing lead-induced oxidative stress and apoptosis, but its role in chicken cells is unknown. The current study explored the antagonistic effect of NAC on lead-induced apoptosis and oxidative stress in chicken embryo fibroblast (CEF). In this study, CEF was used as a model to measure the cytotoxic effects of lead nitrate at different concentrations, demonstrating a dose-dependent effect on CEF activity. Employing inverted microscopy, the investigation of morphological alterations in CEF cells was conducted. Fluorescence staining methodology enabled the assessment of reactive oxygen species (ROS) levels within CEF cells. Moreover, an enzyme-linked immunosorbent assay was utilized to detect the presence of oxidative damage indicators encompassing superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) activity, malondialdehyde (MDA) content, and total antioxidant capacity (T-AOC) within CEF cells. Furthermore, the determination of the apoptosis rate of CEF cells was accomplished through the utilization of the Hoechst 33258 staining method in combination with the Annexin V-FITC dual staining method. By using RT-qPCR for detection, lead treatment increased expression of pro-apoptotic genes, caspase-3, and caspase-9, and reduced expression of anti-apoptotic genes, Bcl-2, and BI-1. Reduced antioxidant capacity was shown by increased ROS and MDA levels in CEF cells after lead treatment. The results showed that NAC inhibited the expression of caspase-3 and caspase-9 in lead-treated CEF cells, while NAC had a certain inhibitory effect on the relative expression of Bcl-2 and BI-1 mRNA in lead-induced CEF cells. NAC significantly reduced lead-induced oxidative damage and apoptosis. Overall, our results demonstrate a novel protective effect of NAC against lead-induced injury in chicken cells, providing a theoretical basis for future investigations of drugs that are effective in preventing lead poisoning in animals.

17.
J Virol ; 97(11): e0149723, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37877719

ABSTRACT

IMPORTANCE: Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that replicates well in mosquito, bird, and mammalian cells. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in the serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and poses a threat to mammalian health. Thus, understanding the pathogenic mechanism of DTMUV is crucial for identifying potential antiviral targets. In this study, we discovered that NS3 can induce the mitochondria-mediated apoptotic pathway through the PERK/PKR pathway; it can also interact with voltage-dependent anion channel 2 to induce apoptosis. Our findings provide a theoretical basis for understanding the pathogenic mechanism of DTMUV infection and identifying potential antiviral targets and may also serve as a reference for exploring the pathogenesis of other flaviviruses.


Subject(s)
Apoptosis , Ducks , Flavivirus Infections , Flavivirus , Host Specificity , Animals , Humans , Antiviral Agents/pharmacology , Ducks/virology , eIF-2 Kinase/metabolism , Flavivirus/enzymology , Flavivirus/pathogenicity , Flavivirus Infections/diagnosis , Flavivirus Infections/immunology , Flavivirus Infections/transmission , Flavivirus Infections/virology , Mitochondria/metabolism , Molecular Targeted Therapy/trends , Viral Zoonoses/diagnosis , Viral Zoonoses/immunology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Voltage-Dependent Anion Channel 2/metabolism
18.
Article in English | MEDLINE | ID: mdl-37817515

ABSTRACT

OBJECTIVE: The objective of this study is to assess the antitumor effects of hederagenin (HDG) in liver cancer (LC) cells and explore the related mechanisms. METHODS AND MATERIALS: HepG2 cells were treated with HDG and cisplatin, respectively. The CCK8 assay was used to detect cell activity, DAPI staining was used to detect the proportion of living cells, TUNEL assay to detect the proportion of apoptotic cells, flow cytometry to detect the membrane potential, fluoroscopic electron microscopy to detect microstructural changes to the mitochondrial, and western blot analysis and high-content screening to detect apoptosisrelated proteins. RESULTS: Treatment with HDG inhibited the growth of HepG2 cells, decreased the proportion of viable cells, increased the proportion of apoptotic cells, and significantly increased the proportion of cells in the G1 phase. Fluorescence staining showed that HDG damaged the mitochondria of HepG2 cells and significantly decreased the number of mitochondria. Flow cytometry showed that HDG decreased the mitochondrial membrane potential of HepG2 cells. Observations by electron microscopy showed that HDG caused swelling and vacuole formation of the mitochondria of HepG2 cells. HDG significantly reduced the average fluorescence intensity of Bcl-2 in HepG2 cells and significantly increased that of the pro-apoptosis proteins Bax, Cytochrome-c, and Caspase-3. CONCLUSION: HDG induced apoptosis of HepG2 cells via the mitochondrial pathway.

19.
Aquat Toxicol ; 264: 106728, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37837868

ABSTRACT

Benzopyrene (Bap) is a major constituent of petroleum pollutants commonly found in aquatic environments, and its mutagenic and carcinogenic properties have adverse effects on aquatic organisms' development, growth, and reproduction. The antioxidant defense system element, NF-E2-related factor 2 (Nrf2), has been linked to the oxidative stress response in marine invertebrates exposed to toxic substances. In a previous study, a novel Nrf2 homologue, McNrf2, was identified in mussel Mytilus coruscus, a significant model marine molluscs in ecotoxicology studies. McNrf2 showed the potential to trigger an antioxidant defense against oxidative stress induced by Bap. Here, we employed an Nrf2 overexpression and inhibition model using SFN and ML385 as Nrf2 inducer and inhibitor, respectively. Next, immunofluorescence technique was used to evaluate the nuclear activation of Nrf2 induced by Bap-mediated oxidative stress. Transmission electron microscopy revealed that overexpression of Nrf2 could maintain the quantity and structural integrity of mitochondria, while flow cytometry analysis showed that Nrf2 could alleviate Bap-induced cellular apoptosis. These findings suggest that Nrf2 can protect molluscs from Bap-induced oxidative stress through the mitochondria and apoptosis pathways, providing a novel perspective on Nrf2's antioxidant function.


Subject(s)
Antioxidants , Water Pollutants, Chemical , Animals , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Water Pollutants, Chemical/toxicity , Oxidative Stress , Mollusca/metabolism , Apoptosis , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
20.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37895809

ABSTRACT

Bladder cancer is a urothelial malignancy. Bladder cancer starts in the urothelial cells lining the inside of the bladder. The 5-year recurrence rate for bladder cancer ranges from 31% to 78%, and the progression rate is approximately 45%. To treat bladder cancer, intravesical drug therapy is often used. Leonurus artemisia extract (LaE) was obtained from medicinal samples of Chinese motherwort Scientific Chinese Medicine; L. artemisia has various biological effects. This study investigated the impact of LaE on human bladder cancer cells (the BFTC-905 cell line) and the molecular mechanism underlying apoptosis resulting from the activation of cell signal transduction pathways in bladder cancer cells. A cell counting kit-8 (CCK-8) assay was used to determine the effect of LaE on cell growth. The effect of LaE on migration ability was observed using a wound healing assay. The effects of LaE on the cell cycle, reactive oxygen species production, and apoptosis were investigated. Western blot analysis detected apoptosis-related and mitogen-activated protein kinase signaling pathway-related protein concentrations. At non-toxic concentrations, LaE inhibited the proliferation of BFTC-905 cells in a concentration-dependent manner, and the half-maximal inhibitory concentration (IC50) was 24.08172 µg/µL. LaE impaired the migration ability of BFTC-905 cells. LaE arrested the cell cycle in the G1 and G0 phases, increased reactive oxygen species production, and induced apoptosis. LaE increased Bax and p-ERK concentrations and decreased Bcl-2, cleaved caspase-3, and p-p38 concentrations. No differences in PARP, C-PARP, vimentin, e-cadherin, p-JNK, or TNF-alpha concentrations were observed. These results suggest that LaE inhibits the proliferation of human bladder cancer cells. Moreover, the mitogen-activated protein kinase signaling pathway is involved in the inhibition of the proliferation of BFTC-905 cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...