Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612863

ABSTRACT

Our study aimed to explore the potential positive effects of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The study involved 32 male and 32 female rats aged 15 months, randomly assigned to control sedentary animals, animals training in cold water at 5 ± 2 °C, or animals training in water at thermal comfort temperature (36 ± 2 °C). The rats underwent swimming training for nine weeks, gradually increasing the duration of the sessions from 2 min to 4 min per day, five days a week. The results demonstrated that swimming in thermally comfortable water improved the energy metabolism of aging rat muscles (increased metabolic rates expressed as increased ATP, ADP concentration, TAN (total adenine nucleotide) and AEC (adenylate energy charge value)) and increased mRNA and protein expression of fusion regulatory proteins. Similarly, cold-water swimming improved muscle energy metabolism in aging rats, as shown by an increase in muscle energy metabolites and enhanced mitochondrial biogenesis and dynamics. It can be concluded that the additive effect of daily activity in cold water influenced both an increase in the rate of energy metabolism in the muscles of the studied animals and an intensification of mitochondrial biogenesis and dynamics (related to fusion and fragmentation processes). Daily activity in warm water also resulted in an increase in the rate of energy metabolism in muscles, but at the same time did not cause significant changes in mitochondrial dynamics.


Subject(s)
Organelle Biogenesis , Swimming , Female , Male , Animals , Rats , Muscles , Energy Metabolism , Aging , Water
2.
JACC Basic Transl Sci ; 9(3): 303-318, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38559623

ABSTRACT

Most congenital heart defect (CHD) cases are attributed to nongenetic factors; however, the mechanisms underlying nongenetic factor-induced CHDs are elusive. Maternal diabetes is one of the nongenetic factors, and this study aimed to determine whether impaired mitochondrial fusion contributes to maternal diabetes-induced CHDs and if mitochondrial fusion activators, teriflunomide and echinacoside, could reduce CHD incidence in diabetic pregnancy. We demonstrated maternal diabetes-activated FoxO3a increases miR-140 and miR-195, which in turn represses Mfn1 and Mfn2, leading to mitochondrial fusion defects and CHDs. Two mitochondrial fusion activators are effective in preventing CHDs in diabetic pregnancy.

3.
Cancer Lett ; 590: 216847, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38583647

ABSTRACT

Tamoxifen (TAM) resistance presents a major clinical obstacle in the management of estrogen-sensitive breast cancer, highlighting the need to understand the underlying mechanisms and potential therapeutic approaches. We showed that dysregulated mitochondrial dynamics were involved in TAM resistance by protecting against mitochondrial apoptosis. The dysregulated mitochondrial dynamics were associated with increased mitochondrial fusion and decreased fission, thus preventing the release of mitochondrial cytochrome c to the cytoplasm following TAM treatment. Dynamin-related GTPase protein mitofusin 1 (MFN1), which promotes fusion, was upregulated in TAM-resistant cells, and high MFN1 expression indicated a poor prognosis in TAM-treated patients. Mitochondrial translocation of MFN1 and interaction between MFN1 and mitofusin 2 (MFN2) were enhanced to promote mitochondrial outer membrane fusion. The interaction of MFN1 and cristae-shaping protein optic atrophy 1 (OPA1) and OPA1 oligomerization were reduced due to augmented OPA1 proteolytic cleavage, and their apoptosis-promoting function was reduced due to cristae remodeling. Furthermore, the interaction of MFN1 and BAK were increased, which restrained BAK activation following TAM treatment. Knockdown or pharmacological inhibition of MFN1 blocked mitochondrial fusion, restored BAK oligomerization and cytochrome c release, and amplified activation of caspase-3/9, thus sensitizing resistant cells to apoptosis and facilitating the therapeutic effects of TAM both in vivo and in vitro. Conversely, overexpression of MFN1 alleviated TAM-induced mitochondrial apoptosis and promoted TAM resistance in sensitive cells. These results revealed that dysregulated mitochondrial dynamics contributes to the development of TAM resistance, suggesting that targeting MFN1-mediated mitochondrial fusion is a promising strategy to circumvent TAM resistance.


Subject(s)
Apoptosis , Breast Neoplasms , Drug Resistance, Neoplasm , GTP Phosphohydrolases , Mitochondrial Dynamics , Tamoxifen , Humans , Tamoxifen/pharmacology , Mitochondrial Dynamics/drug effects , Apoptosis/drug effects , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Drug Resistance, Neoplasm/drug effects , Female , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Animals , Mice , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Antineoplastic Agents, Hormonal/pharmacology , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2 Homologous Antagonist-Killer Protein/genetics , MCF-7 Cells , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Xenograft Model Antitumor Assays
4.
Free Radic Biol Med ; 212: 477-492, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38190924

ABSTRACT

Forkhead box O3a (FOXO3a)-mediated mitochondrial dysfunction plays a pivotal effect on cardiac hypertrophy and heart failure (HF). However, the role and underlying mechanisms of FOXO3a, regulated by breviscapine (BRE), on mitochondrial function in HF therapy remain unclear. This study reveals that BRE-induced nuclear translocation of FOXO3a facilitates mitofusin-1 (MFN-1)-dependent mitochondrial fusion in cardiac hypertrophy and HF. BRE effectively promotes cardiac function and ameliorates cardiac remodeling in pressure overload-induced mice. In addition, BRE mitigates phenylephrine (PE)-induced cardiac hypertrophy in cardiomyocytes and fibrosis remodeling in fibroblasts by inhibiting ROS production and promoting mitochondrial fusion, respectively. Transcriptomics analysis underscores the close association between the FOXO pathway and the protective effect of BRE against HF, with FOXO3a emerging as a potential target of BRE. BRE potentiates the nuclear translocation of FOXO3a by attenuating its phosphorylation, other than its acetylation in cardiac hypertrophy. Mechanistically, over-expression of FOXO3a significantly inhibits cardiac hypertrophy and mitochondrial injury by promoting MFN-1-mediated mitochondrial fusion. Furthermore, BRE demonstrates its ability to substantially curb cardiac hypertrophy, reduce mitochondrial ROS production, and enhance MFN-1-mediated mitochondrial fusion through a FOXO3a-dependent mechanism. In conclusion, nuclear FOXO3a translocation induced by BRE presents a successful therapeutic avenue for addressing cardiac hypertrophy and HF through promoting MFN-1-dependent mitochondrial fusion.


Subject(s)
Flavonoids , Heart Failure , Mitochondrial Dynamics , Mice , Animals , Reactive Oxygen Species/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/genetics , Myocytes, Cardiac/metabolism , Heart Failure/pathology
5.
J Neuroinflammation ; 20(1): 296, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38082266

ABSTRACT

BACKGROUND: Neuroinflammation and mitochondrial dysfunction play crucial roles in retinal ischemia and reperfusion (IR) injury. Recent studies have identified mitochondrial function as a promising target for immunomodulation. Empagliflozin (EMPA), an anti-diabetic drug, has exhibited great potential as both an anti-inflammatory agent and a protector of mitochondrial health. This study aimed to assess the therapeutic efficacy of EMPA in retinal IR injury. METHODS: To evaluate the protective effects of EMPA, the drug was injected into the vitreous body of mice post-retinal IR. Single-cell RNA sequencing (scRNA-seq) analysis was conducted to uncover the underlying mechanisms, and the results were further validated through in vivo and in vitro experiments. RESULTS: EMPA effectively protected retinal ganglion cells (RGCs) from IR injury by attenuating local retinal inflammation. The scRNA-seq analysis revealed that EMPA downregulated the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) signaling pathway and restored mitochondrial dynamics by upregulating the expression of mitochondrial fusion-related genes, Mitofusin 1 (Mfn1) and optic atrophy 1 (Opa1). These findings were further corroborated by Western blotting. In vitro experiments provided additional insights, demonstrating that EMPA suppressed lipopolysaccharide (LPS)-induced cell inflammation and NLRP3 inflammasome activation. Moreover, EMPA enhanced mitochondrial fusion, neutralized mitochondrial reactive oxygen species (mtROS), and restored mitochondrial membrane potential (MMP) in BV2 microglia. Notably, genetic ablation of Mfn1 or Opa1 abolished the anti-inflammatory effects of EMPA. CONCLUSIONS: Our findings highlight the positive contribution of Mfn1 and Opa1 to the anti-inflammatory therapeutic effect of EMPA. By restoring mitochondrial dynamics, EMPA effectively mitigates microglia-mediated neuroinflammation and prevents RGC loss in retinal IR injury.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Reperfusion Injury , Mice , Animals , Neuroinflammatory Diseases , Microglia/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Ischemia , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , GTP Phosphohydrolases
6.
J Peripher Nerv Syst ; 28(3): 329-340, 2023 09.
Article in English | MEDLINE | ID: mdl-37220142

ABSTRACT

BACKGROUND AND AIMS: Mitofusin 1 (MFN1) and MFN2 are outer mitochondrial membrane fusogenic proteins regulating mitochondrial network morphology. MFN2 mutations cause Charcot-Marie-Tooth type 2A (CMT2A), an axonal neuropathy characterized by mitochondrial fusion defects, which in the case of a GTPase domain mutant, were rescued following wild-type MFN1/2 (MFN1/2WT ) overexpression. In this study, we compared the therapeutic efficiency between MFN1WT and MFN2WT overexpression in correcting mitochondrial defects induced by the novel MFN2K357T mutation located in the highly conserved R3 region. METHODS: Constructs expressing either MFN2K357T , MFN2WT , or MFN1WT under the ubiquitous chicken ß-actin hybrid (CBh) promoter were generated. Flag or myc tag was used for their detection. Differentiated SH-SY5Y cells were single transfected with MFN1WT , MFN2WT , or MFN2K357T , as well as double transfected with MFN2K357T /MFN2WT or MFN2K357T /MFN1WT . RESULTS: SH-SY5Y cells transfected with MFN2K357T exhibited severe perinuclear mitochondrial clustering with axon-like processes devoid of mitochondria. Single transfection with MFN1WT resulted in a more interconnected mitochondrial network than transfection with MFN2WT , accompanied by mitochondrial clusters. Double transfection of MFN2K357T with either MFN1WT or MFN2WT resolved the mutant-induced mitochondrial clusters and led to detectable mitochondria throughout the axon-like processes. MFN1WT showed higher efficacy than MFN2WT in rescuing these defects. INTERPRETATION: These results further demonstrate the higher potential of MFN1WT over MFN2WT overexpression to rescue CMT2A-induced mitochondrial network abnormalities due to mutations outside the GTPase domain. This higher phenotypic rescue conferred by MFN1WT , possibly due to its higher mitochondrial fusogenic ability, may be applied to different CMT2A cases regardless of the MFN2 mutation type.


Subject(s)
Charcot-Marie-Tooth Disease , Neuroblastoma , Humans , Mitochondrial Dynamics , Neuroblastoma/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mutation , GTP Phosphohydrolases/genetics , Mitochondrial Proteins/genetics , Charcot-Marie-Tooth Disease/genetics
7.
Microbiol Spectr ; : e0461522, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36939338

ABSTRACT

One of the most potent anti-human cytomegalovirus (HCMV) immune mechanisms possessed by host cells is type I interferon (IFN1), which induces the expression of IFN-stimulated genes (ISGs). During this process, mitochondria play an important role in the IFN1 response, and mitofusin 1 (MFN1) is a key regulator of mitochondrial fusion located on the outer mitochondrial membrane. However, the underlying mechanism of MFN1's promotion of IFN1 during HCMV infection still remains unknown. In this study, HCMV infection promoted IFN1 production and enhanced ISG expression. Meanwhile, it promoted the increase of mitochondrial fusion in THP-1 cells and peripheral blood mononuclear cells (PBMCs), especially the expression of MFN1. Phosphorylation of tank binding kinase 1 (p-TBK1), interferon regulatory factor 3 (p-IRF3), and ISGs was significantly decreased in MFN1 or mitochondrial antiviral signaling protein (MAVS)-knockdown THP-1 cells, and MFN1 was constitutively associated with MAVS, positively regulated mitochondrial fusion, and IFN1 production. Knockdown of MFN1 inhibited the MAVS redistribution without affecting the MAVS expression, whereas the HCMV-induced IFN1 production decreased. Conversely, leflunomide could induce the expression of MFN1, thereby producing IFN1 and stimulating the expression of ISG in leflunomide-treated THP-1 cells. These observations reveal that HCMV infection leads to MFN1-mediated redistribution of MAVS and then induces an antiviral response of IFN1 and that the MFN-agonist leflunomide promotes IFN1 responses and may serve as a potential anti-HCMV therapy. IMPORTANCE Human cytomegalovirus (HCMV) infection is ubiquitous and is often asymptomatic in healthy individuals, but it can cause great damage to newborns, AIDS patients, and other immune deficiency patients. In this study, we found that HCMV infection caused mitochondrial fusion, and expression of mitofusin 1 (MFN1), which is a protein associated with mitochondrial antiviral signaling protein (MAVS), positively regulates mitochondrial fusion and HCMV-induced IFN1 response. Knockdown of MFN1 or MAVS can inhibit the HCMV-induced IFN1 production. What is more, confocal laser-scanning microscope showed that knockdown of MFN1 inhibits the HCMV-induced redistribution of MAVS. Conversely, MFN1 agonist leflunomide could induce IFN1 production. In conclusion, we provide new insight into the relationship between MFN1 and IFN1 during HCMV infection and show that MFN1 may serve as a potential strategy against HCMV infection.

8.
Zygote ; 30(5): 735-737, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35730364

ABSTRACT

Telomere shortening during oocyte growth and development is related to reproductive ageing and infertility. The main mechanism involved in the maintenance of telomeres is based on telomerase activity, a specialized enzyme complex, which is capable of adding TTAGGG repeats at the ends of the chromosomes. Mitochondrial dysfunction may cause progressive shortening of telomeres by promoting the generation of reactive oxygen species. Mitofusin-1 is a protein required for mitochondrial fusion. Mice with the mitofusin-1 (Mfn1) deletion in the oocyte are characterized by accelerated follicular depletion and infertility, associated with defective oocyte maturation and follicular development. We hypothesized whether mitochondrial dysfunction in oocytes with targeted deletion of Mfn1 causes telomere shortening. We analyzed telomere length in oocyte and somatic cells in 3-, 6- and 9-month-old Mfn1-/- and wild-type mice. Immunofluorescence in oocyte mice of TRF1 and H2A.X was assessed to evaluate the interplay between the end-protection functions and the response to DNA damage occurring inside the telomeric repeats. Mitochondrial dysfunction due to the deletion of Mfn1 does not seem to affect telomere length in mouse oocytes.


Subject(s)
Infertility , Telomerase , Animals , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mice , Mitochondria/metabolism , Oocytes/physiology , Reactive Oxygen Species/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Telomere Shortening
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-958246

ABSTRACT

Objective:To investigate the regulatory effects of mitofusin 1 (MFN1) on lipopolysaccharide (LPS)-induced Raw264.7 mouse macrophages pyroptosis and to provide reference for further study on the prevention of inflammation and fibrosis caused by macrophage dysfunction.Methods:Raw264.7 mouse macrophages were cultured in vitro and used to construct a model of LPS-induced pyroptosis. CCK-8 staining, PI staining, LDH release assay and Western blot were used to verify the Raw264.7 pyroptosis induced by LPS. MFN1 expression was detected by Western blot. DCFH-DA probe was used to detect the synthesis of total reactive oxygen species (ROS); Mito-SOX was used to detect mitochondrial ROS; JC-1 mitochondrial membrane potential was detected by fluorescence probe to reflect mitochondrial damage. Based on Ubibrowser database, it was predicted that MFN1 could bind to a variety of E3 ubiquitin ligases. Then, immunofluorescence and co-immunoprecipitation (CO-IP) were used to analyze MFN1 ubiquitination. An overexpression plasmid for MFN1 was constructed and transfected into Raw264.7 cells to detect the changes in pyroptosis and mitochondrial function. Results:LPS could induce the pyroptosis of Raw264.7 cells and mitochondrial dysfunction. MFN1 expression was decreased after LPS stimulation. Ubiquitinated MFN1 was detected by CO-IP. Ubiquitination inhibitor MG-132 inhibited LPS-induced expression of pyroptosis-related proteins including NLRP3, Pro-caspase-1, Caspase-1, IL-1β and IL-18 and improved mitochondrial function. MFN1 overexpression relieved the mitochondrial dysfunction and pyroptosis of Raw264.7 cells induced by LPS.Conclusions:The ubiquitination of MFN1 induced by LPS was involved in mitochondrial dysfunction and macrophage pyroptosis, suggesting that MFN1 was a potential target for the treatment of macrophage-induced inflammation and related diseases.

10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(12): 159029, 2021 12.
Article in English | MEDLINE | ID: mdl-34416390

ABSTRACT

Mitochondria are dynamic organelles crucial for cell function and survival implicated in oxidative energy production whose central functions are tightly controlled by lipids. StarD7 is a lipid transport protein involved in the phosphatidylcholine (PC) delivery to mitochondria. Previous studies have shown that StarD7 knockdown induces alterations in mitochondria and endoplasmic reticulum (ER) with a reduction in PC content, however whether StarD7 modulates mitochondrial dynamics remains unexplored. Here, we generated HTR-8/SVneo stable cells expressing the precursor StarD7.I and the mature processed StarD7.II isoforms. We demonstrated that StarD7.I overexpression altered mitochondrial morphology increasing its fragmentation, whereas no changes were observed in StarD7.II-overexpressing cells compared to the control (Ct) stable cells. StarD7.I (D7.I) stable cells were able to transport higher fluorescent PC analog to mitochondria than Ct cells, yield mitochondrial fusions, maintained the membrane potential, and produced lower levels of reactive oxygen species (ROS). Additionally, the expression of Dynamin Related Protein 1 (Drp1) and Mitofusin (Mfn2) proteins were increased, whereas the amount of Mitofusin 1 (Mfn1) decreased. Moreover, transfections with plasmids encoding Drp1-K38A, Drp1-S637D or Drp1-S637A mutants indicated that mitochondrial fragmentation in D7.I cells occurs in a fission-dependent manner via Drp1. In contrast, StarD7 silencing decreased Mfn1 and Mfn2 fusion proteins without modification of Drp1 protein level. These cells increased ROS levels and presented donut-shape mitochondria, indicative of metabolic stress. Altogether our findings provide novel evidence indicating that alterations in StarD7.I expression produce significant changes in mitochondrial morphology and dynamics.


Subject(s)
Carrier Proteins/genetics , Dynamins/genetics , GTP Phosphohydrolases/genetics , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Proteins/genetics , Gene Expression Regulation , Humans , Lipid Metabolism/genetics , Lipids/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Phosphatidylcholines/metabolism , Reactive Oxygen Species/metabolism
11.
Cancers (Basel) ; 13(11)2021 May 24.
Article in English | MEDLINE | ID: mdl-34073868

ABSTRACT

Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer. Due to its rising incidence and limited therapeutic options, HCC has become a leading cause of cancer-related death worldwide, accounting for 85% of all deaths due to primary liver cancers. Standard therapy for advanced-stage HCC is based on anti-angiogenic drugs such as sorafenib and, more recently, lenvatinib and regorafenib as a second line of treatment. The identification of novel therapeutic strategies is urgently required. Mitochondrial dynamics describes a group of processes that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial morphology and distribution, and connectivity mediated by tethering and fusion/fission events. In recent years, mitochondrial dynamic processes have emerged as key processes in the maintenance of liver mitochondrial homeostasis. In addition, some data are accumulating on the role played by mitochondrial dynamics during cancer development, and specifically on how such dynamics act directly on tumor cells or indirectly on cells responsible for tumor aggression and defense. Here, we review the data that suggest mitochondrial dynamics to be involved in the development of liver tumors.

12.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118854, 2021 01.
Article in English | MEDLINE | ID: mdl-32926942

ABSTRACT

Mitochondria are highly dynamic organelles. Alterations in mitochondrial dynamics are causal or are linked to numerous neurodegenerative, neuromuscular, and metabolic diseases. It is generally thought that cells with altered mitochondrial structure are prone to mitochondrial dysfunction, increased reactive oxygen species generation and widespread oxidative damage. The objective of the current study was to investigate the relationship between mitochondrial dynamics and the master cellular antioxidant, glutathione (GSH). We reveal that mouse embryonic fibroblasts (MEFs) lacking the mitochondrial fusion machinery display elevated levels of GSH, which limits oxidative damage. Moreover, targeted metabolomics and 13C isotopic labeling experiments demonstrate that cells lacking the inner membrane fusion GTPase OPA1 undergo widespread metabolic remodeling altering the balance of citric acid cycle intermediates and ultimately favoring GSH synthesis. Interestingly, the GSH precursor and antioxidant n-acetylcysteine did not increase GSH levels in OPA1 KO cells, suggesting that cysteine is not limiting for GSH production in this context. Post-mitotic neurons were unable to increase GSH production in the absence of OPA1. Finally, the ability to use glycolysis for ATP production was a requirement for GSH accumulation following OPA1 deletion. Thus, our results demonstrate a novel role for mitochondrial fusion in the regulation of GSH synthesis, and suggest that cysteine availability is not limiting for GSH synthesis in conditions of mitochondrial fragmentation. These findings provide a possible explanation for the heightened sensitivity of certain cell types to alterations in mitochondrial dynamics.


Subject(s)
Antioxidants/metabolism , Glutathione/genetics , Mitochondria/genetics , Mitochondrial Dynamics/genetics , Adenosine Triphosphate/metabolism , Animals , Apoptosis/genetics , GTP Phosphohydrolases/genetics , Glutathione/biosynthesis , Glycolysis/genetics , Humans , Membrane Fusion/genetics , Mice , Mitochondria/metabolism , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism
13.
Biomolecules ; 10(7)2020 07 21.
Article in English | MEDLINE | ID: mdl-32708307

ABSTRACT

Mitochondria are double-membrane organelles that continuously undergo fission and fusion. Outer mitochondrial membrane fusion is mediated by the membrane proteins mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), carrying a GTP hydrolyzing domain (GTPase) and two coiled-coil repeats. The detailed mechanism on how the GTP hydrolysis allows Mfns to approach adjacent membranes into proximity and promote their fusion is currently under debate. Using model membranes built up as giant unilamellar vesicles (GUVs), we show here that Mfn1 promotes membrane adhesion of apposing lipid vesicles. The adhesion forces were sustained by the GDP-bound state of Mfn1 after GTP hydrolysis. In contrast, the incubation with the GDP:AlF 4 - , which mimics the GTP transition state, did not induce membrane adhesion. Due to the flexible nature of lipid membranes, the adhesion strength depended on the surface concentration of Mfn1 through a cooperative binding mechanism. We discuss a possible scenario for the outer mitochondrial membrane fusion based on the modulated action of Mfn1.


Subject(s)
GTP Phosphohydrolases/metabolism , Guanosine Diphosphate/metabolism , Membrane Fusion , Mitochondrial Membrane Transport Proteins/metabolism , Unilamellar Liposomes/metabolism , Humans , Hydrolysis , Mitochondria/metabolism , Protein Binding
14.
Anim Sci J ; 91(1): e13430, 2020.
Article in English | MEDLINE | ID: mdl-32677174

ABSTRACT

Mitochondria are necessary for the transition from oocyte to embryo and for early embryonic development. Mitofusin 1 is the main mediator of mitochondrial fusion and homeostasis. We investigated Mitofusin 1 expression levels in porcine somatic cell nuclear transfer (SCNT) embryos. The rate of blastocyst formation in SCNT embryos was reduced significantly compared with that of parthenogenetic activation embryos. SCNT embryos showed significantly decreased Mitofusin 1 expression and mitochondrial membrane potential, while exhibiting increased reactive oxygen species and apoptosis. Mitochondrial functional changes were observed in the SCNT embryos and may be correlated with low levels of Mitofusin 1 to negatively affect development.


Subject(s)
Apoptosis/genetics , Blastocyst , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression/genetics , Genetic Association Studies/veterinary , Membrane Potential, Mitochondrial/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Parthenogenesis/genetics , Swine/genetics , Swine/physiology , Animals , Cells, Cultured , Embryo Culture Techniques/veterinary , Fertilization in Vitro/veterinary , Nuclear Transfer Techniques/veterinary , Reactive Oxygen Species/metabolism
15.
Onco Targets Ther ; 13: 3511-3523, 2020.
Article in English | MEDLINE | ID: mdl-32425551

ABSTRACT

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) has been considered a latent mediator of diverse biological processes in cancer. However, the mechanisms involved in high glucose-associated EMT in lung adenocarcinoma (LAD) have not been fully clarified. In this study, we aimed to investigate whether mitofusin1 (MFN1) is involved in the EMT of LAD cells induced by glucose and to identify the molecular mechanism involved in this process. MATERIALS AND METHODS: The expression of specific proteins was analysed by Western blotting, immunohistochemistry, co-immunoprecipitation and immunofluorescence analysis. The proliferation, migration and invasion of cells were assessed by Cell Counting Kit-8, bromodeoxyuridine incorporation, wound-healing and transwell assays. Lung tissues of adjacent normal regions and lung tissues from patients with LAD and LAD combined with diabetes mellitus were collected to determine the expression and significance of MFN1. RESULTS: Here, we showed that the expression of MFN1 was increased in LAD tissues compared with adjacent normal tissues and expression was even higher in lung tissues from patients with LAD combined with diabetes. In the lung cancer cell line A549, increased cell proliferation, invasion and EMT induced by high glucose were inhibited by MFN1 silencing. Mechanistic studies demonstrated that inhibiting autophagy reversed the abnormal EMT triggered by high glucose conditions. In addition, our data provide novel evidence demonstrating that PTEN-induced kinase (Pink) is a potential regulator involved in MFN1-mediated cell autophagy, which eventually leads to high glucose-induced proliferation, invasion and EMT of A549 cells. CONCLUSION: Taken together, our data show that MFN1 interacts with Pink to induce the autophagic process and that the abnormal occurrence of autophagy ultimately contributes to glucose-induced pathological EMT in LAD.

16.
Mol Pharm ; 16(12): 4787-4796, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31609634

ABSTRACT

Mitochondria form a dynamic network of constantly dividing and fusing organelles. The balance between these antagonistic processes is crucial for normal cellular function and requires the action of specialized proteins. The mitochondrial membrane proteins mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) are responsible for the fusion of the outer membrane of adjacent mitochondria. Mutations within Mfn1 or Mfn2 impair mitochondrial fusion and lead to some severe mitochondrial dysfunctions and mitochondrial diseases (MDs). A characteristic phenotype of cells carrying defective Mfn1 or Mfn2 is the presence of a highly fragmented mitochondrial network. Here, we use a biocompatible mixture of lipids, consisting on synthetic gemini cationic lipids (GCLs) and the zwitterionic phospholipid (DOPE), to complex, transport, and deliver intact copies of MFN1 gene into MFN1-Knockout mouse embryonic fibroblasts (MFN1-KO MEFs). We demonstrate that the GCL/DOPE-DNA lipoplexes are able to introduce the intact MFN1 gene into the cells and ectopically produce functional Mfn1. A four-fold increase of the Mfn1 levels is necessary to revert the MFN1-KO phenotype and to partially restore a mitochondrial network. This phenotype complementation was correlated with the transfection of GCL/DOPE-MFN1 lipoplexes that exhibited a high proportion of highly packaged hexagonal phase. GCL/DOPE-DNA lipoplexes are formulated as efficient therapeutic agents against MDs.


Subject(s)
Fibroblasts/metabolism , GTP Phosphohydrolases/metabolism , Lipids/chemistry , Mitochondria/metabolism , Animals , Cell Survival/genetics , Cell Survival/physiology , GTP Phosphohydrolases/genetics , Genetic Therapy/methods , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation/genetics
17.
Clin Sci (Lond) ; 133(14): 1537-1548, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31285364

ABSTRACT

Background: Soluble ST2 (interleukin 1 receptor-like 1) (sST2) is involved in inflammatory diseases and increased in heart failure (HF). We herein investigated sST2 effects on oxidative stress and inflammation in human cardiac fibroblasts and its pathological role in human aortic stenosis (AS).Methods and results: Using proteomics and immunodetection approaches, we have identified that sST2 down-regulated mitofusin-1 (MFN-1), a protein involved in mitochondrial fusion, in human cardiac fibroblasts. In parallel, sST2 increased nitrotyrosine, protein oxidation and peroxide production. Moreover, sST2 enhanced the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1ß and monocyte chemoattractant protein-1 (CCL-2). Pharmacological inhibition of transcriptional factor nuclear factor κB (NFκB) restored MFN-1 levels and improved oxidative status and inflammation in cardiac fibroblasts. Mito-Tempo, a mitochondria-specific superoxide scavenger, as well as Resveratrol, a general antioxidant, attenuated oxidative stress and inflammation induced by sST2. In myocardial biopsies from 26 AS patients, sST2 up-regulation paralleled a decrease in MFN-1. Cardiac sST2 inversely correlated with MFN-1 levels and positively associated with IL-6 and CCL-2 in myocardial biopsies from AS patients.Conclusions: sST2 affected mitochondrial fusion in human cardiac fibroblasts, increasing oxidative stress production and inflammatory markers secretion. The blockade of NFκB or mitochondrial reactive oxygen species restored MFN-1 expression, improving oxidative stress status and reducing inflammatory markers secretion. In human AS, cardiac sST2 levels associated with oxidative stress and inflammation. The present study reveals a new pathogenic pathway by which sST2 promotes oxidative stress and inflammation contributing to cardiac damage.


Subject(s)
Aortic Valve Stenosis/immunology , Fibroblasts/immunology , Interleukin-1 Receptor-Like 1 Protein/genetics , Oxidative Stress , Aged , Aged, 80 and over , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/pathology , Biomarkers , Cells, Cultured , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/immunology , Humans , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Male , Middle Aged , Mitochondrial Dynamics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/immunology , Myocardium/immunology , Myocardium/pathology
18.
Cell Mol Life Sci ; 76(10): 1967-1985, 2019 May.
Article in English | MEDLINE | ID: mdl-30840087

ABSTRACT

Mitochondria are essential components of eukaryotic cells, carrying out critical physiological processes that include energy production and calcium buffering. Consequently, mitochondrial dysfunction is associated with a range of human diseases. Fundamental to their function is the ability to transition through fission and fusion states, which is regulated by several GTPases. Here, we have developed new methods for the non-subjective quantification of mitochondrial morphology in muscle and neuronal cells of Caenorhabditis elegans. Using these techniques, we uncover surprising tissue-specific differences in mitochondrial morphology when fusion or fission proteins are absent. From ultrastructural analysis, we reveal a novel role for the fusion protein FZO-1/mitofusin 2 in regulating the structure of the inner mitochondrial membrane. Moreover, we have determined the influence of the individual mitochondrial fission (DRP-1/DRP1) and fusion (FZO-1/mitofusin 1,2; EAT-3/OPA1) proteins on animal behaviour and lifespan. We show that loss of these mitochondrial fusion or fission regulators induced age-dependent and progressive deficits in animal movement, as well as in muscle and neuronal function. Our results reveal that disruption of fusion induces more profound defects than lack of fission on animal behaviour and tissue function, and imply that while fusion is required throughout life, fission is more important later in life likely to combat ageing-associated stressors. Furthermore, our data demonstrate that mitochondrial function is not strictly dependent on morphology, with no correlation found between morphological changes and behavioural defects. Surprisingly, we find that disruption of either mitochondrial fission or fusion significantly reduces median lifespan, but maximal lifespan is unchanged, demonstrating that mitochondrial dynamics play an important role in limiting variance in longevity across isogenic populations. Overall, our study provides important new insights into the central role of mitochondrial dynamics in maintaining organismal health.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Longevity/genetics , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , Mutation , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Dynamins/genetics , Dynamins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Kaplan-Meier Estimate , Microscopy, Electron, Transmission , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondria, Muscle/genetics , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/ultrastructure , Mitochondrial Proteins/metabolism , Neurons/metabolism , Neurons/ultrastructure
19.
Transl Res ; 202: 83-98, 2018 12.
Article in English | MEDLINE | ID: mdl-30144425

ABSTRACT

Diabetes-related vascular complication rates remain unacceptably high despite guideline-based medical therapies that are significantly more effective in individuals without diabetes. This critical gap represents an opportunity for researchers and clinicians to collaborate on targeting mechanisms and pathways that specifically contribute to vascular pathology in patients with diabetes mellitus. Dysfunctional mitochondria producing excessive mitochondrial reactive oxygen species (mtROS) play a proximal cell-signaling role in the development of vascular endothelial dysfunction in the setting of diabetes. Targeting the mechanisms of production of mtROS or mtROS themselves represents an attractive method to reduce the prevalence and severity of diabetic vascular disease. This review focuses on the role of mitochondria in the development of diabetic vascular disease and current developments in methods to improve mitochondrial health to improve vascular outcomes in patients with DM.


Subject(s)
Diabetic Angiopathies/metabolism , Mitochondria/metabolism , Animals , Diabetic Angiopathies/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Humans , Mitochondrial Proteins/metabolism , Mitophagy , Reactive Oxygen Species/metabolism
20.
Traffic ; 19(8): 569-577, 2018 08.
Article in English | MEDLINE | ID: mdl-29663589

ABSTRACT

The mitochondrion is a unique organelle that serves as the main site of ATP generation needed for energy in the cell. However, mitochondria also play essential roles in cell death through apoptosis and necrosis, as well as a variety of crucial functions related to stress regulation, autophagy, lipid synthesis and calcium storage. There is a growing appreciation that mitochondrial function is regulated by the dynamics of its membrane fusion and fission; longer, fused mitochondria are optimal for ATP generation, whereas fission of mitochondria facilitates mitophagy and cell division. Despite the significance of mitochondrial homeostasis for such crucial cellular events, the intricate regulation of mitochondrial fusion and fission is only partially understood. Until very recently, only a single mitochondrial fission protein had been identified. Moreover, only now have researchers turned to address the upstream machinery that regulates mitochondrial fusion and fission proteins. Herein, we review the known GTPases involved in mitochondrial fusion and fission, but also highlight recent studies that address the mechanisms by which these GTPases are regulated. In particular, we draw attention to a substantial new body of literature linking endocytic regulatory proteins, such as the retromer VPS35 cargo selection complex subunit, to mitochondrial homeostasis. These recent studies suggest that relationships and cross-regulation between endocytic and mitochondrial pathways may be more widespread than previously assumed.


Subject(s)
Mitochondria/physiology , Mitochondrial Dynamics/physiology , Protein Transport/physiology , Animals , GTP Phosphohydrolases/metabolism , Homeostasis/physiology , Membrane Fusion/physiology , Mitochondrial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...