Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 24(19)2019 Oct 05.
Article in English | MEDLINE | ID: mdl-31590357

ABSTRACT

Biopolymers are currently the most convenient alternative for replacing chemically synthetized polymers in membrane preparation. To date, several biopolymers have been proposed for such purpose, including the ones derived from animal (e.g., polybutylene succinate, polylactic acid, polyhydroxyalcanoates), vegetable sources (e.g., starch, cellulose-based polymers, alginate, polyisoprene), bacterial fermentation products (e.g., collagen, chitin, chitosan) and specific production processes (e.g., sericin). Particularly, these biopolymer-based membranes have been implemented into pervaporation (PV) technology, which assists in the selective separation of azeotropic water-organic, organic-water, organic-organic mixtures, and specific separations of chemical reactions. Thereby, the aim of the present review is to present the current state-of-the-art regarding the different concepts on preparing membranes for PV. Particular attention is paid to the most relevant insights in the field, highlighting the followed strategies by authors for such successful approaches. Finally, by reviewing the ongoing development works, the concluding remarks and future trends are addressed.


Subject(s)
Biological Products/chemistry , Biopolymers/chemistry , Animals , Membranes, Artificial , Molecular Structure , Water
2.
Front Chem ; 7: 897, 2019.
Article in English | MEDLINE | ID: mdl-32039141

ABSTRACT

Several concepts of membranes have emerged, aiming at the enhancement of separation performance, as well as some other physicochemical properties, of the existing membrane materials. One of these concepts is the well-known mixed matrix membranes (MMMs), which combine the features of inorganic (e.g., zeolites, metal-organic frameworks, graphene, and carbon-based materials) and polymeric (e.g., polyimides, polymers of intrinsic microporosity, polysulfone, and cellulose acetate) materials. To date, it is likely that such a concept has been widely explored and developed toward low-permeability polyimides for gas separation, such as oxydianiline (ODA), tetracarboxylic dianhydride-diaminophenylindane (BTDA-DAPI), m-phenylenediamine (m-PDA), and hydroxybenzoic acid (HBA). When dealing with the gas separation performance of polyimide-based MMMs, these membranes tend to display some deficiency according to the poor polyimide-filler compatibility, which has promoted the tuning of chemical properties of those filling materials. This approach has indeed enhanced the polymer-filler interfaces, providing synergic MMMs with superior gas separation performance. Herein, the goal of this review paper is to give a critical overview of the current insights in fabricating MMMs based on chemically modified filling nanomaterials and low-permeability polyimides for selective gas separation. Special interest has been paid to the chemical modification protocols of the fillers (including good filler dispersion) and thus the relevant experimental results provoked by such approaches. Moreover, some principles, as well as the main drawbacks, occurring during the MMM preparation are also given.

SELECTION OF CITATIONS
SEARCH DETAIL