Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162.556
Filter
1.
J Thorac Dis ; 16(6): 3636-3643, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983139

ABSTRACT

Background: As an important supplementary approach to clinical in orthotopic lung transplantation (LTx), lobar LTx currently lacks a stable animal model and in the orthotopic left LTx model, the right lung of the donor mouse is completely removed and discarded. We introduce a novel mouse lobar LTx model that potentially provides a mouse model for clinical lobar LTx and increase the utilization rate of the experimental donor. Methods: Lobar and orthotopic left LTx were performed in syngeneic strain combinations. We performed micro-computed tomography and tested arterial blood gases to assess the graft function 28 days after transplantation. Hematoxylin-eosin and Masson's trichrome staining were used to evaluate pathological changes. Results: We performed ten lobar LTx with an operation success rate of 90%, accompanied by ten orthotopic left LTx from the same donors with an operation success rate of 100%. The graft preparation for lobar LTx was longer than that of the orthotopic left LTx (42.11±3.79 vs. 30.10±3.14 minutes, P<0.001). The recipient procedure for lobar LTx was nearly equivalent to the orthotopic left LTx. The graft function and histopathological changes for lobar LTx were comparable to those of orthotopic left LTx 28 days after transplantation. Conclusions: We describe a lobar LTx model in the mouse, which potentially provides a model for clinical lobar LTx and effectively addresses the issue of resource wastage in the orthotopic left LTx model.

2.
J Thorac Dis ; 16(6): 3967-3989, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983159

ABSTRACT

Background: Esophageal squamous cell carcinoma (ESCC) has a poor early detection rate, prognosis, and survival rate. Effective prognostic markers are urgently needed to assist in the prediction of ESCC treatment outcomes. There is accumulating evidence of a strong relationship between cancer cell growth and amino acid metabolism. This study aims to determine the relationship between amino acid metabolism and ESCC prognosis. Methods: This study comprehensively evaluates the association between amino acid metabolism-related gene (AAMRG) expression profiles and the prognosis of ESCC patients based on data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to verify the expression of prognosis-related genes. Results: A univariate Cox regression analysis of TCGA data identified 18 prognosis-related AAMRGs. The gene expression profiles of 90 ESCC tumor and normal tissues were obtained from the GSE20347 and GSE67269 datasets. Two differently expressed genes (DEGs) were considered as ESCC prognosis-related genes; and they were branched-chain amino acid transaminase 1 (BCAT1) and methylmalonic aciduria and homocystinuria type C protein (MMACHC). These two AAMRGs were used to develop a novel AAMRG-related gene signature to predict 1- and 2-year prognostic risk in ESCC patients. Both BCAT1 and MMACHC expression were verified by RT-qPCR. A prognostic nomogram that incorporated clinical factors and BCAT1 and MMACHC gene expression was constructed, and the calibration plots showed that it had good prognostic performance. Conclusions: The AAMRG signature established in our study is efficient and could be used in clinical settings to predict the early prognosis of ESCC patients.

3.
J Thorac Dis ; 16(6): 3655-3667, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983183

ABSTRACT

Background: A series of complications will inevitably occur after thoracoscopic pulmonary resection. How to avoid or reduce postoperative complications is an important research area in the perioperative treatment of thoracic surgery. This study analyzed the risk factors for thoracoscopic postoperative complications of non-small cell lung cancer (NSCLC) and established a nomogram prediction model in order to provide help for clinical decision-making. Methods: Patients with NSCLC who underwent thoracoscopic surgery from January 2017 to December 2021 were selected as study subjects. The relationship between patient characteristics, surgical factors, and postoperative complications was collected and analyzed. Based on the results of the statistical regression analysis, a nomogram model was constructed, and the predictive performance of the nomogram model was evaluated. Results: A total of 872 patients who met the study criteria were included in the study. A total of 171 patients had complications after thoracoscopic surgery, accounting for 19.6% of the study population. Logistic regression analysis showed that thoracic adhesion, history of respiratory disease, and lymphocyte-monocyte ratio (LMR) were independent risk factors for complications after thoracoscopic surgery (P<0.05). Variables with P<0.1 in logistic regression analysis were included in the nomogram model. The verification results showed that the area under curve (AUC) of the model was 0.734 [95% confidence interval (CI): 0.693-0.775], and the calibration curve showed that the model had good differentiation. The decision curve analysis (DCA) curve showed that this model has good clinical application value. In subgroup analysis of complications, gender, history of respiratory disease, body mass index (BMI), type of surgical procedure, thoracic adhesion, and Time of operation were identified as significant risk factors for prolonged air leak (PAL) after surgery. Tumor location and forced expiratory volume in the first second (FEV1) were identified as important risk factors for postoperative pulmonary infection. N stage and thoracic adhesion were identified as significant risk factors for postoperative pleural effusion. The AUC for PAL was 0.823 (95% CI: 0.768-0.879). The AUC of postoperative pulmonary infection was 0.714 (95% CI: 0.627-0.801). The AUC of postoperative pleural effusion was 0.757 (95% CI: 0.650-0.864). The calibration curve and DCA curve indicated that the model had good predictive performance and clinical application value. Conclusions: This study analyzed the risk factors affecting the postoperative complications of NSCLC through thoracoscopic surgery, and the nomogram model built based on the influencing factors has certain significance for the identification and reduction of postoperative complications.

4.
PeerJ Comput Sci ; 10: e2051, 2024.
Article in English | MEDLINE | ID: mdl-38983205

ABSTRACT

The convergence of smart technologies and predictive modelling in prisons presents an exciting opportunity to revolutionize the monitoring of inmate behaviour, allowing for the early detection of signs of distress and the effective mitigation of suicide risks. While machine learning algorithms have been extensively employed in predicting suicidal behaviour, a critical aspect that has often been overlooked is the interoperability of these models. Most of the work done on model interpretations for suicide predictions often limits itself to feature reduction and highlighting important contributing features only. To address this research gap, we used Anchor explanations for creating human-readable statements based on simple rules, which, to our knowledge, have never been used before for suicide prediction models. We also overcome the limitation of anchor explanations, which create weak rules on high-dimensionality datasets, by first reducing data features with the help of SHapley Additive exPlanations (SHAP). We further reduce data features through anchor interpretations for the final ensemble model of XGBoost and random forest. Our results indicate significant improvement when compared with state-of-the-art models, having an accuracy and precision of 98.6% and 98.9%, respectively. The F1-score for the best suicide ideation model appeared to be 96.7%.

5.
PeerJ Comput Sci ; 10: e2098, 2024.
Article in English | MEDLINE | ID: mdl-38983212

ABSTRACT

This article presents a symbolic approach to model checking quantum circuits using a set of laws from quantum mechanics and basic matrix operations with Dirac notation. We use Maude, a high-level specification/programming language based on rewriting logic, to implement our symbolic approach. As case studies, we use the approach to formally specify several quantum communication protocols in the early work of quantum communication and formally verify their correctness: Superdense Coding, Quantum Teleportation, Quantum Secret Sharing, Entanglement Swapping, Quantum Gate Teleportation, Two Mirror-image Teleportation, and Quantum Network Coding. We demonstrate that our approach/implementation can be a first step toward a general framework to formally specify and verify quantum circuits in Maude. The proposed way to formally specify a quantum circuit makes it possible to describe the quantum circuit in Maude such that the formal specification can be regarded as a series of quantum gate/measurement applications. Once a quantum circuit has been formally specified in the proposed way together with an initial state and a desired property expressed in linear temporal logic (LTL), the proposed model checking technique utilizes a built-in Maude LTL model checker to automatically conduct formal verification that the quantum circuit enjoys the property starting from the initial state.

6.
Front Public Health ; 12: 1359189, 2024.
Article in English | MEDLINE | ID: mdl-38983259

ABSTRACT

Background: There is a need for statistical methodologies that scrutinize civilian casualties in conflicts, evaluating the degree to which the conduct of war affects civilians and breaches the laws of war. Employing an epidemiological method, this study introduced, developed, and applied a novel approach for investigating mortality of civilians versus combatants in conflicts. Methods: A deterministic mathematical model, structured by age and sex, was developed to describe the process of conflict-related deaths among both combatants and civilians. The model was calibrated using demographic and conflict-related data from different Israel-Gaza conflicts. To quantify the extent of the impact on civilians and determine whether they are the primary focus of a conflict, a statistical metric, the index of killing civilians, along with associated criteria, was devised. Results: The model-estimated proportion of deaths in Gaza categorized as combatants was 62.1% (95% uncertainty interval (UI): 57.6-66.2%), 51.1% (95% UI: 47.1-54.9%), and 12.7% (95% UI: 9.7-15.4%) in the 2008-2009, 2014, and 2023 Israel-Gaza conflicts, respectively. The index of killing civilians was 0.61 (95% UI: 0.51-0.74), 0.96 (95% UI: 0.82-1.12), and 7.01 (95% UI: 5.50-9.29) in the 2008-2009, 2014, and 2023 conflicts, respectively. These index values indicate strong evidence for civilians being an object of war in the 2008-2009 and 2014 conflicts, but combatants were still identified as the primary focus of the conflict. In the 2023 conflict, there is robust evidence for civilians being an object of war, with civilians identified as the primary focus of the conflict. Conclusion: Findings imply a progressive shift in Israel's rules of engagement over time, with a trend towards higher acceptance of casualties among civilians. The 2023 conflict stands apart from preceding Israel-Gaza conflicts, with civilians identified as the primary focus of the conflict.


Subject(s)
Mortality , Humans , Israel , Female , Male , Adult , Middle Aged , Adolescent , Middle East , Young Adult , Child , Mortality/trends , Warfare/statistics & numerical data , Child, Preschool , Aged , Infant , Models, Theoretical , Armed Conflicts/statistics & numerical data
7.
World J Gastrointest Surg ; 16(6): 1825-1834, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983318

ABSTRACT

BACKGROUND: Application of indocyanine green (ICG) fluorescence has led to new developments in gastrointestinal surgery. However, little is known about the use of ICG for the diagnosis of postoperative gut leakage (GL). In addition, there is a lack of rapid and intuitive methods to definitively diagnose postoperative GL. AIM: To investigate the effect of ICG in the diagnosis of anastomotic leakage in a surgical rat GL model and evaluate its diagnostic value in colorectal surgery patients. METHODS: Sixteen rats were divided into two groups: GL group (n = 8) and sham group (n = 8). Approximately 0.5 mL of ICG (2.5 mg/mL) was intravenously injected postoperatively. The peritoneal fluid was collected for the fluorescence test at 24 and 48 h. Six patients with rectal cancer who had undergone laparoscopic rectal cancer resection plus enterostomies were injected with 10 mL of ICG (2.5 mg/mL) on postoperative day 1. Their ostomy fluids were collected 24 h after ICG injection to identify the possibility of the ICG excreting from the peripheral veins to the enterostomy stoma. Participants who had undergone colectomy or rectal cancer resection were enrolled in the diagnostic test. The peritoneal fluids from drainage were collected 24 h after ICG injection. The ICG fluorescence test was conducted using OptoMedic endoscopy along with a near-infrared fluorescent imaging system. RESULTS: The peritoneal fluids from the GL group showed ICG-dependent green fluorescence in contrast to the sham group. Six samples of ostomy fluids showed green fluorescence, indicating the possibility of ICG excreting from the peripheral veins to the enterostomy stoma in patients. The peritoneal fluid ICG test exhibited a sensitivity of 100% and a specificity of 83.3% for the diagnosis of GL. The positive predictive value was 71.4%, while the negative predictive value was 100%. The likelihood ratios were 6.0 for a positive test result and 0 for a negative result. CONCLUSION: The postoperative ICG test in a drainage tube is a valuable and simple technique for the diagnosis of GL. Hence, it should be employed in clinical settings in patients with suspected GL.

8.
World J Gastrointest Surg ; 16(6): 1670-1680, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983332

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a common malignant tumor, and liver metastasis is one of the main recurrence and metastasis modes that seriously affect patients' survival rate and quality of life. Indicators such as albumin bilirubin (ALBI) score, liver function index, and carcinoembryonic antigen (CEA) have shown some potential in the prediction of liver metastasis but have not been fully explored. AIM: To evaluate its predictive value for liver metastasis of CRC by conducting the combined analysis of ALBI, liver function index, and CEA, and to provide a more accurate liver metastasis risk assessment tool for clinical treatment guidance. METHODS: This study retrospectively analyzed the clinical data of patients with CRC who received surgical treatment in our hospital from January 2018 to July 2023 and were followed up for 24 months. According to the follow-up results, the enrolled patients were divided into a liver metastasis group and a nonliver metastasis group and randomly divided into a modeling group and a verification group at a ratio of 2:1. The risk factors for liver metastasis in patients with CRC were analyzed, a prediction model was constructed by least absolute shrinkage and selection operator (LASSO) logistic regression, internal validation was performed by the bootstrap method, the reliability of the prediction model was evaluated by subject-work characteristic curves, calibration curves, and clinical decision curves, and a column graph was drawn to show the prediction results. RESULTS: Of 130 patients were enrolled in the modeling group and 65 patients were enrolled in the verification group out of the 195 patients with CRC who fulfilled the inclusion and exclusion criteria. Through LASSO regression variable screening and logistic regression analysis. The ALBI score, alanine aminotransferase (ALT), and CEA were found to be independent predictors of liver metastases in CRC patients [odds ratio (OR) = 8.062, 95% confidence interval (CI): 2.545-25.540], (OR = 1.037, 95%CI: 1.004-1.071) and (OR = 1.025, 95%CI: 1.008-1.043). The area under the receiver operating characteristic curve (AUC) for the combined prediction of CRLM in the modeling group was 0.921, with a sensitivity of 78.0% and a specificity of 95.0%. The H-index was 0.921, and the H-L fit curve had χ2 = 0.851, a P value of 0.654, and a slope of the calibration curve approaching 1. This indicates that the model is extremely accurate, and the clinical decision curve demonstrates that it can be applied effectively in the real world. We conducted internal verification of one thousand resamplings of the modeling group data using the bootstrap method. The AUC was 0.913, while the accuracy was 0.869 and the kappa consistency was 0.709. The combination prediction of liver metastasis in patients with CRC in the verification group had an AUC of 0.918, sensitivity of 85.0%, specificity of 95.6%, C-index of 0.918, and an H-L fitting curve with χ 2 = 0.586, P = 0.746. CONCLUSION: The ALBI score, ALT level, and CEA level have a certain value in predicting liver metastasis in patients with CRC. These three criteria exhibit a high level of efficacy in forecasting liver metastases in patients diagnosed with CRC. The risk prediction model developed in this work shows great potential for practical application.

9.
World J Gastrointest Surg ; 16(6): 1571-1581, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983351

ABSTRACT

BACKGROUND: Synchronous liver metastasis (SLM) is a significant contributor to morbidity in colorectal cancer (CRC). There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC. AIM: To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix (GLCM) features collected from magnetic resonance imaging (MRI). METHODS: Our study retrospectively enrolled 392 patients with CRC from Yichang Central People's Hospital from January 2015 to May 2023. Patients were randomly divided into a training and validation group (3:7). The clinical parameters and GLCM features extracted from MRI were included as candidate variables. The prediction model was constructed using a generalized linear regression model, random forest model (RFM), and artificial neural network model. Receiver operating characteristic curves and decision curves were used to evaluate the prediction model. RESULTS: Among the 392 patients, 48 had SLM (12.24%). We obtained fourteen GLCM imaging data for variable screening of SLM prediction models. Inverse difference, mean sum, sum entropy, sum variance, sum of squares, energy, and difference variance were listed as candidate variables, and the prediction efficiency (area under the curve) of the subsequent RFM in the training set and internal validation set was 0.917 [95% confidence interval (95%CI): 0.866-0.968] and 0.09 (95%CI: 0.858-0.960), respectively. CONCLUSION: A predictive model combining GLCM image features with machine learning can predict SLM in CRC. This model can assist clinicians in making timely and personalized clinical decisions.

10.
JACC CardioOncol ; 6(3): 331-346, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38983377

ABSTRACT

Addressing the need for more equitable cardio-oncology care requires attention to existing disparities in cardio-oncologic disease prevention and outcomes. This is particularly important among those affected by adverse social determinants of health (SDOH). The intricate relationship of SDOH, cancer diagnosis, and outcomes from cardiotoxicities associated with oncologic therapies is influenced by sociopolitical, economic, and cultural factors. Furthermore, mechanisms in cell signaling and epigenetic effects on gene expression link adverse SDOH to cancer and the CVD-related complications of oncologic therapies. To mitigate these disparities, a multifaceted strategy is needed that includes attention to health care access, policy, and community engagement for improved disease screening and management. Interdisciplinary teams must also promote cultural humility and competency and leverage new health technology to foster collaboration in addressing the impact of adverse SDOH in cardio-oncologic outcomes.

12.
World J Clin Cases ; 12(18): 3385-3394, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983398

ABSTRACT

BACKGROUND: Endometrial cancer (EC) is a common gynecological malignancy that typically requires prompt surgical intervention; however, the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes. Previous studies have highlighted the prognostic potential of circulating tumor DNA (ctDNA) monitoring for minimal residual disease in patients with EC. AIM: To develop and validate an optimized ctDNA-based model for predicting short-term postoperative EC recurrence. METHODS: We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model, which was validated on 143 EC patients operated between 2020 and 2021. Prognostic factors were identified using univariate Cox, Lasso, and multivariate Cox regressions. A nomogram was created to predict the 1, 1.5, and 2-year recurrence-free survival (RFS). Model performance was assessed via receiver operating characteristic (ROC), calibration, and decision curve analyses (DCA), leading to a recurrence risk stratification system. RESULTS: Based on the regression analysis and the nomogram created, patients with postoperative ctDNA-negativity, postoperative carcinoembryonic antigen 125 (CA125) levels of < 19 U/mL, and grade G1 tumors had improved RFS after surgery. The nomogram's efficacy for recurrence prediction was confirmed through ROC analysis, calibration curves, and DCA methods, highlighting its high accuracy and clinical utility. Furthermore, using the nomogram, the patients were successfully classified into three risk subgroups. CONCLUSION: The nomogram accurately predicted RFS after EC surgery at 1, 1.5, and 2 years. This model will help clinicians personalize treatments, stratify risks, and enhance clinical outcomes for patients with EC.

14.
Ecol Evol ; 14(7): e11653, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38983705

ABSTRACT

Cirsium japonicum contains a variety of medicinal components with good clinical efficacy. With the rapid changes in global climate, it is increasingly important to study the distribution of species habitats and the factors influencing their adaptability. Utilizing the MaxEnt model, we forecasted the present and future distribution regions of suitable habitats for C. japonicum under various climate scenarios. The outcome showed that under the current climate, the total suitable area of C. japonicum is 2,303,624 km2 and the highly suitable area is 79,117 km2. The distribution of C. japonicum is significantly influenced by key environmental factors such as temperature annual range, precipitation of the driest month, and precipitation of the wettest month. In light of future climate change, the suitable habitat for C. japonicum is anticipated to progressively relocate toward the western and northern regions, leading to an expansion in the total suitable area. These findings offer valuable insights into the conservation, sustainable utilization, and standardized cultivation of wild C. japonicum resources.

15.
Front Cell Dev Biol ; 12: 1399934, 2024.
Article in English | MEDLINE | ID: mdl-38983787

ABSTRACT

Sialadenitis and sialadenitis-induced sialopathy are typically caused by obstruction of the salivary gland ducts. Atrophy of the salivary glands in experimental animals caused by duct ligation exhibits a histopathology similar to that of salivary gland sialadenitis. Therefore, a variety of duct ligation/de-ligation models have been commonly employed to study salivary gland injury and regeneration. Duct ligation is mainly characterised by apoptosis and activation of different signaling pathways in parenchymal cells, which eventually leads to gland atrophy and progressive dysfunction. By contrast, duct de-ligation can initiate the recovery of gland structure and function by regenerating the secretory tissue. This review summarizes the animal duct ligation/de-ligation models that have been used for the examination of pathological fundamentals in salivary disorders, in order to unravel the pathological changes and underlying mechanisms involved in salivary gland injury and regeneration. These experimental models have contributed to developing effective and curative strategies for gland dysfunction and providing plausible solutions for overcoming salivary disorders.

16.
World J Diabetes ; 15(6): 1242-1253, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983822

ABSTRACT

BACKGROUND: The birth of large-for-gestational-age (LGA) infants is associated with many short-term adverse pregnancy outcomes. It has been observed that the proportion of LGA infants born to pregnant women with gestational diabetes mellitus (GDM) is significantly higher than that born to healthy pregnant women. However, traditional methods for the diagnosis of LGA have limitations. Therefore, this study aims to establish a predictive model that can effectively identify women with GDM who are at risk of delivering LGA infants. AIM: To develop and validate a nomogram prediction model of delivering LGA infants among pregnant women with GDM, and provide strategies for the effective prevention and timely intervention of LGA. METHODS: The multivariable prediction model was developed by carrying out the following steps. First, the variables that were associated with LGA risk in pregnant women with GDM were screened by univariate analyses, for which the P value was < 0.10. Subsequently, Least Absolute Shrinkage and Selection Operator regression was fit using ten cross-validations, and the optimal combination factors were selected by choosing lambda 1se as the criterion. The final predictors were determined by multiple backward stepwise logistic regression analysis, in which only the independent variables were associated with LGA risk, with a P value < 0.05. Finally, a risk prediction model was established and subsequently evaluated by using area under the receiver operating characteristic curve, calibration curve and decision curve analyses. RESULTS: After using a multistep screening method, we establish a predictive model. Several risk factors for delivering an LGA infant were identified (P < 0.01), including weight gain during pregnancy, parity, triglyceride-glucose index, free tetraiodothyronine level, abdominal circumference, alanine transaminase-aspartate aminotransferase ratio and weight at 24 gestational weeks. The nomogram's prediction ability was supported by the area under the curve (0.703, 0.709, and 0.699 for the training cohort, validation cohort, and test cohort, respectively). The calibration curves of the three cohorts displayed good agreement. The decision curve showed that the use of the 10%-60% threshold for identifying pregnant women with GDM who are at risk of delivering an LGA infant would result in a positive net benefit. CONCLUSION: Our nomogram incorporated easily accessible risk factors, facilitating individualized prediction of pregnant women with GDM who are likely to deliver an LGA infant.

17.
World J Radiol ; 16(6): 203-210, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38983838

ABSTRACT

BACKGROUND: Development of distant metastasis (DM) is a major concern during treatment of nasopharyngeal carcinoma (NPC). However, studies have demonstrated improved distant control and survival in patients with advanced NPC with the addition of chemotherapy to concomitant chemoradiotherapy. Therefore, precise prediction of metastasis in patients with NPC is crucial. AIM: To develop a predictive model for metastasis in NPC using detailed magnetic resonance imaging (MRI) reports. METHODS: This retrospective study included 792 patients with non-distant metastatic NPC. A total of 469 imaging variables were obtained from detailed MRI reports. Data were stratified and randomly split into training (50%) and testing sets. Gradient boosting tree (GBT) models were built and used to select variables for predicting DM. A full model comprising all variables and a reduced model with the top-five variables were built. Model performance was assessed by area under the curve (AUC). RESULTS: Among the 792 patients, 94 developed DM during follow-up. The number of metastatic cervical nodes (30.9%), tumor invasion in the posterior half of the nasal cavity (9.7%), two sides of the pharyngeal recess (6.2%), tubal torus (3.3%), and single side of the parapharyngeal space (2.7%) were the top-five contributors for predicting DM, based on their relative importance in GBT models. The testing AUC of the full model was 0.75 (95% confidence interval [CI]: 0.69-0.82). The testing AUC of the reduced model was 0.75 (95%CI: 0.68-0.82). For the whole dataset, the full (AUC = 0.76, 95%CI: 0.72-0.82) and reduced models (AUC = 0.76, 95%CI: 0.71-0.81) outperformed the tumor node-staging system (AUC = 0.67, 95%CI: 0.61-0.73). CONCLUSION: The GBT model outperformed the tumor node-staging system in predicting metastasis in NPC. The number of metastatic cervical nodes was identified as the principal contributing variable.

18.
Front Pharmacol ; 15: 1387647, 2024.
Article in English | MEDLINE | ID: mdl-38983908

ABSTRACT

Background: Although prognostic models based on pyroptosis-related genes (PRGs) have been constructed in bladder cancer (BLCA), the comprehensive impact of these genes on tumor microenvironment (TME) and immunotherapeutic response has yet to be investigated. Methods: Based on expression profiles of 52 PRGs, we utilized the unsupervised clustering algorithm to identify PRGs subtypes and ssGSEA to quantify immune cells and hallmark pathways. Moreover, we screened feature genes of distinct PRGs subtypes and validated the associations with immune infiltrations in tissue using the multiplex immunofluorescence. Univariate, LASSO, and multivariate Cox regression analyses were employed to construct the scoring scheme. Results: Four PRGs clusters were identified, samples in cluster C1 were infiltrated with more immune cells than those in others, implying a favorable response to immunotherapy. While the cluster C2, which shows an extremely low level of most immune cells, do not respond to immunotherapy. CXCL9/CXCL10 and SPINK1/DHSR2 were identified as feature genes of cluster C1 and C2, and the specimen with high CXCL9/CXCL10 was characterized by more CD8 + T cells, macrophages and less Tregs. Based on differentially expressed genes (DEGs) among PRGs subtypes, a predictive model (termed as PRGs score) including five genes (CACNA1D, PTK2B, APOL6, CDK6, ANXA2) was built. Survival probability of patients with low-PRGs score was significantly higher than those with high-PRGs score. Moreover, patients with low-PRGs score were more likely to benefit from anti-PD1/PD-L1 regimens. Conclusion: PRGs are closely associated with TME and oncogenic pathways. PRGs score is a promising indicator for predicting clinical outcome and immunotherapy response.

19.
Front Oncol ; 14: 1411436, 2024.
Article in English | MEDLINE | ID: mdl-38983930

ABSTRACT

Background: This study aimed to establish a comprehensive clinical prognostic risk model based on pulmonary function tests. This model was intended to guide the evaluation and predictive management of patients with resectable stage I-III non-small cell lung cancer (NSCLC) receiving neoadjuvant chemoimmunotherapy. Methods: Clinical pathological characteristics and prognostic survival data for 175 patients were collected. Univariate and multivariate Cox regression analyses, and least absolute shrinkage and selection operator (LASSO) regression analysis were employed to identify variables and construct corresponding models. These variables were integrated to develop a ridge regression model. The models' discrimination and calibration were evaluated, and the optimal model was chosen following internal validation. Comparative analyses between the risk scores or groups of the optimal model and clinical factors were conducted to explore the potential clinical application value. Results: Univariate regression analysis identified smoking, complete pathologic response (CPR), and major pathologic response (MPR) as protective factors. Conversely, T staging, D-dimer/white blood cell ratio (DWBCR), D-dimer/fibrinogen ratio (DFR), and D-dimer/minute ventilation volume actual ratio (DMVAR) emerged as risk factors. Evaluation of the models confirmed their capability to accurately predict patient prognosis, exhibiting ideal discrimination and calibration, with the ridge regression model being optimal. Survival analysis demonstrated that the disease-free survival (DFS) in the high-risk group (HRG) was significantly shorter than in the low-risk group (LRG) (P=2.57×10-13). The time-dependent receiver operating characteristic (ROC) curve indicated that the area under the curve (AUC) values at 1 year, 2 years, and 3 years were 0.74, 0.81, and 0.79, respectively. Clinical correlation analysis revealed that men with lung squamous cell carcinoma or comorbid chronic obstructive pulmonary disease (COPD) were predominantly in the LRG, suggesting a better prognosis and potentially identifying a beneficiary population for this treatment combination. Conclusion: The prognostic model developed in this study effectively predicts the prognosis of patients with NSCLC receiving neoadjuvant chemoimmunotherapy. It offers valuable predictive insights for clinicians, aiding in developing treatment plans and monitoring disease progression.

20.
Front Neurosci ; 18: 1384336, 2024.
Article in English | MEDLINE | ID: mdl-38994271

ABSTRACT

Data-driven spiking neuronal network (SNN) models enable in-silico analysis of the nervous system at the cellular and synaptic level. Therefore, they are a key tool for elucidating the information processing principles of the brain. While extensive research has focused on developing data-driven SNN models for mammalian brains, their complexity poses challenges in achieving precision. Network topology often relies on statistical inference, and the functions of specific brain regions and supporting neuronal activities remain unclear. Additionally, these models demand huge computing facilities and their simulation speed is considerably slower than real-time. Here, we propose a lightweight data-driven SNN model that strikes a balance between simplicity and reproducibility. The model is built using a qualitative modeling approach that can reproduce key dynamics of neuronal activity. We target the Drosophila olfactory nervous system, extracting its network topology from connectome data. The model was successfully implemented on a small entry-level field-programmable gate array and simulated the activity of a network in real-time. In addition, the model reproduced olfactory associative learning, the primary function of the olfactory system, and characteristic spiking activities of different neuron types. In sum, this paper propose a method for building data-driven SNN models from biological data. Our approach reproduces the function and neuronal activities of the nervous system and is lightweight, acceleratable with dedicated hardware, making it scalable to large-scale networks. Therefore, our approach is expected to play an important role in elucidating the brain's information processing at the cellular and synaptic level through an analysis-by-construction approach. In addition, it may be applicable to edge artificial intelligence systems in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...