Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Publication year range
1.
Biodegradation ; 35(2): 195-208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37639168

ABSTRACT

The copper industry utilizes significant amounts of sulfuric acid in its processes, generating sulfate as waste. While sulfate-reducing bacteria can remove sulfate, it produces hydrogen sulfide (H2S) as a byproduct. This study examined the capability of a consortium consisting of Sulfobacillus thermosulfidooxidans and Sulfobacillus acidophilus to partially oxidize H2S to S° at a temperature of 45 °C. A fixed-bed bioreactor, with glass rings as support material and sodium thiosulfate as a model electron donor, was inoculated with the consortium. Formation of biofilms was crucial to maintain the bioreactor's steady state, despite high flow rates. Afterward, the electron donor was changed to H2S. When the bioreactor was operated continuously and with high aeration, H2S was fully oxidized to SO42-. However, under conditions of low aeration and at a concentration of 0.26 g/L of H2S, the consortium was able to oxidize H2S to S° with a 13% yield. S° was discovered attached to the glass rings and jarosite. The results indicate that the consortium could oxidize H2S to S° with a 13% yield under low aeration and at a concentration of 0.26 g/L of H2S. The findings highlight the capability of a Sulfobacillus consortium to convert H2S into S°, providing a potential solution for addressing environmental and safety issues associated with sulfate waste generated by the mining industry.


Subject(s)
Hydrogen Sulfide , Sulfates , Bioreactors/microbiology , Sulfur , Bacteria , Oxidation-Reduction
2.
Eng. sanit. ambient ; Eng. sanit. ambient;23(6): 1061-1066, nov.-dez. 2018. tab, graf
Article in Portuguese | LILACS | ID: biblio-975172

ABSTRACT

RESUMO A biolixiviação de minérios de baixo teor e com elevado conteúdo de impurezas tem se mostrado alternativa importante para o aproveitamento destes, uma vez que a recuperação do metal por métodos pirometalúrgicos convencionais mostra-se economicamente inviável. A identificação e quantificação dos micro-organismos capazes de promover a biolixiviação mostram-se estratégicas para alcançar bons rendimentos no controle do processo e na recuperação de metais. Nesse sentido, as técnicas de biologia molecular são as ferramentas mais utilizadas para tal propósito. Este trabalho, utilizando técnicas de reação em cadeia da polimerase (PCR), polimorfismos de comprimento dos fragmentos de restrição (RFLP) e reação em cadeia da polimerase seguida de eletroforese em gel com gradiente desnaturante (PCR-DGGE), mostrou que a diversidade nas colunas de biolixiviação de cobre estudadas é baixa e que a temperatura é importante na manutenção de determinadas espécies, havendo predominância de Acidithiobacillus ferroxidans a 35°C e de Sulfobacillus thermosulfidooxidans a 50°C.


ABSTRACT Bioleaching is an alternative to pyrometallurgy for the production of metals from low-grade ores containing high level of impurities, once that live pyrometallurgical methods are economically unfeasible. The quantification and identification of those microorganisms related to bioleaching is an important strategy for process control and thus metal recovery. In this regard, molecular biology is one of the main techniques utilized for such objective. This study applied PCR, RFLP and PCR-DGGE techniques to show that the microbial diversity in copper bioleaching columns under investigation is low and the temperature is important to define the species found, with predominance of Acidithiobacillus ferroxidans, at 35°C and Sulfobacillus thermosulfidooxidans at 50°C.

SELECTION OF CITATIONS
SEARCH DETAIL