Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 461
Filter
1.
Front Immunol ; 15: 1398002, 2024.
Article in English | MEDLINE | ID: mdl-38947322

ABSTRACT

Background: In the present study we investigated whether peptides derived from the entire SARS-CoV-2 proteome share homology to TAAs (tumor-associated antigens) and cross-reactive CD8+ T cell can be elicited by the BNT162b2 preventive vaccine or the SARS-CoV-2 natural infection. Methods and results: Viral epitopes with high affinity (<100nM) to the HLA-A*02:01 allele were predicted. Shared and variant-specific epitopes were identified. Significant homologies in amino acidic sequence have been found between SARS-CoV-2 peptides and multiple TAAs, mainly associated with breast, liver, melanoma and colon cancers. The molecular mimicry of the viral epitopes and the TAAs was found in all viral proteins, mostly the Orf 1ab and the Spike, which is included in the BNT162b2 vaccine. Predicted structural similarities confirmed the sequence homology and comparable patterns of contact with both HLA and TCR α and ß chains were observed. CD8+ T cell clones cross-reactive with the paired peptides have been found by MHC class l-dextramer staining. Conclusions: Our results show for the first time that several SARS-COV-2 antigens are highly homologous to TAAs and cross-reactive T cells are identified in infected and BNT162b2 preventive vaccinated individuals. The implication would be that the SARS-Cov-2 pandemic could represent a natural preventive immunization for breast, liver, melanoma and colon cancers. In the coming years, real-world evidences will provide the final proof for such immunological experimental evidence. Moreover, such SARS-CoV-2 epitopes can be used to develop "multi-cancer" off-the-shelf preventive/therapeutic vaccine formulations, with higher antigenicity and immunogenicity than over-expressed tumor self-antigens, for the potential valuable benefit of thousands of cancer patients around the World.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Cross Reactions , Epitopes, T-Lymphocyte , Molecular Mimicry , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Molecular Mimicry/immunology , CD8-Positive T-Lymphocytes/immunology , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , BNT162 Vaccine/immunology , Antigens, Viral/immunology , HLA-A2 Antigen/immunology , Neoplasms/immunology , Neoplasms/prevention & control , Antigens, Neoplasm/immunology , COVID-19 Vaccines/immunology
2.
Autoimmunity ; 57(1): 2378876, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39014962

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune system dysfunction that can lead to serious health issues and mortality. Recent investigations highlight the role of gut microbiota alterations in modulating inflammation and disease severity in SLE. This review specifically summaries the variations in gut microbiota composition across various murine models of lupus. By focusing on these differences, we aim to elucidate the intricate relationship between gut microbiota dysbiosis and the development and progression of SLE in preclinical settings.


Subject(s)
Disease Models, Animal , Dysbiosis , Gastrointestinal Microbiome , Lupus Erythematosus, Systemic , Animals , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/microbiology , Gastrointestinal Microbiome/immunology , Mice , Dysbiosis/immunology , Dysbiosis/microbiology , Humans
3.
Gels ; 10(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38920949

ABSTRACT

Drilling fluid is pivotal for efficient drilling. However, the gelation performance of drilling fluids is influenced by various complex factors, and traditional methods are inefficient and costly. Artificial intelligence and numerical simulation technologies have become transformative tools in various disciplines. This work reviews the application of four artificial intelligence techniques-expert systems, artificial neural networks (ANNs), support vector machines (SVMs), and genetic algorithms-and three numerical simulation techniques-computational fluid dynamics (CFD) simulations, molecular dynamics (MD) simulations, and Monte Carlo simulations-in drilling fluid design and performance optimization. It analyzes the current issues in these studies, pointing out that challenges in applying these two technologies to drilling fluid gelation performance research include difficulties in obtaining field data and overly idealized model assumptions. From the literature review, it can be estimated that 52.0% of the papers are related to ANNs. Leakage issues are the primary concern for practitioners studying drilling fluid gelation performance, accounting for over 17% of research in this area. Based on this, and in conjunction with the technical requirements of drilling fluids and the development needs of drilling intelligence theory, three development directions are proposed: (1) Emphasize feature engineering and data preprocessing to explore the application potential of interpretable artificial intelligence. (2) Establish channels for open access to data or large-scale oil and gas field databases. (3) Conduct in-depth numerical simulation research focusing on the microscopic details of the spatial network structure of drilling fluids, reducing or even eliminating data dependence.

4.
Biology (Basel) ; 13(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927239

ABSTRACT

As reported by the World Health Organization (WHO), about 10-20% of people have experienced mid- to long-term effects following SARS-CoV-2 infection, collectively referred to as post-COVID-19 condition or long-COVID, including some neurovegetative symptoms. Numerous findings have suggested that the onset of these neurovegetative symptoms upon viral infection may be caused by the production of autoantibodies through molecular mimicry phenomena. Accordingly, we had previously demonstrated that 22 of the human proteins sharing putatively immunogenic peptides with SARS-CoV-2 proteins are expressed in the dorsal motor nucleus and nucleus ambiguous. Therefore, if molecular mimicry occurs following severe forms of COVID-19, there could be transitory or permanent damage in some vagal structures, resulting in a lower vagal tone and all the related clinical signs. We investigated the presence of autoantibodies against two proteins of vagal nuclei sharing a peptide with SARS-CoV-2 spike glycoprotein using an immunoassay test on blood obtained from patients with cardiorespiratory symptoms in patients affected by ongoing symptomatic COVID-19 (long-COVID), subjects vaccinated without a history of SARS-CoV-2 infection, and subjects not vaccinated without a history of SARS-CoV-2 infection. Interestingly, putative autoantibodies were present in both long-COVID-19 and vaccinated groups, opening interesting questions about pathogenic mechanisms of the disease.

5.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891798

ABSTRACT

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by self-immune tolerance breakdown and the production of autoantibodies, causing the deposition of immune complexes and triggering inflammation and immune-mediated damage. SLE pathogenesis involves genetic predisposition and a combination of environmental factors. Clinical manifestations are variable, making an early diagnosis challenging. Heat shock proteins (Hsps), belonging to the chaperone system, interact with the immune system, acting as pro-inflammatory factors, autoantigens, as well as immune tolerance promoters. Increased levels of some Hsps and the production of autoantibodies against them are correlated with SLE onset and progression. The production of these autoantibodies has been attributed to molecular mimicry, occurring upon viral and bacterial infections, since they are evolutionary highly conserved. Gut microbiota dysbiosis has been associated with the occurrence and severity of SLE. Numerous findings suggest that proteins and metabolites of commensal bacteria can mimic autoantigens, inducing autoimmunity, because of molecular mimicry. Here, we propose that shared epitopes between human Hsps and those of gut commensal bacteria cause the production of anti-Hsp autoantibodies that cross-react with human molecules, contributing to SLE pathogenesis. Thus, the involvement of the chaperone system, gut microbiota dysbiosis, and molecular mimicry in SLE ought to be coordinately studied.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Lupus Erythematosus, Systemic , Molecular Mimicry , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/microbiology , Lupus Erythematosus, Systemic/metabolism , Humans , Molecular Mimicry/immunology , Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Molecular Chaperones/metabolism , Molecular Chaperones/immunology , Heat-Shock Proteins/immunology , Heat-Shock Proteins/metabolism , Autoantibodies/immunology , Animals , Autoantigens/immunology , Autoantigens/metabolism , Autoimmunity
6.
Vaccines (Basel) ; 12(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793790

ABSTRACT

Spike protein sequences in SARS-CoV-2 have been employed for vaccine epitopes, but many short constituent sequences (SCSs) in the spike protein are present in the human proteome, suggesting that some anti-spike antibodies induced by infection or vaccination may be autoantibodies against human proteins. To evaluate this possibility of "molecular mimicry" in silico and in vitro, we exhaustively identified common SCSs (cSCSs) found both in spike and human proteins bioinformatically. The commonality of SCSs between the two systems seemed to be coincidental, and only some cSCSs were likely to be relevant to potential self-epitopes based on three-dimensional information. Among three antibodies raised against cSCS-containing spike peptides, only the antibody against EPLDVL showed high affinity for the spike protein and reacted with an EPLDVL-containing peptide from the human unc-80 homolog protein. Western blot analysis revealed that this antibody also reacted with several human proteins expressed mainly in the small intestine, ovary, and stomach. Taken together, these results showed that most cSCSs are likely incapable of inducing autoantibodies but that at least EPLDVL functions as a self-epitope, suggesting a serious possibility of infection-induced or vaccine-induced autoantibodies in humans. High-risk cSCSs, including EPLDVL, should be excluded from vaccine epitopes to prevent potential autoimmune disorders.

7.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731972

ABSTRACT

Vaccination is a public health cornerstone that protects against numerous infectious diseases. Despite its benefits, immunization implications on ocular health warrant thorough investigation, particularly in the context of vaccine-induced ocular inflammation. This review aimed to elucidate the complex interplay between vaccination and the eye, focusing on the molecular and immunological pathways implicated in vaccine-associated ocular adverse effects. Through an in-depth analysis of recent advancements and the existing literature, we explored various mechanisms of vaccine-induced ocular inflammation, such as direct infection by live attenuated vaccines, immune complex formation, adjuvant-induced autoimmunity, molecular mimicry, hypersensitivity reactions, PEG-induced allergic reactions, Type 1 IFN activation, free extracellular RNA, and specific components. We further examined the specific ocular conditions associated with vaccination, such as uveitis, optic neuritis, and retinitis, and discussed the potential impact of novel vaccines, including those against SARS-CoV-2. This review sheds light on the intricate relationships between vaccination, the immune system, and ocular tissues, offering insights into informed discussions and future research directions aimed at optimizing vaccine safety and ophthalmological care. Our analysis underscores the importance of vigilance and further research to understand and mitigate the ocular side effects of vaccines, thereby ensuring the continued success of vaccination programs, while preserving ocular health.


Subject(s)
Vaccination , Humans , Vaccination/adverse effects , Vaccination/methods , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , Eye/immunology , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Vaccines/adverse effects , Vaccines/immunology , Animals , Eye Diseases/immunology , Eye Diseases/prevention & control
8.
Microbes Infect ; 26(5-6): 105342, 2024.
Article in English | MEDLINE | ID: mdl-38679229

ABSTRACT

A non-pathogenic Mycoplasma pneumoniae-based chassis is leading the development of live biotherapeutic products (LBPs) for respiratory diseases. However, reports connecting Guillain-Barré syndrome (GBS) cases to prior M. pneumoniae infections represent a concern for exploiting such a chassis. Galactolipids, especially galactocerebroside (GalCer), are considered the most likely M. pneumoniae antigens triggering autoimmune responses associated with GBS development. In this work, we generated different strains lacking genes involved in galactolipids biosynthesis. Glycolipid profiling of the strains demonstrated that some mutants show a complete lack of galactolipids. Cross-reactivity assays with sera from GBS patients with prior M. pneumoniae infection showed that certain engineered strains exhibit reduced antibody recognition. However, correlation analyses of these results with the glycolipid profile of the engineered strains suggest that other factors different from GalCer contribute to sera recognition, including total ceramide levels, dihexosylceramide (DHCer), and diglycosyldiacylglycerol (DGDAG). Finally, we discuss the best candidate strains as potential GBS-free Mycoplasma chassis.


Subject(s)
Glycolipids , Guillain-Barre Syndrome , Mycoplasma pneumoniae , Guillain-Barre Syndrome/microbiology , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/immunology , Humans , Glycolipids/metabolism , Galactosylceramides , Cross Reactions , Pneumonia, Mycoplasma/microbiology , Pneumonia, Mycoplasma/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology
9.
Ocul Immunol Inflamm ; : 1-7, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592492

ABSTRACT

PURPOSE: To present an atypical case of severe bilateral ocular toxoplasmosis with systemic involvement that initially mimicked an autoimmune etiology, posing challenges to its diagnosis and treatment. CASE REPORT: A 39-year-old immunocompetent male was admitted to the hospital due to a presumed pulmonary thromboembolism concomitant with an abrupt onset of vision loss. Initial differential diagnoses included antiphospholipid syndrome and systemic lupus erythematosus, prompting the administration of corticosteroid pulses and rituximab. Despite observing a partial systemic response, there was no improvement in visual acuity. Subsequent aqueous humor polymerase chain reaction confirmed Toxoplasma gondii infection, leading to the introduction of oral antibiotic therapy. The patient's condition showed a partially favorable response; however, the treatment could not reverse the permanent retinal damage. CONCLUSION AND IMPORTANCE: This case underscores the importance of ruling out an infectious etiology in all cases of uveitis. Additionally, it alerts clinicians to the possibility that elevated positive autoantibodies may result from a severe inflammatory reaction caused by pathogens rather than an autoimmune or autoinflammatory disease, particularly in instances of poor treatment response or atypical clinical presentation.

10.
J Transl Med ; 22(1): 344, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600547

ABSTRACT

Tumors are mostly characterized by genetic instability, as result of mutations in surveillance mechanisms, such as DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. Defect in one or more of these mechanisms causes additive accumulation of mutations. Some of these mutations are drivers of transformation and are positively selected during the evolution of the cancer, giving a growth advantage on the cancer cells. If such mutations would result in mutated neoantigens, these could be actionable targets for cancer vaccines and/or adoptive cell therapies. However, the results of the present analysis show, for the first time, that the most prevalent mutations identified in human cancers do not express mutated neoantigens. The hypothesis is that this is the result of the selection operated by the immune system in the very early stages of tumor development. At that stage, the tumor cells characterized by mutations giving rise to highly antigenic non-self-mutated neoantigens would be efficiently targeted and eliminated. Consequently, the outgrowing tumor cells cannot be controlled by the immune system, with an ultimate growth advantage to form large tumors embedded in an immunosuppressive tumor microenvironment (TME). The outcome of such a negative selection operated by the immune system is that the development of off-the-shelf vaccines, based on shared mutated neoantigens, does not seem to be at hand. This finding represents the first demonstration of the key role of the immune system on shaping the tumor antigen presentation and the implication in the development of antitumor immunological strategies.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Antigens, Neoplasm/genetics , Cancer Vaccines/genetics , Mutation/genetics , Cell Cycle Checkpoints , Immunotherapy , Tumor Microenvironment
11.
Neurol Res Pract ; 6(1): 21, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600592

ABSTRACT

Guillain-Barré Syndrome (GBS) is an autoimmune neuropathy. Antecedent infections have been seen to be significant triggering factors for developing GBS. Among them, arboviral infections are rapidly gaining importance as significant triggers, especially in the areas where they are endemic. Chikungunya, an arboviral infection that usually causes a self-limiting acute febrile illness can lead to GBS as one its severe complications. Herein, we describe a case of a 21-year-old female who presented with weakness in all four limbs and paresthesia. Nerve conduction study and cerebrospinal fluid (CSF) analysis showed axonal, demyelinating motor and sensory neuropathy with albuminocytological dissociation indicating Acute Motor and Sensory Axonal Neuropathy (AMSAN) variant of GBS. Serum IgM antibodies against ganglioside GM1 were detected. Anti-Chikungunya IgM antibodies were found in both serum and CSF samples. The patient was initiated with Intravenous Immunoglobulin (IVIG) therapy. In view of hypoxia, she was intubated and was on mechanical ventilation. After 2 weeks of being comatose, the patient gradually improved and was discharged with no sequelae.A literature review on antecedent infections in GBS is presented alongside the case report to better understand the association of GBS with antecedent infections, especially the endemic arboviral infections like Chikungunya, Dengue and Zika. This will help in reinforcing the significance of having robust surveillance and public health control measures for infectious diseases.

12.
Rheumatol Int ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578312

ABSTRACT

The genus Borrelia encompasses a diverse group of spirochetes transmitted primarily by ticks, with Borrelia burgdorferi causing Lyme disease, which is prevalent in North America and Europe. Borrelia's structural adaptations and ability to persist in diverse host tissues underscore its pathogenic potential. Beyond traditional infectious responses, Borrelia engages in complex interactions with the host immune system, contributing to autoimmune mechanisms such as molecular mimicry and persistent infections. This intricate interplay manifests in symptoms resembling various autoimmune diseases, including systemic lupus erythematosus, dermatomyositis, local scleroderma, and systemic sclerosis. However, these associations lack a precise explanation, emphasizing the need for further investigation. The cases of misdiagnosis between Lyme borreliosis and autoimmune diseases highlight the critical importance of accurate diagnostics and adherence to guidelines. Understanding Borrelia's impact on immune responses is pivotal for advancing diagnostics and targeted therapeutic interventions in Lyme borreliosis and its potential autoimmune implications.

13.
Rev Alerg Mex ; 71(1): 56, 2024 Feb 01.
Article in Spanish | MEDLINE | ID: mdl-38683074

ABSTRACT

OBJECTIVE: Conduct an in-silico assessment of potential molecular mimicry between human aquaporins, A. fumigatus, and diverse allergenic sources. METHODS: Amino acid sequences of human AQP3 and A. fumigatus aquaporin were compared through multiple alignments with 25 aquaporins from diverse allergenic sources. Phylogenetic analysis and homology-based modeling were executed, and the ElliPro server predicted conserved antigenic regions on 3D structures. RESULTS: Global identity among studied aquaporins was 32.6%, with a specific conserved local region at 71.4%. Five monophyletic clades (A-E) were formed, and Group B displayed the highest identity (95%), including 6 mammalian aquaporins, notably AQP3. A. fumigatus aquaporin exhibited the highest identity with Malassezia sympodialis (35%). Three linear and three discontinuous epitopes were identified in both human and A. fumigatus aquaporins. The Root Mean Square Deviation (RMSD) from overlapping aquaporin structures was 1.006. CONCLUSION: Identification of potential linear and conformational epitopes on human AQP3 suggests likely molecular mimicry with A. fumigatus aquaporins. High identity in a specific antigenic region indicates potential autoreactivity and a probable antigenic site involved in cross-reactivity. Validation through in vitro and in vivo studies is essential for further understanding and confirmation.


OBJETIVO: Realizar una evaluación in silico del posible mimetismo molecular entre las acuaporinas humanas, A. fumigatus y diversas fuentes alergénicas. MÉTODOS: Se compararon secuencias de aminoácidos de AQP3 humana y acuaporina de A. fumigatus mediante alineamientos múltiples con 25 acuaporinas de diversas fuentes alergénicas. Se ejecutaron análisis filogenéticos y modelos basados en homología, y el servidor ElliPro predijo regiones antigénicas preservadas en estructuras 3D. RESULTADOS: La identidad global entre las acuaporinas estudiadas fue del 32.6%, con una región local específica preservada en el 71.4%. Se formaron cinco clados monofiléticos (A-E), y el grupo B mostró la identidad más alta (95%), incluidas 6 acuaporinas de mamíferos, en particular AQP3. A. fumigatus aquaporin exhibió la mayor identidad con Malassezia sympodialis (35%). Se identificaron tres epítopos lineales y tres discontinuos en acuaporinas tanto humanas como de A. fumigatus. La desviación cuadrática media (RMSD) de las estructuras de acuaporinas superpuestas fue de 1,006. CONCLUSIÓN: La identificación de posibles epítopos lineales y conformacionales en AQP3 humano sugiere un probable mimetismo molecular con acuaporinas de A. fumigatus. La identidad alta en una región antigénica específica indica autorreactividad potencial y un sitio antigénico probable implicado en la reactividad cruzada. La validación mediante estudios in vitro e in vivo es desicivo para una mayor comprensión y confirmación.


Subject(s)
Allergens , Aquaporin 3 , Aquaporins , Aspergillus fumigatus , Computer Simulation , Molecular Mimicry , Aspergillus fumigatus/immunology , Humans , Aquaporins/chemistry , Aquaporins/genetics , Aquaporins/metabolism , Aquaporins/immunology , Aquaporin 3/metabolism , Aquaporin 3/genetics , Allergens/immunology , Hypersensitivity/immunology , Fungal Proteins/chemistry , Fungal Proteins/immunology , Fungal Proteins/genetics , Amino Acid Sequence , Phylogeny , Epitopes/immunology
14.
Rev Alerg Mex ; 71(1): 54, 2024 Feb 01.
Article in Spanish | MEDLINE | ID: mdl-38683072

ABSTRACT

OBJECTIVE: Analyze the molecular mimicry between Plasmodium spp. and autoantigens associated with GBS, identifying possible antigenic epitopes. METHODS: PSI-Blast, Praline, Emboss, Protein Data Bank, Swiss Model Server, AlphaFold 2, Ellipro and PyMol 2.3 were used to search for homologies, perform alignments, obtain protein structures, and predict epitopes. RESULTS: 17 autoantigens and seven immunological targets of the peripheral nervous system were included, identifying 72 possible epitopes associated with GBS. From the proteome of Plasmodium spp. (298 proteins), only two showed similarities close to 30% with TRIM21 and BACE1, generating seven possible epitopes. CONCLUSION: No significant homologies were observed between the proteome of GBS and Plasmodium spp. The exploration of other mechanisms such as immune-mediated capillary damage, Epitope Spreading or Bystander Activation is suggested to explain the mentioned association. These findings underscore the need to clarify the etiology of autoimmune diseases and the role of pathogens. The need for experimental studies to validate these results is emphasized.


OBJETIVO: Analizar el mimetismo molecular entre Plasmodium spp. y autoantígenos asociados al SGB, identificando posibles epítopos antigénicos. MÉTODOS: Se emplearon PSI-Blast, Praline, Emboss, Protein Data Bank, Swiss Model Server, AlphaFold 2, Ellipro y PyMol 2.3 para buscar homologías, realizar alineamientos, obtener estructuras proteicas y predecir epítopos. RESULTADOS: Se incluyeron 17 autoantígenos y siete objetivos inmunológicos del sistema nervioso periférico, identificándose 72 posibles epítopos asociados al SGB. Del proteoma de Plasmodium spp. (298 proteínas), solo dos mostraron similitud cercana al 30% con TRIM21 y BACE1, generando siete posibles epítopos. CONCLUSIÓN: No se observaron homologías significativas entre el proteoma de SGB y Plasmodium spp. Se sugiere la exploración de otros mecanismos como el daño capilar inmunomediado, Epitope Spreading o Bystander Activation para explicar la asociación mencionada. Estos hallazgos subrayan la necesidad de aclarar la etiología de las enfermedades autoinmunes y el papel de los patógenos. Se enfatiza la necesidad de estudios experimentales para validar estos resultados.


Subject(s)
Guillain-Barre Syndrome , Molecular Mimicry , Molecular Mimicry/immunology , Guillain-Barre Syndrome/immunology , Humans , Plasmodium/immunology , Autoantigens/immunology , Epitopes/immunology
15.
Arch Microbiol ; 206(5): 214, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616229

ABSTRACT

A complex interaction among virulence factors, host-genes and host immune system is considered to be responsible for dengue virus (DENV) infection and disease progression. Generation of auto-antibodies during DENV infection is a major phenomenon that plays a role in the pathophysiology of dengue hemorrhagic fever and dengue shock syndrome. Hemostasis, thrombocytopenia, hepatic endothelial dysfunction, and autoimmune blistering skin disease (pemphigus) are different clinical manifestations of dengue pathogenesis; produced due to the molecular mimicry of DENV proteins with self-antigens like coagulation factors, platelets and endothelial cell proteins. This review elaborately describes the current advancements in auto-antibody-mediated immunopathogenesis which inhibits coagulation cascade and promotes hyperfibrinolysis. Auto-antibodies like anti-endothelial cell antibodies-mediated hepatic inflammation during severe DENV infection have also been discussed. Overall, this comprehensive review provides insight to target auto-antibodies that may act as potential biomarkers for disease severity, and a ground for the development of therapeutic strategy against DENV.


Subject(s)
Dengue , Humans
16.
Curr Issues Mol Biol ; 46(4): 3502-3532, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38666950

ABSTRACT

Autoimmune diseases (AIDs) emerge due to an irregular immune response towards self- and non-self-antigens. Inflammation commonly accompanies these conditions, with inflammatory factors and inflammasomes playing pivotal roles in their progression. Key concepts in molecular biology, inflammation, and molecular mimicry are crucial to understanding AID development. Exposure to foreign antigens can cause inflammation, potentially leading to AIDs through molecular mimicry triggered by cross-reactive epitopes. Molecular mimicry emerges as a key mechanism by which infectious or chemical agents trigger autoimmunity. In certain susceptible individuals, autoreactive T or B cells may be activated by a foreign antigen due to resemblances between foreign and self-peptides. Chronic inflammation, typically driven by abnormal immune responses, is strongly associated with AID pathogenesis. Inflammasomes, which are vital cytosolic multiprotein complexes assembled in response to infections and stress, are crucial to activating inflammatory processes in macrophages. Chronic inflammation, characterized by prolonged tissue injury and repair cycles, can significantly damage tissues, thereby increasing the risk of AIDs. Inhibiting inflammasomes, particularly in autoinflammatory disorders, has garnered significant interest, with pharmaceutical advancements targeting cytokines and inflammasomes showing promise in AID management.

17.
Rev Alerg Mex ; 71(1): 67, 2024 Feb 01.
Article in Spanish | MEDLINE | ID: mdl-38683084

ABSTRACT

OBJECTIVE: To identify through In Silico analysis the possible molecular mimicry between Der p 23 and antigens from allergenic sources. METHODS: Identity was sought between Der p 23 and proteins from the mite families Pyroglyphidae, Acaridae, Chortoglyphidae and Echimyopodidae, through PSI-BLAST and They used PRALINE and EMBOSS for the alignments. Antigens with resolved experimental structure were obtained from Protein Data Bank and those not reported were generated using Swiss Model server and ALPHAFOLD 2. Epitope prediction was carried out with the Ellipro server and Pymol 2.3 was used to visualize the 3D models. RESULTS: The analysis between Pyroglyphidae allergens and Der p 23 showed identity with the endochitinase-like protein of D. pteronyssinus, and the type 2 chitin binding domain of D. farinae, with identities between 85 and 100%, with coverage of 100%, and 75% respectively. The allergens Der f 23 and Der p 23 of D. farinae and D. pteronyssinus had 100% coverage with identities of 85.42% and 79.59%, respectively. Among the allergens of Tyrophagus putrescentiae, binding to chitin, oviduct-specific glycoprotein and Cda4p were included, which had identity values corresponding to 40%, 42.22% and 34.78%, with coverage values that did not exceed the 55%. No results were found for Chortoglyphidae and Echimyopodidae. CONCLUSION: There is molecular mimicry and structural homology between Der P 23 and allergens from allergic sources of the Pyroglyphidae and Acaridae families. Potential epitopes were identified in Der p 23, which could present cross-reactivity with the proteins of the allergenic sources studied, which must be demonstrated in In vitro and In vivo studies. In vitro and in vivo work is needed to demonstrate the results obtained in the In Silico analysis.


OBJETIVO: Identificar, a través de análisis In Silico, el posible mimetismo molecular entre Der p 23 y antígenos de fuentes alergénicas. MÉTODOS: Se buscó identidad entre Der p 23 y proteínas de las familias de ácaros Pyroglyphidae, Acaridae, Chortoglyphidae y Echimyopodidae, a través de PSI-BLAST, y se utilizaron PRALINE y EMBOSS para los alineamientos. Los antígenos con estructura experimental resuelta se obtuvieron de Protein Data Bank, y aquellos no informados, se generaron mediante Swiss Model Server y ALPHAFOLD 2. La predicción de epítopes se realizó con el servidor Ellipro y para la visualización de los modelos en 3D, se utilizó Pymol 2.3. RESULTADOS: El análisis entre alérgenos de Pyroglyphidae y Der p 23, mostró identidad con la proteína parecida a endoquitinasa de D. pteronyssinus, y el dominio de unión a quitina tipo 2 de D. farinae, con identidades entre 85 y 100%, con coberturas de 100% y 75%, respectivamente. Los alérgenos Der f 23 y Der p 23 de D. farinae y D. pteronyssinu,s tuvieron una cobertura del 100% con identidades del 85,42% y 79,59%, respectivamente. Entre los alérgenos de Tyrophagus putrescentiae, se incluyeron la unión a quitina, glicoproteína específica del oviducto y Cda4p, las cuales tuvieron valores de identidad correspondientes al 40%, 42,22% y 34,78%, con valores de cobertura que no superan el 55%. No se encontraron resultados para Chortoglyphidae y Echimyopodidae. CONCLUSIÓN: Existe mimetismo molecular y homología estructural entre Der P 23 y alérgenos de fuentes alérgicas de las familias Pyroglyphidae y Acaridae. Se identificaron potenciales epítopes en Der p 23, los cuales podrían presentar reactividad cruzada con las proteínas de las fuentes alergénicas estudiadas, lo cual debe ser demostrado en estudios In Vitro e In Vivo. Se necesitan trabajos In Vitro e In Vivo que demuestren los resultados obtenidos en el análisis In Silico.


Subject(s)
Allergens , Antigens, Dermatophagoides , Molecular Mimicry , Animals , Allergens/immunology , Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Computer Simulation , Molecular Mimicry/immunology
19.
Rev Alerg Mex ; 71(1): 57, 2024 Feb 01.
Article in Spanish | MEDLINE | ID: mdl-38683075

ABSTRACT

OBJECTIVE: Identify molecular mimicry between TPO, eosinophil peroxidase (EPX), thyroglobulin and IL24 and microorganism antigens. METHODS: Through in silico analysis, we performed local alignments between human and microorganism antigens with PSI-BLAST. Proteins that did not present a 3D structure were modeled by homology through the Swiss Modeller server and epitope prediction was performed through Ellipro. Epitopes were located in the 3D models using PYMOL software. RESULTS: A total of 38 microorganism antigens (parasites, bacteria) had identities between 30% and 45%, being the highest with Anisakis simplex. The alignment between 2 candidate proteins from A. simplex and EPX presented significant values, with identities of 43 and 44%. In bacteria, Campylobacter jejuni presented the highest identity with thyroglobulin (35%). 220 linear and conformational epitopes of microorganism antigens were predicted. Peroxidasin-like proteins from Toxocara canis and Trichinella pseudospiralis presented 10 epitopes similar to TPO and EPX, as possible molecules triggering cross-reactivity. No virus presented identity with the human proteins studied. CONCLUSION: TPO and EPX antigens shared potential cross-reactive epitopes with bacterial and nematode proteins, suggesting that molecular mimicry could be a mechanism that explains the relationship between infections and urticaria/hypothyroidism. In vitro work is needed to demonstrate the results obtained in the in silico analysis.


OBJETIVO: Identificar mimetismo molecular entre TPO, eosinofil peroxidasa (EPX), tiroglobulina e IL24 y antígenos de microorganismos. MÉTODOS: A través de análisis in silico, realizamos los alineamientos locales entre los antígenos humanos y de microorganismos con PSI-BLAST. Las proteínas que no presentaban estructura 3D, fueron modeladas por homología a través del servidor Swiss Modeller y se realizó una predicción de epítopes a través de Ellipro. Los epítopes se localizaron en los modelos 3D utilizando el software PYMOL. RESULTADOS: Un total de 38 antígenos de microorganismos (parásitos y bacterias), tuvieron identidades entre 30 y 45%, siendo los más altos con Anisakis simplex. El alineamiento entre dos proteínas candidatas de A. simplex y EPX presentaron valores importantes, con identidades de 43 y 44%. En las bacterias, Campylobacter jejuni presentó la mayor identidad con tiroglobulina (35%). Se predijeron 220 epítopes lineales y conformacionales de antígenos de microorganismos. Las proteínas similares a la peroxidasina de Toxocara canis y Trichinella pseudospiralis presentaron diez epítopes similares a TPO y EPX, como posibles moléculas desencadenantes de una reactividad cruzada. Ningún virus presentó identidad con las proteínas humanas estudiadas. CONCLUSIÓN: Los antígenos TPO y EPX compartieron potenciales epítopes de reacción cruzada con proteínas bacterianas y nematodos, lo que sugiere que el mimetismo molecular podría ser un mecanismo que explique la relación entre infecciones y la urticaria/hipotiroidismo. Se necesitan trabajos in vitro que demuestren los resultados obtenidos en el análisis in silico.


Subject(s)
Autoantigens , Iodide Peroxidase , Molecular Mimicry , Thyroglobulin , Molecular Mimicry/immunology , Humans , Thyroglobulin/immunology , Iodide Peroxidase/immunology , Eosinophil Peroxidase/immunology , Animals , Antigens, Bacterial/immunology , Cross Reactions , Iron-Binding Proteins/immunology , Epitopes/immunology
20.
Mol Cell Proteomics ; 23(5): 100747, 2024 May.
Article in English | MEDLINE | ID: mdl-38490531

ABSTRACT

Although immune tolerance evolved to reduce reactivity with self, it creates a gap in the adaptive immune response against microbes that decorate themselves in self-like antigens. This is particularly apparent with carbohydrate-based blood group antigens, wherein microbes can envelope themselves in blood group structures similar to human cells. In this study, we demonstrate that the innate immune lectin, galectin-4 (Gal-4), exhibits strain-specific binding and killing behavior towards microbes that display blood group-like antigens. Examination of binding preferences using a combination of microarrays populated with ABO(H) glycans and a variety of microbial strains, including those that express blood group-like antigens, demonstrated that Gal-4 binds mammalian and microbial antigens that have features of blood group and mammalian-like structures. Although Gal-4 was thought to exist as a monomer that achieves functional bivalency through its two linked carbohydrate recognition domains, our data demonstrate that Gal-4 forms dimers and that differences in the intrinsic ability of each domain to dimerize likely influences binding affinity. While each Gal-4 domain exhibited blood group-binding activity, the C-terminal domain (Gal-4C) exhibited dimeric properties, while the N-terminal domain (Gal-4N) failed to similarly display dimeric activity. Gal-4C not only exhibited the ability to dimerize but also possessed higher affinity toward ABO(H) blood group antigens and microbes expressing glycans with blood group-like features. Furthermore, when compared to Gal-4N, Gal-4C exhibited more potent antimicrobial activity. Even in the context of the full-length protein, where Gal-4N is functionally bivalent by virtue of Gal-4C dimerization, Gal-4C continued to display higher antimicrobial activity. These results demonstrate that Gal-4 exists as a dimer and exhibits its antimicrobial activity primarily through its C-terminal domain. In doing so, these data provide important insight into key features of Gal-4 responsible for its innate immune activity against molecular mimicry.


Subject(s)
Galectin 4 , Humans , Galectin 4/metabolism , Protein Domains , Protein Binding , Protein Multimerization , Blood Group Antigens/metabolism , Escherichia coli/metabolism , Anti-Infective Agents/pharmacology , ABO Blood-Group System/metabolism , ABO Blood-Group System/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...