Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.591
Filter
1.
PET Clin ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969567

ABSTRACT

While functional imaging with [18F]Fluoro-deoxy-glucose positron emission tomography (PET)/computed tomography is a well-established imaging modality in most lymphoma entities, novel tracers addressing cell surface receptors, tumor biology, and the microenvironment are being developed. Especially, with the emergence of immuno-PET targeting surface markers of lymphoma cells, a new imaging modality of immunotherapies is evolving, which might especially aid in relapsed and refractory disease stages. This review highlights different new PET tracers in indolent and aggressive lymphoma subtypes and summarizes the current state of immuno-PET imaging in lymphoma.

2.
Mol Imaging ; 23: 15353508241245265, 2024.
Article in English | MEDLINE | ID: mdl-38952398

ABSTRACT

This meeting report summarizes a consultants meeting that was held at International Atomic Energy Agency Headquarters, Vienna, in July 2022 to provide an update on the development of multimodality imaging by combining nuclear medicine imaging agents with other nonradioactive molecular probes and/or biomedical imaging techniques.


Subject(s)
Multimodal Imaging , Nuclear Medicine , Nuclear Medicine/methods , Nuclear Medicine/trends , Multimodal Imaging/methods , Humans
3.
Mol Imaging ; 23: 15353508241261473, 2024.
Article in English | MEDLINE | ID: mdl-38952401

ABSTRACT

Background: Labeled antibodies are excellent imaging agents in oncology to non-invasively visualize cancer-related antigens expression levels. However, tumor tracer uptake (TTU) of specific antibodies in-vivo may be inferior to non-specific IgG in some cases. Objectives: To explore factors affecting labeled antibody visualization by PD-L1 specific and non-specific imaging of nude mouse tumors. Methods: TTU was observed in RKO model on Cerenkov luminescence (CL) and near-infrared fluorescence (NIRF) imaging of radionuclide 131I or NIRF dyes labeled Atezolizumab and IgG. A mixture of NIRF dyes labeled Atezolizumab and 131I-labeled IgG was injected, and TTU was observed in the RKO and HCT8 model by NIRF/CL dual-modality in-situ imaging. TTU were observed by 131I-labeled Atezolizumab and IgG in-vitro distribution. Results: Labeled IgG concentrated more in tumors than Atezolizumab. NIRF/CL imaging in 24 to 168 h showed that TTU gradually decreased over time, which decreased more slowly on CL imaging compared to NIRF imaging. The distribution data in-vitro showed that TTU of 131I-labeled IgG was higher than that of 131I-labeled Atezolizumab at any time point. Conclusion: Non-specific IgG may not be suitable as a control for Atezolizumab in comparing tumor PD-L1 expression in nude mice via labeled antibody optical imaging under certain circumstances.


Subject(s)
B7-H1 Antigen , Mice, Nude , Animals , B7-H1 Antigen/metabolism , Humans , Mice , Cell Line, Tumor , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/pharmacokinetics , Optical Imaging/methods , Iodine Radioisotopes/chemistry , Neoplasms/diagnostic imaging , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Female , Luminescence
4.
Life Sci ; 351: 122847, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880166

ABSTRACT

AIM: To synthesize, characterize, and validate 6FGA, a fluorescent glucose modified with a Cyanine5.5 at carbon-6 position, for probing the function of sodium-dependent glucose transporters, SGLT1 and SGLT2. MAIN METHODS: The synthesis of fluorescent glucose analogue was achieved through "click chemistry" of Cyanine5.5-alkyne and 6-azido-6-deoxy-d-glucose. Cell system studies were conducted to characterize the in vivo transport properties. KEY FINDINGS: Optical analyses revealed that 6FGA displayed similar spectral profiles to Cyanine5.5 in DMSO, allowing for concentration determination, thus supporting its utility in quantitative kinetic studies within biological assays. Uptake studies in cell system SGLT models, LLC-PK1 and HEK293 cells, exhibited concentration and time-dependent behavior, indicating saturation at specific concentrations and durations which are hallmarks of transported-mediated uptake. The results of cytotoxicity assays suggested cell viability at micromolar concentrations, enabling usage in assays for at least 1 h without significant toxicity. The dependence of 6FGA uptake on sodium, the co-transported cation, was demonstrated in LLC-PK1 and HEK293 cells. Fluorescence microscopy confirmed intracellular localization of 6FGA, particularly near the nucleus. Competition studies revealed that glucose tends to weakly reduce 6FGA uptake, although the effect did not achieve statistical significance. Assessments using standard SGLT and GLUT inhibitors highlighted 6FGA's sensitivity for probing SGLT-mediated transport. SIGNIFICANCE: 6FGA is a new fluorescent glucose analog offering advantages over existing probes due to its improved photophysical properties, greater sensitivity, enabling subcellular resolution and efficient tissue penetration in near-infrared imaging. 6FGA presents practicality and cost-effectiveness, making it a promising tool for nonradioactive, microplate-based assays at investigating SGLT-mediated glucose transport mechanisms.


Subject(s)
Fluorescent Dyes , Sodium-Glucose Transporter 1 , Humans , HEK293 Cells , Fluorescent Dyes/metabolism , Animals , Sodium-Glucose Transporter 1/metabolism , Swine , Sodium-Glucose Transporter 2/metabolism , Glucose/metabolism , LLC-PK1 Cells , Biological Transport , Sodium/metabolism , Carbocyanines/chemistry , Carbocyanines/metabolism
5.
Mol Pharm ; 21(7): 3684-3692, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38899595

ABSTRACT

Early detection of pulmonary fibrosis is a critical yet insufficiently met clinical necessity. This study evaluated the effectiveness of FAPI-LM3, a 68Ga-radiolabeled heterobivalent molecular probe that targets fibroblast activating protein (FAP) and somatostatin receptor 2 (SSTR2), in the early detection of pulmonary fibrosis, leveraging its potential for early disease identification. A bleomycin-induced early pulmonary fibrosis model was established in C57BL/6 mice for 7 days. FAP and SSTR2 expression levels were quantitatively assessed in human idiopathic pulmonary fibrosis lung tissue samples and bleomycin-treated mouse lung tissues by using western blotting, real-time quantitative PCR (RT-qPCR), and immunofluorescence techniques. The diagnostic performance of FAPI-LM3 was investigated by synthesizing monomeric radiotracers 68Ga-FAPI-46 and 68Ga-DOTA-LM3 alongside the heterobivalent probe 68Ga-FAPI-LM3. These imaging radiopharmaceuticals were used in small-animal PET to compare their uptake in fibrotic and normal lung tissues. Results indicated significant upregulation of FAP and SSTR2 at both RNA and protein levels in fibrotic lung tissues compared with that in normal controls. PET imaging demonstrated significantly enhanced uptake of the 68Ga-FAPI-LM3 probe in fibrotic lung tissues, with superior visual effects compared to monomeric tracers. At 60 min postinjection, early stage fibrotic tissues (day 7) demonstrated low-to-medium uptake of monomeric probes, including 68Ga-DOTA-LM3 (0.45 ± 0.04% ID/g) and 68Ga-FAPI-46 (0.78 ± 0.09% ID/g), whereas the uptake of the heterobivalent probe 68Ga-FAPI-LM3 (1.90 ± 0.10% ID/g) was significantly higher in fibrotic lesions than in normal lung tissue. Blockade experiments confirmed the specificity of 68Ga-FAPI-LM3 uptake, which was attributed to synergistic targeting of FAP and SSTR2. This study demonstrates the potential of 68Ga-FAPI-LM3 for early pulmonary fibrosis detection via molecular imaging, offering significant benefits over monomeric tracers 68Ga-FAPI-46 and 68Ga-DOTA-LM3. This strategy offers new possibilities for noninvasive and precise early detection of pulmonary fibrosis.


Subject(s)
Gallium Radioisotopes , Mice, Inbred C57BL , Positron-Emission Tomography , Radiopharmaceuticals , Receptors, Somatostatin , Animals , Mice , Receptors, Somatostatin/metabolism , Humans , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/chemically induced , Lung/diagnostic imaging , Lung/pathology , Lung/metabolism , Male , Bleomycin , Endopeptidases/metabolism , Disease Models, Animal , Female , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/metabolism , Membrane Proteins/metabolism , Serine Endopeptidases/metabolism , Quinolines
6.
J Lipid Res ; 65(7): 100573, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844049

ABSTRACT

The full understanding of molecular mechanisms of cell differentiation requires a holistic view. Here we combine label-free FTIR and Raman hyperspectral imaging with data mining to detect the molecular cell composition enabling noninvasive monitoring of cell differentiation and identifying biochemical heterogeneity. Mouse adipose-derived mesenchymal stem cells (AD-MSCs) undergoing adipogenesis were followed by Raman and FT-IR imaging, Oil Red, and immunofluorescence. A workflow of the data analysis (IRRSmetrics4stem) was designed to identify spectral predictors of adipogenesis and test machine-learning (ML) methods (hierarchical clustering, PCA, PLSR) for the control of the AD-MSCs differentiation degree. IRRSmetrics4stem provided insights into the chemism of adipogenesis. With single-cell tracking, we established IRRS metrics for lipids, proteins, and DNA variations during AD-MSCs differentiation. The over 90% predictive efficiency of the selected ML methods proved the high sensitivity of the IRRS metrics. Importantly, the IRRS metrics unequivocally recognize a switch from proliferation to differentiation. This study introduced a new bioassay identifying molecular markers indicating molecular transformations and delivering rapid and machine learning-based monitoring of adipogenesis that can be relevant to other differentiation processes. Thus, we introduce a novel, rapid, machine learning-based bioassay to identify molecular markers of adipogenesis. It can be relevant to identification of differentiation-related molecular processes in other cell types, and beyond the cell differentiation including progression of different cellular pathophysiologies reconstituted in vitro.

7.
Cells ; 13(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38920676

ABSTRACT

Tumour hypoxia is a known microenvironmental culprit for treatment resistance, tumour recurrence and promotion of metastatic spread. Despite the long-known existence of this factor within the tumour milieu, hypoxia is still one of the greatest challenges in cancer management. The transition from invasive and less reliable detection methods to more accurate and non-invasive ways to identify and quantify hypoxia was a long process that eventually led to the promising results showed by functional imaging techniques. Hybrid imaging, such as PET-CT, has the great advantage of combining the structural or anatomical image (offered by CT) with the functional or metabolic one (offered by PET). However, in the context of hypoxia, it is only the PET image taken after appropriate radiotracer administration that would supply hypoxia-specific information. To overcome this limitation, the development of the latest hybrid imaging systems, such as PET-MRI, enables a synergistic approach towards hypoxia imaging, with both methods having the potential to provide functional information on the tumour microenvironment. This study is designed as a systematic review of the literature on the newest developments of PET-MRI for the imaging of hypoxic cells in breast cancer. The analysis includes the affinity of various PET-MRI tracers for hypoxia in this patient group as well as the correlations between PET-specific and MRI-specific parameters, to offer a broader view on the potential for the widespread clinical implementation of this hybrid imaging technique.


Subject(s)
Breast Neoplasms , Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Female , Cell Hypoxia , Tumor Microenvironment , Tumor Hypoxia
8.
Biol Pharm Bull ; 47(6): 1066-1071, 2024.
Article in English | MEDLINE | ID: mdl-38825459

ABSTRACT

Both nuclear and optical imaging are used for in vivo molecular imaging. Nuclear imaging displays superior quantitativity, and it permits imaging in deep tissues. Thus, this method is widely used clinically. Conversely, because of the low permeability of visible to near-IR light in living animals, it is difficult to visualize deep tissues via optical imaging. However, the light at these wavelengths has no ionizing effect, and it can be used without any restrictions in terms of location. Furthermore, optical signals can be controlled in vivo to accomplish target-specific imaging. Nuclear medicine and phototherapy have also evolved to permit targeted-specific imaging. In targeted nuclear therapy, beta emitters are conventionally used, but alpha emitters have received significant attention recently. Concerning phototherapy, photoimmunotherapy with near-IR light was approved in Japan in 2020. In this article, target-specific imaging and molecular targeted therapy utilizing nuclear medicine and optical technologies are discussed.


Subject(s)
Molecular Imaging , Nuclear Medicine , Optical Imaging , Humans , Animals , Optical Imaging/methods , Molecular Imaging/methods , Nuclear Medicine/methods , Phototherapy/methods , Molecular Targeted Therapy/methods , Neoplasms/therapy , Neoplasms/diagnostic imaging
9.
J Nucl Med ; 65(7): 998-1003, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38871386

ABSTRACT

Gynecological pathologies account for approximately 4.5% of the overall global disease burden. Although cancers of the female reproductive system have understandably been the focus of a great deal of research, benign gynecological conditions-such as endometriosis, polycystic ovary syndrome, and uterine fibroids-have remained stubbornly understudied despite their astonishing ubiquity and grave morbidity. This historical inattention has frequently become manifested in flawed diagnostic and treatment paradigms. Molecular imaging could be instrumental in improving patient care on both fronts. In this Focus on Molecular Imaging review, we will examine recent advances in the use of PET, SPECT, MRI, and fluorescence imaging for the diagnosis and management of benign gynecological conditions, with particular emphasis on recent clinical reports, areas of need, and opportunities for growth.


Subject(s)
Molecular Imaging , Humans , Molecular Imaging/methods , Molecular Imaging/trends , Female , Gynecology
10.
Radiol Imaging Cancer ; 6(4): e230178, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38940689

ABSTRACT

In patients with head and neck cancer (HNC), surgical removal of cancerous tissue presents the best overall survival rate. However, failure to obtain negative margins during resection has remained a steady concern over the past 3 decades. The need for improved tumor removal and margin assessment presents an ongoing concern for the field. While near-infrared agents have long been used in imaging, investigation of these agents for use in HNC imaging has dramatically expanded in the past decade. Targeted tracers for use in primary and metastatic lymph node detection are of particular interest, with panitumumab-IRDye800 as a major candidate in current studies. This review aims to provide an overview of intraoperative near-infrared fluorescence-guided surgery techniques used in the clinical detection of malignant tissue and sentinel lymph nodes in HNC, highlighting current applications, limitations, and future directions for use of this technology within the field. Keywords: Molecular Imaging-Cancer, Fluorescence © RSNA, 2024.


Subject(s)
Head and Neck Neoplasms , Lymphatic Metastasis , Surgery, Computer-Assisted , Humans , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/surgery , Lymphatic Metastasis/diagnostic imaging , Surgery, Computer-Assisted/methods , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymph Nodes/surgery , Optical Imaging/methods , Fluorescent Dyes , Spectroscopy, Near-Infrared/methods , Fluorescence
11.
Front Oncol ; 14: 1421476, 2024.
Article in English | MEDLINE | ID: mdl-38887230
12.
J Clin Med ; 13(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892979

ABSTRACT

Background/Objectives: The inhibitory effects of tyrosine kinase inhibitors (TKIs) on glucose uptake through their binding to human glucose transporter-1 (GLUT-1) have been well documented. Thus, our research aimed to explore the potential impact of various TKIs of GLUT-1 on the standard [18F]FDG-PET monitoring of tumor response in patients. Methods: To achieve this, we conducted an analysis on three patients who were undergoing treatment with different TKIs and harbored actionable alterations. Alongside the assessment of FDG data (including SUVmax, total lesion glycolysis (TLG), and metabolic tumor volume (MTV)), we also examined the changes in tumor sizes through follow-up [18F]FDG-PET/CT imaging. Notably, our patients harbored alterations in BRAFV600, RET, and c-KIT and exhibited positive responses to the targeted treatment. Results: Our analysis revealed that FDG data derived from SUVmax, TLG, and MTV offered quantifiable outcomes that were consistent with the measurements of tumor size. Conclusions: These findings lend support to the notion that the inhibition of GLUT-1, as a consequence of treatment efficacy, could be indirectly gauged through [18F] FDG-PET/CT imaging in cancer patients undergoing TKI therapy.

14.
Adv Sci (Weinh) ; : e2400700, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845188

ABSTRACT

Fluorescence molecular imaging plays a vital role in image-guided surgery. In this context, the urokinase plasminogen activator receptor (uPAR) is an interesting biomarker enabling the detection and delineation of various tumor types due to its elevated expression on both tumor cells and the tumor microenvironment. In this study, anti-uPAR Nanobodies (Nbs) are generated through llama immunization with human and murine uPAR protein. Extensive in vitro characterization and in vivo testing with radiolabeled variants are conducted to assess their pharmacokinetics and select lead compounds. Subsequently, the selected Nbs are converted into fluorescent agents, and their application for fluorescence-guided surgery is evaluated in various subcutaneous and orthotopic tumor models. The study yields a panel of high-affinity anti-uPAR Nbs, showing specific binding across multiple types of cancer cells in vitro and in vivo. Lead fluorescently-labeled compounds exhibit high tumor uptake with high contrast at 1 h after intravenous injection across all assessed uPAR-expressing tumor models, outperforming a non-targeting control Nb. Additionally, rapid and accurate tumor localization and demarcation are demonstrated in an orthotopic human glioma model. Utilizing these Nbs can potentially enhance the precision of surgical tumor resection and, consequently, improve survival rates in the clinic.

15.
Can Assoc Radiol J ; : 8465371241255904, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836428

ABSTRACT

Due to the major improvements in the hardware and image reconstruction algorithms, positron emission tomography/magnetic resonance imaging (PET/MR) is now a reliable state-of-the-art hybrid modality in medical practice. Currently, it can provide a broad range of advantages in preclinical and clinical imaging compared to single-modality imaging. In the second part of this review, we discussed the further clinical applications of PET/MR. In the chest, PET/MR has particular potential in the oncology setting, especially when utilizing ultrashort/zero echo time MR sequences. Furthermore, cardiac PET/MR can provide reliable information in evaluating myocardial inflammation, cardiac amyloidosis, myocardial perfusion, myocardial viability, atherosclerotic plaque, and cardiac masses. In gastrointestinal and hepato-pancreato-biliary malignancies, PET/MR is able to precisely detect metastases to the liver, being superior over the other imaging modalities. In genitourinary and gynaecology applications, PET/MR is a comprehensive diagnostic method, especially in prostate, endometrial, and cervical cancers. Its simultaneous acquisition has been shown to outperform other imaging techniques for the detection of pelvic nodal metastases and is also a reliable modality in radiation planning. Lastly, in haematologic malignancies, PET/MR can significantly enhance lymphoma diagnosis, particularly in detecting extra-nodal involvement. It can also comprehensively assess treatment-induced changes. Furthermore, PET/MR may soon become a routine in multiple myeloma management, being a one-stop shop for evaluating bone, bone marrow, and soft tissues.

16.
Front Pharmacol ; 15: 1381406, 2024.
Article in English | MEDLINE | ID: mdl-38904000

ABSTRACT

Introduction: Systemic chemotherapy is typically administered following radical gastrectomy for advanced stage. To attenuate systemic side effects, we evaluated the effectiveness of regional chemotherapy using paclitaxel, albumin-paclitaxel, and liposome-encapsulated albumin-paclitaxel via subserosal injection in rat models employing nuclear medicine and molecular imaging technology. Method: Nine Sprague Dawley rats were divided into three groups: paclitaxel (n = 3), albumin-paclitaxel nano-particles (APNs; n = 3), and liposome-encapsulated APNs (n = 3). [123I]Iodo-paclitaxel ([123I]I-paclitaxel) was synthesized by conventional electrophilic radioiodination using tert-butylstannyl substituted paclitaxel as the precursor. Albumin-[123I]iodo-paclitaxel nanoparticles ([123I]APNs) were prepared using a desolvation technique. Liposome-encapsulated APNs (L-[123I]APNs) were prepared by thin-film hydration using DSPE-PEG2000, HSPC, and cholesterol. The rats in each group were injected with each test drug into the subserosa of the stomach antrum. After predetermined times (30 min, 2, 4, 8 h, and 24 h), molecular images of nuclear medicine were acquired using single-photon emission computed tomography/computed tomography. Results: Paclitaxel, APNs, and L-APNs showed a high cumulative distribution in the stomach, with L-APNs showing the largest area under the curve. Most drugs administered via the gastric subserosal route are distributed in the stomach and intestines, with a low uptake of less than 1% in other major organs. The time to reach the maximum concentration in the intestine for L-APNs, paclitaxel, and APNs was 6.67, 5.33, and 4.00 h, respectively. Conclusion: These preliminary results imply that L-APNs have the potential to serve as a novel paclitaxel preparation method for the regional treatment of gastric cancer.

17.
Biomaterials ; 311: 122669, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38906013

ABSTRACT

Biohybrid tissue-engineered vascular grafts (TEVGs) promise long-term durability due to their ability to adapt to hosts' needs. However, the latter calls for sensitive non-invasive imaging approaches to longitudinally monitor their functionality, integrity, and positioning. Here, we present an imaging approach comprising the labeling of non-degradable and degradable TEVGs' components for their in vitro and in vivo monitoring by hybrid 1H/19F MRI. TEVGs (inner diameter 1.5 mm) consisted of biodegradable poly(lactic-co-glycolic acid) (PLGA) fibers passively incorporating superparamagnetic iron oxide nanoparticles (SPIONs), non-degradable polyvinylidene fluoride scaffolds labeled with highly fluorinated thermoplastic polyurethane (19F-TPU) fibers, a smooth muscle cells containing fibrin blend, and endothelial cells. 1H/19F MRI of TEVGs in bioreactors, and after subcutaneous and infrarenal implantation in rats, revealed that PLGA degradation could be faithfully monitored by the decreasing SPIONs signal. The 19F signal of 19F-TPU remained constant over weeks. PLGA degradation was compensated by cells' collagen and α-smooth-muscle-actin deposition. Interestingly, only TEVGs implanted on the abdominal aorta contained elastin. XTT and histology proved that our imaging markers did not influence extracellular matrix deposition and host immune reaction. This concept of non-invasive longitudinal assessment of cardiovascular implants using 1H/19F MRI might be applicable to various biohybrid tissue-engineered implants, facilitating their clinical translation.

18.
Angew Chem Int Ed Engl ; : e202408064, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853147

ABSTRACT

Tumor-specific activatable long-wavelength (LW) photosensitizers (PSs) show promise in overcoming the limitations of traditional photodynamic therapy (PDT), such as systemic phototoxicity and shallow tissue penetration. However, their insufficient LW light absorption and low singlet oxygen quantum yield (F1O2) usually require high laser power density to produce thermal energy and synergistically enhance PDT. The strong photothermal radiation causing acute pain significantly reduces patient compliance and hinders the broader clinical application of LW PDT. Through the exciton dynamics dissection strategy, we have developed a series of pH-activatable cyanine-based LW PSs (LET-R, R = H, Cl, Br, I), among which the activated LET-I exhibits strong light absorption at 808 nm and a remarkable 3.2-fold enhancement in F1O2 compared to indocyanine green. Transient spectroscopic analysis and theoretical calculations confirmed its significantly promoted intersystem crossing and simultaneously enhanced LW fluorescence emission characteristics. These features enable the activatable fluorescence and photoacoustic dual-modal imaging-escorted complete photodynamic eradication of tumors by the folic acid (FA)-modified LET-I probe (LET-I-FA), under the ultralow 808 nm laser power density (0.2 W cm-2) for irradiation, without the need for photothermal energy synergy. This research presents a novel strategy of dissecting exciton dynamics to screen activatable LW PSs for traceable PDT.

19.
Article in English | MEDLINE | ID: mdl-38853153

ABSTRACT

PURPOSE: Prostate-specific membrane antigen (PSMA) is increasingly used to image prostate cancer in clinical practice. We sought to develop and test a humanised PSMA minibody IAB2M conjugated to the fluorophore IRDye 800CW-NHS ester in men undergoing robot-assisted laparoscopic radical prostatectomy (RARP) to image prostate cancer cells during surgery. METHODS: The minibody was evaluated pre-clinically using PSMA positive/negative xenograft models, following which 23 men undergoing RARP between 2018 and 2020 received between 2.5 mg and 20 mg of IR800-IAB2M intravenously, at intervals between 24 h and 17 days prior to surgery. At every step of the procedure, the prostate, pelvic lymph node chains and extra-prostatic surrounding tissue were imaged with a dual Near-infrared (NIR) and white light optical platform for fluorescence in vivo and ex vivo. Histopathological evaluation of intraoperative and postoperative microscopic fluorescence imaging was undertaken for verification. RESULTS: Twenty-three patients were evaluated to optimise both the dose of the reagent and the interval between injection and surgery and secure the best possible specificity of fluorescence images. Six cases are presented in detail as exemplars. Overall sensitivity and specificity in detecting non-lymph-node extra-prostatic cancer tissue were 100% and 65%, and 64% and 64% respectively for lymph node positivity. There were no side-effects associated with administration of the reagent. CONCLUSION: Intraoperative imaging of prostate cancer tissue is feasible and safe using IR800-IAB2M. Further evaluation is underway to assess the benefit of using the technique in improving completion of surgical excision during RARP. REGISTRATION: ISCRCTN10046036: https://www.isrctn.com/ISRCTN10046036 .

20.
Curr Opin Chem Biol ; 81: 102471, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833913

ABSTRACT

Monoclonal antibodies and antibody fragments have proven to be highly effective vectors for the delivery of radionuclides to target tissues for positron emission tomography (PET) and single-photon emission computed tomography (SPECT). However, the stochastic methods that have traditionally been used to attach radioisotopes to these biomolecules inevitably produce poorly defined and heterogeneous probes and can impair the ability of the immunoglobulins to bind their molecular targets. In response to this challenge, an array of innovative site-specific and site-selective bioconjugation strategies have been developed, and these approaches have repeatedly been shown to yield better-defined and more homogeneous radioimmunoconjugates with superior in vivo performance than their randomly modified progenitors. In this Current Opinion in Chemical Biology review, we will examine recent advances in this field, including the development - and, in some cases, clinical translation - of nuclear imaging agents radiolabeled using strategies that target the heavy chain glycans, peptide tags, and unnatural amino acids.

SELECTION OF CITATIONS
SEARCH DETAIL
...