Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Physiol Behav ; 284: 114616, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914214

ABSTRACT

Sheng-ma is recorded in the Compendium of Materia Medica and mainly originates from the rhizomes of Cimicifuga dahurica (Turcz.) Maxim. (CD), Cimicifuga heracleifolia Kom. and Cimicifuga foetida L. The alcoholic extract of Cimicifuga foetida L. (Brand name: Ximingting®) has been approved for the treatment of perimenopausal symptoms accompanying hot flash, depression and anxiety in China. However, there's no further study about the antidepressant-like effects of C. dahurica (CD). The aim of this study is to investigate the antidepressant-like effect of CD extracted by 75% ethanol and its possible mechanisms.The neuro-protective effects of CD on injured PC12 cells induced by corticosterone was measured firstly. Then, forced swim test (FST), tail suspension test (TST), reserpine-induced hypothermia, 5-hydroxytryptophan (5-HTP) induced head twitch response in mice and chronic unpredictable mild stress (CUMS) on sucrose preference tests were executed. Moreover, the potential mechanisms were explored by measuring levels of monoamine neurotransmitter in mice frontal cortex and hippocampus, testing monoamine oxidase enzyme A (MAO-A) activities in the brains of CUMS-exposed mice. Results showed that CD (60, 120 mg/kg) can significantly decreased the immobility period in FST and TST in mice without affecting locomotor activity. CD (30 mg/kg, 60 mg/kg, 120 mg/kg) could significantly counteracted reserpine-induced hypothermia and increased the number of head-twitches in 5-HTP induced head twitch response. It was also found that the monoamine neurotransmitter levels in the hippocampus and frontal cortex were significantly increased in 60 mg/kg and 120 mg/kg CD treated mice. In addition, CD (60 and 120 mg/kg) significantly inhibited MAO-A after 6-week CUMS exposure. CD can effectively produce an antidepressant-like effect, which involved with modulation of monoamine regulatory pathways.

2.
Small ; : e2307410, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778499

ABSTRACT

The detection of monoamine neurotransmitters is of paramount importance as the neurotransmitters are the chemical messengers regulating the gut-brain axis (GBA). It requires real-time, ultrasensitive, and selective sensing of the neurotransmitters in the gastric/intestinal fluid. However, multi-components present in the gastric/intestinal fluid make sensing challenging to achieve in terms of ultra-high sensitivity and selectivity. Herein, an approach is introduced to utilize vanadium single atom catalytic (SAC) centers in van der Waals MoS2 (V-MoS2) to selectively detect real-time serotonin (5-HT) in artificial gastric/intestinal fluid. The synergetic effect of V-SACs and the surface S-bonds on the MoS2 surface, enables an extremely wide range of 5-HT detection (from 1 pM to 100 µM), with optimum selectivity and interference resistance. By combining density functional theory calculations and scanning transmission electron microscopy, it is concluded that the V-SACs embedded in the MoS2 network create active sites that greatly facilitate the charge exchange between the material and the 5-HT molecules. This result allows the 5-HT detection in GBA studies to be more reliable, and the material tunability provides a general platform to achieve real-time and multi-component detection of other monoamine neurotransmitters in GBA such as dopamine and norepinephrine.

3.
Front Behav Neurosci ; 17: 1169151, 2023.
Article in English | MEDLINE | ID: mdl-37273279

ABSTRACT

Introduction: Sedentary lifestyles have reached epidemic proportions world-wide. A growing body of literature suggests that exposures to adverse experiences (e.g., psychological traumas) are a significant risk factor for the development of physically inactive lifestyles. However, the biological mechanisms linking prior stress exposure and persistent deficits in physical activity engagement remains poorly understood. Methods: The purpose of this study was twofold. First, to identify acute stress intensity thresholds that elicit long-term wheel running deficits in rats. To that end, young adult male rats were exposed to a single episode of 0, 50, or 100 uncontrollable tail shocks and then given free access to running wheels for 9 weeks. Second, to identify stress-induced changes to central monoamine neurotransmitters and peripheral muscle physiology that may be maladaptive to exercise output. For this study, rats were either exposed to a single episode of uncontrollable tail shocks (stress) or left undisturbed in home cages (unstressed). Eight days later, monoamine-related neurochemicals were quantified by ultra-high performance liquid chromatography (UHPLC) across brain reward, motor, and emotion structures immediately following a bout of graded treadmill exercise controlled for duration and intensity. Additionally, protein markers of oxidative stress, inflammation, and metabolic activity were assessed in the gastrocnemius muscle by Western blot. Results: For experiment 1, stress exposure caused a shock number-dependent two to fourfold decrease in wheel running distance across the entire duration of the study. For experiment 2, stress exposure curbed an exercise-induced increase of dopamine (DA) turnover measures in the prefrontal cortex and hippocampus, and augmented serotonin (5HT) turnover in the hypothalamus and remaining cortical area. However, stress exposure also caused several monoaminergic changes independent of exercise that could underlie impaired motivation for physical activity, including a mild dopamine deficiency in the striatal area. Finally, stress potently increased HSP70 and lowered SOD2 protein concentrations in the gastrocnemius muscle, which may indicate prolonged oxidative stress. Discussion: These data support some of the possible central and peripheral mechanisms by which exposure to adverse experiences may chronically impair physical activity engagement.

4.
Brain Res Bull ; 198: 3-14, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37076049

ABSTRACT

Depression is a leading cause of disability worldwide and the psychiatric diagnosis most commonly associated with suicide. 4-Butyl-alpha-agarofuran (AF-5), a derivative of agarwood furan, is currently in phase III clinical trials for generalized anxiety disorder. Herein, we explored the antidepressant effect and its possible neurobiological mechanisms in animal models. In present study, AF-5 administration markedly decreased the immobility time in mouse forced swim test and tail suspension test. In the sub-chronic reserpine-induced depressive rats, AF-5 treatment markedly increased the rectal temperature and decreased the immobility time of model rats. In addition, chronic AF-5 treatment markedly reversed the depressive-like behaviors in chronic unpredictable mild stress (CUMS) rats by reducing immobility time of forced swim test. Single treatment with AF-5 also potentiated the mouse head-twitch response induced by 5-hydroxytryptophan (5-HTP, a metabolic precursor to serotonin), and antagonized the ptosis and motor ability triggered by reserpine. However, AF-5 had no effect on yohimbine toxicity in mice. These results indicated that acute treatment with AF-5 produced serotonergic, but not noradrenergic activation. Furthermore, AF-5 reduced adrenocorticotropic hormone (ACTH) level in serum and normalized the neurotransmitter changes, including the decreased serotonin (5-HT) in hippocampus of CUMS rats. Moreover, AF-5 affected the expressions of CRFR1 and 5-HT2C receptor in CUMS rats. These findings confirm the antidepressant effect of AF-5 in animal models, which may be primarily related to CRFR1 and 5-HT2C receptor. AF-5 appears to be promising as a novel dual target drug for depression treatment.


Subject(s)
Depression , Serotonin , Rats , Mice , Animals , Serotonin/metabolism , Depression/psychology , Reserpine/pharmacology , Hypothalamo-Hypophyseal System/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Pituitary-Adrenal System/metabolism , Antidepressive Agents/therapeutic use , Hippocampus/metabolism , Stress, Psychological/metabolism , Disease Models, Animal
5.
J Integr Med ; 21(2): 205-214, 2023 03.
Article in English | MEDLINE | ID: mdl-36792414

ABSTRACT

OBJECTIVE: Anxiety is one of the most common symptoms associated with autistic spectrum disorder. The essential oil of Cananga odorata (Lam.) Hook. f. & Thomson, usually known as ylang-ylang oil (YYO), is often used in aromatherapy as a mood-regulating agent, sedative, or hypotensive agent. In the present study, the effects and mechanisms of YYO in alleviating anxiety, social and cognitive behaviors in autism-like rats were investigated. METHODS: The prenatal valproic acid (VPA) model was used to induce autism-like behaviors in offspring rats. The effectiveness of prenatal sodium valproate treatment (600 mg/kg) on offspring was shown by postnatal growth observation, and negative geotaxis, olfactory discrimination and Morris water maze (MWM) tests. Then three treatment groups were formed with varying exposure to atomized YYO to explore the effects of YYO on the anxiety, social and cognitive behaviors of the autistic-like offspring through the elevated plus-maze test, three-chamber social test, and MWM test. Finally, the monoamine neurotransmitters, including serotonin, dopamine and their metabolites, in the hippocampus and prefrontal cortex (PFC) of the rats were measured using a high-performance liquid chromatography. RESULTS: Offspring of VPA exposure rats showed autism-like behaviors. In the VPA offspring, medium-dose YYO exposure significantly elevated the time and entries into the open arms in the elevated plus-maze test, while low-dose YYO exposure significantly enhanced the social interaction time with the stranger rat in session 1 of the three-chamber social test. VPA offspring treated with YYO exposure used less time to reach the platform in the navigation test of the MWM test. YYO exposure significantly elevated the metabolism of serotonin and dopamine in the PFC of VPA offspring. CONCLUSION: YYO exposure showed the effects in alleviating anxiety and improving cognitive and social abilities in the offspring of VPA exposure rats. The role of YYO was related to the regulation of the metabolism of serotonin and dopamine. Please cite this article as: Zhang N, Wang ST, Yao L. Inhalation of Cananga odorata essential oil relieves anxiety behaviors in autism-like rats via regulation of serotonin and dopamine metabolism. J Integr Med. 2023; 21(2): 205-214.


Subject(s)
Autistic Disorder , Cananga , Oils, Volatile , Pregnancy , Female , Rats , Animals , Autistic Disorder/drug therapy , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Serotonin/metabolism , Cananga/chemistry , Cananga/metabolism , Dopamine , Anxiety/drug therapy , Valproic Acid/pharmacology , Plant Oils , Disease Models, Animal
6.
Journal of Integrative Medicine ; (12): 205-214, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-971654

ABSTRACT

OBJECTIVE@#Anxiety is one of the most common symptoms associated with autistic spectrum disorder. The essential oil of Cananga odorata (Lam.) Hook. f. & Thomson, usually known as ylang-ylang oil (YYO), is often used in aromatherapy as a mood-regulating agent, sedative, or hypotensive agent. In the present study, the effects and mechanisms of YYO in alleviating anxiety, social and cognitive behaviors in autism-like rats were investigated.@*METHODS@#The prenatal valproic acid (VPA) model was used to induce autism-like behaviors in offspring rats. The effectiveness of prenatal sodium valproate treatment (600 mg/kg) on offspring was shown by postnatal growth observation, and negative geotaxis, olfactory discrimination and Morris water maze (MWM) tests. Then three treatment groups were formed with varying exposure to atomized YYO to explore the effects of YYO on the anxiety, social and cognitive behaviors of the autistic-like offspring through the elevated plus-maze test, three-chamber social test, and MWM test. Finally, the monoamine neurotransmitters, including serotonin, dopamine and their metabolites, in the hippocampus and prefrontal cortex (PFC) of the rats were measured using a high-performance liquid chromatography.@*RESULTS@#Offspring of VPA exposure rats showed autism-like behaviors. In the VPA offspring, medium-dose YYO exposure significantly elevated the time and entries into the open arms in the elevated plus-maze test, while low-dose YYO exposure significantly enhanced the social interaction time with the stranger rat in session 1 of the three-chamber social test. VPA offspring treated with YYO exposure used less time to reach the platform in the navigation test of the MWM test. YYO exposure significantly elevated the metabolism of serotonin and dopamine in the PFC of VPA offspring.@*CONCLUSION@#YYO exposure showed the effects in alleviating anxiety and improving cognitive and social abilities in the offspring of VPA exposure rats. The role of YYO was related to the regulation of the metabolism of serotonin and dopamine. Please cite this article as: Zhang N, Wang ST, Yao L. Inhalation of Cananga odorata essential oil relieves anxiety behaviors in autism-like rats via regulation of serotonin and dopamine metabolism. J Integr Med. 2023; 21(2): 205-214.


Subject(s)
Pregnancy , Female , Rats , Animals , Autistic Disorder/drug therapy , Oils, Volatile/therapeutic use , Serotonin/metabolism , Cananga/metabolism , Dopamine , Anxiety/drug therapy , Valproic Acid/pharmacology , Plant Oils , Disease Models, Animal
7.
Crit Rev Anal Chem ; : 1-16, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36476251

ABSTRACT

Inborn errors of monoamine neurotransmitter metabolism are rare diseases characterized by nonspecific neurological symptoms. These symptoms appear in early childhood and correspond to movement disorders, epilepsy, sleep disorders and/or mental disability. Cerebrospinal fluid biomarkers have been identified and validated to allow specific diagnosis of these diseases. Biomarkers of inborn errors of monoamine neurotransmitter metabolites are divided in two groups: monoamine neurotransmitter metabolites and pterins. Biomarkers quantification in cerebrospinal fluid is based on high-performance liquid chromatography separation coupled to electrochemical detection, fluorescence detection, or mass spectrometry. The following article reviews the advances in the proposed routine methods for the measurement of these analytes in cerebrospinal fluid. The purpose of this review is to compare the various proposed methods in terms of sample preparation, chromatographic conditions and detection modes. Despite the broad range of proposed methods, quantification of inborn errors of monoamine neurotransmitter biomarkers remains a great challenge, given the complexity of biological fluids and the low amounts of analytes that are present in cerebrospinal fluid.

8.
Cell Biosci ; 12(1): 151, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36076256

ABSTRACT

Monoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2ß, gene: TFAP2Β). AP-2ß regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2ß, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2ß as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2ß as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.

9.
Med Chem Res ; 31(11): 2045-2057, 2022.
Article in English | MEDLINE | ID: mdl-36159033

ABSTRACT

The antidepressant activity of (+) and (-)-paeoveitol was first evaluated using the forced swimming test (FST), and (+)-paeoveitol showed potential antidepressant activity by decreasing immobility time of mice (by approximately 26.4%) in the FST at a dose of 20 mg/kg. To explore the structure-activity relationships (SARs) and obtain more potent compounds, twenty derivatives of (+)-paeoveitol were synthesized and evaluated for their agonistic activities on melatonin type I (MT1) and type II (MT2) receptors. As a results, compound 13 with an N-methylpiperazine fragment exhibited obvious effect on MT1 and MT2 receptors with EC50 values of 0.20 and 0.24 mM. Moreover, compound 13 dose-dependently decreased the immobility of mice in the FST and showed an inverted U-shaped dose-effect, and the most efficacious dose (at 40 mg/kg) was comparable to fluoxetine (20 mg/kg) with a reduced immobility time of 29.2% and 34.5%, respectively. In vivo neurochemical assays suggested that compound 13 obviously increased 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and norepinephrine (NE) levels in the mice brain, indicating that its antidepressant effects might be related to the monoaminergic system. In silico ADMET study revealed that 13 has favorable pharmacokinetic properties. These findings suggest that compound 13 could be a potential antidepressant agent. Graphical abstract.

10.
J Neural Transm (Vienna) ; 129(8): 1011-1021, 2022 08.
Article in English | MEDLINE | ID: mdl-35829818

ABSTRACT

No studies have investigated voluntary movement abnormalities and their neurophysiological correlates in patients with parkinsonism due to inherited primary monoamine neurotransmitter (NT) disorders. Nine NT disorders patients and 16 healthy controls (HCs) were enrolled. Objective measurements of repetitive finger tapping were obtained using a motion analysis system. Primary motor cortex (M1) excitability was assessed by recording the input/output (I/O) curve of motor-evoked potentials (MEP) and using a conditioning test paradigm for short-interval intracortical inhibition (SICI) assessment. M1 plasticity-like mechanisms were indexed according to MEPs amplitude changes after the paired associative stimulation protocol. Patient values were considered abnormal if they were greater or lower than two standard deviations from the average HCs value. Patients with aromatic amino acid decarboxylase, tyrosine hydroxylase, and 6-pyruvoyl-tetrahydropterin synthase defects showed markedly reduced velocity (5/5 patients), reduced movement amplitude, and irregular rhythm (4/5 patients). Conversely, only 1 out of 3 patients with autosomal-dominant GTPCH deficiency showed abnormal movement parameters. Interestingly, none of the patients had a progressive reduction in movement amplitude or velocity during the tapping sequence (no sequence effect). Reduced SICI was the most prominent neurophysiological abnormality in patients (5/9 patients). Finally, the I/O curve slope correlated with movement velocity and rhythm in patients. We provided an objective assessment of finger tapping abnormalities in monoamine NT disorders. We also demonstrated M1 excitability changes possibly related to alterations in motor execution. Our results may contribute to a better understanding of the pathophysiology of juvenile parkinsonism due to dopamine deficiency.


Subject(s)
Motor Cortex , Parkinsonian Disorders , Evoked Potentials, Motor/physiology , Humans , Motor Cortex/physiology , Neural Inhibition , Neurotransmitter Agents , Transcranial Magnetic Stimulation/methods
11.
Cell Mol Life Sci ; 79(6): 305, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35593933

ABSTRACT

Aromatic amino acid decarboxylase (AADC) deficiency is a rare monogenic disease, often fatal in the first decade, causing severe intellectual disability, movement disorders and autonomic dysfunction. It is due to mutations in the gene coding for the AADC enzyme responsible for the synthesis of dopamine and serotonin. Using whole exome sequencing, we have identified a novel homozygous c.989C > T (p.Pro330Leu) variant of AADC causing AADC deficiency. Pro330 is part of an essential structural and functional element: the flexible catalytic loop suggested to cover the active site as a lid and properly position the catalytic residues. Our investigations provide evidence that Pro330 concurs in the achievement of an optimal catalytic competence. Through a combination of bioinformatic approaches, dynamic light scattering measurements, limited proteolysis experiments, spectroscopic and in solution analyses, we demonstrate that the substitution of Pro330 with Leu, although not determining gross conformational changes, results in an enzymatic species that is highly affected in catalysis with a decarboxylase catalytic efficiency decreased by 674- and 194-fold for the two aromatic substrates. This defect does not lead to active site structural disassembling, nor to the inability to bind the pyridoxal 5'-phosphate (PLP) cofactor. The molecular basis for the pathogenic effect of this variant is rather due to a mispositioning of the catalytically competent external aldimine intermediate, as corroborated by spectroscopic analyses and pH dependence of the kinetic parameters. Altogether, we determined the structural basis for the severity of the manifestation of AADC deficiency in this patient and discussed the rationale for a precision therapy.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Aromatic-L-Amino-Acid Decarboxylases , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Aromatic-L-Amino-Acid Decarboxylases/deficiency , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Catalysis , Dopamine/metabolism , Humans
12.
Elife ; 112022 03 01.
Article in English | MEDLINE | ID: mdl-35229720

ABSTRACT

Neurotransmitters are generated by de novo synthesis and are essential for sustained, high-frequency synaptic transmission. Histamine, a monoamine neurotransmitter, is synthesized through decarboxylation of histidine by histidine decarboxylase (Hdc). However, little is known about how histidine is presented to Hdc as a precursor. Here, we identified a specific histidine transporter, TADR (torn and diminished rhabdomeres), which is required for visual transmission in Drosophila. Both TADR and Hdc localized to neuronal terminals, and mutations in tadr reduced levels of histamine, thus disrupting visual synaptic transmission and phototaxis behavior. These results demonstrate that a specific amino acid transporter provides precursors for monoamine neurotransmitters, providing the first genetic evidence that a histidine amino acid transporter plays a critical role in synaptic transmission. These results suggest that TADR-dependent local de novo synthesis of histamine is required for synaptic transmission.


Subject(s)
Drosophila , Histidine , Animals , Drosophila/genetics , Histamine/metabolism , Histidine Decarboxylase/genetics , Histidine Decarboxylase/metabolism , Membrane Transport Proteins/metabolism , Neurotransmitter Agents , Synaptic Transmission
13.
Chin J Integr Med ; 28(7): 586-593, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35319073

ABSTRACT

OBJECTIVE: To investigate the therapeutic effect of Yixin Ningshen Tablet (YXNS) on comorbidity of myocardial infarction (MI) and depression in rats and explore the underlying mechanism. METHODS: The Sprague-Dawley rats were randomly divided into 5 groups with 7 rats in each group according to their weights, including control, model, fluoxetine (FLXT, 10 mg/kg), low-dose YXNS (LYXNS, 100 mg/kg), and high-dose YXNS (HYXNS, 300 mg/kg) groups. All rats were pretreated with corresponding drugs for 12 weeks. The rat model of MI and depression was constructed by ligation of left anterior descending coronary artery and chronic mild stress stimulation. The echocardiography, sucrose preference test, open field test, and forced swim test were performed. Myocardial infarction (MI) area and myocardial apoptosis was also detected. Serum levels of interleukin (IL)-6, IL-1ß, tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT), adrenocorticotrophic hormone (ACTH), corticosterone (CORT), and norepinephrine (NE) were determined by enzyme linked immunosorbent assay. The proteins of adenosine 5'-monophosphate -activated protein kinase (AMPK), p-AMPK, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and nuclear respiratory factor 1 (NRF1) in heart were detected by Western blot analysis. The expression levels of TNF-α, IL-6, indoleamine 2,3-dioxygenase (IDO1), kynurenine 3-monooxygenase (KMO), and kynureninase (KYNU) in hippocampus were detected by real-time quantitative polymerase chain reaction. RESULTS: Compared with the model group, the cardiac function of rats treated with YXNS improved significantly (P<0.01). Meanwhile, YXNS effectively reduced MI size and cardiomyocytes apoptosis of rats (P<0.01 or P<0.05), promoted AMPK phosphorylation, and increased PGC-1α protein expression (P<0.01 or P<0.05). HYXNS significantly increased locomotor activity of rats, decreased the levels of TNF-α, IL-6 and IL-1ß, and increased the serum levels of 5-HT, NE, ACTH, and CORT (all P<0.05). Moreover, HYXNS decreased the mRNA expressions of IDO1, KMO and KYNU (P<0.05). CONCLUSIONS: YXNS can relieve MI by enhancing myocardial energy metabolism. Meanwhile, YXNS can alleviate depression by resisting inflammation and increasing availability of monoamine neurotransmitters. It may be used as a potential drug to treat comorbidity of MI and depression.


Subject(s)
Myocardial Infarction , Tumor Necrosis Factor-alpha , AMP-Activated Protein Kinases/metabolism , Adrenocorticotropic Hormone , Animals , Comorbidity , Depression/complications , Depression/drug therapy , Energy Metabolism , Interleukin-6/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Neurotransmitter Agents , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Tablets , Tumor Necrosis Factor-alpha/metabolism
14.
Article in English | WPRIM (Western Pacific) | ID: wpr-939786

ABSTRACT

OBJECTIVE@#To investigate the therapeutic effect of Yixin Ningshen Tablet (YXNS) on comorbidity of myocardial infarction (MI) and depression in rats and explore the underlying mechanism.@*METHODS@#The Sprague-Dawley rats were randomly divided into 5 groups with 7 rats in each group according to their weights, including control, model, fluoxetine (FLXT, 10 mg/kg), low-dose YXNS (LYXNS, 100 mg/kg), and high-dose YXNS (HYXNS, 300 mg/kg) groups. All rats were pretreated with corresponding drugs for 12 weeks. The rat model of MI and depression was constructed by ligation of left anterior descending coronary artery and chronic mild stress stimulation. The echocardiography, sucrose preference test, open field test, and forced swim test were performed. Myocardial infarction (MI) area and myocardial apoptosis was also detected. Serum levels of interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT), adrenocorticotrophic hormone (ACTH), corticosterone (CORT), and norepinephrine (NE) were determined by enzyme linked immunosorbent assay. The proteins of adenosine 5'-monophosphate -activated protein kinase (AMPK), p-AMPK, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and nuclear respiratory factor 1 (NRF1) in heart were detected by Western blot analysis. The expression levels of TNF-α, IL-6, indoleamine 2,3-dioxygenase (IDO1), kynurenine 3-monooxygenase (KMO), and kynureninase (KYNU) in hippocampus were detected by real-time quantitative polymerase chain reaction.@*RESULTS@#Compared with the model group, the cardiac function of rats treated with YXNS improved significantly (P<0.01). Meanwhile, YXNS effectively reduced MI size and cardiomyocytes apoptosis of rats (P<0.01 or P<0.05), promoted AMPK phosphorylation, and increased PGC-1α protein expression (P<0.01 or P<0.05). HYXNS significantly increased locomotor activity of rats, decreased the levels of TNF-α, IL-6 and IL-1β, and increased the serum levels of 5-HT, NE, ACTH, and CORT (all P<0.05). Moreover, HYXNS decreased the mRNA expressions of IDO1, KMO and KYNU (P<0.05).@*CONCLUSIONS@#YXNS can relieve MI by enhancing myocardial energy metabolism. Meanwhile, YXNS can alleviate depression by resisting inflammation and increasing availability of monoamine neurotransmitters. It may be used as a potential drug to treat comorbidity of MI and depression.


Subject(s)
Animals , Rats , AMP-Activated Protein Kinases/metabolism , Adrenocorticotropic Hormone , Comorbidity , Depression/drug therapy , Energy Metabolism , Interleukin-6/metabolism , Myocardial Infarction/pathology , Neurotransmitter Agents , Rats, Sprague-Dawley , Serotonin/metabolism , Tablets , Tumor Necrosis Factor-alpha/metabolism
15.
China Pharmacy ; (12): 1177-1182, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-924069

ABSTRACT

OBJECTIVE To screen the effective anti-depressant part from Coreopsis tinctoria and study its mechanism. METHODS The anti-depressant effects of 30%,50%,70% and 90% ethanol elution fractions from 75% ethanol extract of C. tinctoria(CCTE)were investigated by tail suspension test and forced swimming test. Mice head-drop test ,reserpine antagonistic test,yohimbine toxicity enhancement test and in vitro monoamine oxidase (MAO) inhibition test were used to explore the mechanism of the relationship between the effective parts and 5-hydroxytryptamine (5-HT) and norepinephrine (NE) nerves. RESULTS The 50% and 70%CCTE could significantly shorten the accumulative immobility time in tail suspension test and forced swimming test (P<0.05 or P<0.01),increase the number of head-shaking times (P<0.01),reverse the eyelid ptosis , hypothermia and immobility caused by hematopin (P<0.05 or P<0.01),and increase the number of dead mice caused by yohimbine toxicity (P<0.01). IC 50 of okanin (CCT-6),isookanin(CCT-7)and taxifolin (CCT-8)against MAO were 8.71,37.89 and 67.07 µmol/L,respectively. CONCLUSIONS The 50% and 70%CCTE are the effective anti-depressant parts of C. tinctoria . Its anti-depressant effect may be related to the reinforcement of 5-HT and the activation of NE nerves. The inhibition of CCT- 6, CCT-7 and CCT- 8 against MAO may be one of the anti-depressant mechanism of C. tinctoria .

16.
Bioorg Med Chem ; 51: 116509, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34798381

ABSTRACT

A new series of enkephalin-like tetrapeptide analogs modified at the C-terminus by an N-(3,4-dichlorophenyl)-N-(piperidin-4-yl)propionamide (DPP) moiety were designed, synthesized, and tested for their binding affinities at opioid receptors and monoamine transporters to evaluate their potential multifunctional activity for the treatment of chronic pain. Most ligands exhibited high binding affinities in the nanomolar range at the opioid receptors with a slight delta-opioid receptor (DOR) selectivity over mu-opioid receptor (MOR) and kappa-opioid receptor (KOR) and low binding affinities in the micromolar range at the monoamine transporters, SERT and NET. Ligands of which the positions 1 and 4 were substituted by Dmt and Phe(4-X) residues, respectively, showed the excellent binding affinities at three opioid receptors. Among them, Dmt-d-Tic-Gly-Phe(4-F)-DPP was the most promising considering its excellent opioid affinities, particularly unexpected high binding affinity (Ki = 0.13 nM) at the KOR, and moderate interactions with serotonin/norepinephrine reuptake inhibitors (SNRIs). Docking studies revealed that the ligand was a good fit for the KOR binding pocket (binding score = 8,750).


Subject(s)
Amides/pharmacology , Oligopeptides/pharmacology , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, mu/antagonists & inhibitors , Amides/chemistry , Dose-Response Relationship, Drug , Humans , Ligands , Models, Molecular , Molecular Structure , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship
17.
Zhongguo Zhen Jiu ; 41(7): 751-5, 2021 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-34259407

ABSTRACT

OBJECTIVE: To observe the effect of Jin's three-needle combined with Tongdu Tiaoshen acupuncture on development level and activity of daily living in children with intellectual disability, and explore its mechanism. METHODS: A total of 60 children with intellectual disability were randomly divided into an observation group (30 cases, 2 cases dropped off) and a control group (30 cases, 2 cases dropped off). In the control group, rehabilitation training and routine acupuncture were adopted, 30 min each time, once a day, 6 times a week for 3 months. On the base of the treatment as the control group, Jin's three-needle combined with Tongdu Tiaoshen acupuncture were adopted in the observation group. Jin's three-needle was applied at Sishenzhen, Zhisanzhen, Naosanzhen and Niesanzhen for 1 h, Shouzhizhen and Zuzhizhen for 30 min. Tongdu Tiaoshen acupuncture was applied at Baihui (GV 20), Shenting (GV 24), Shuigou (GV 26), etc. for 30 min, once a day, 6 times a week for 3 months. Before and after treatment,the scores of developmental quotient (DQ) and activity of daily living (ADL) were recorded, and the serum levels of neuron-specific enolase (NSE) and monoamine neurotransmitters (dopamine [DA], norepinephrine [NE] and 5-hydroxytryptamine [5-HT]) were detected in the two groups. RESULTS: Compared before treatment, the scores of DQ and ADL and the serum levels of DA, NE, 5-HT after treatment were increased (P<0.05), the serum levels of NSE were decreased (P<0.05) in the two groups. After treatment, the scores of DQ and ADL and the serum levels of DA, NE, 5-HT in the observation group were higher than the control group (P<0.05), while the serum level of NSE was lower than the control group (P<0.05). CONCLUSION: On the base of rehabilitation training and routine acupuncture, Jin's three-needle combined with Tongdu Tiaoshen acupuncture can significantly improve development level and activity of daily living in children with intellectual disability, and its mechanism may be related to the regulation of serum levels of NSE and monoamine neurotransmitter.


Subject(s)
Acupuncture Therapy , Intellectual Disability , Activities of Daily Living , Acupuncture Points , Child , Humans , Needles , Neurotransmitter Agents , Treatment Outcome
18.
Talanta ; 233: 122488, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215110

ABSTRACT

Candida antarctica lipase B (CALB) is a natural biocatalyst with an intrinsically strong chiral environment and a high degree of enantio-selectivity, which is widely used in the separation of racemates. Here, a facile and efficient covalent immobilization approach was utilized to immobilize CALB onto the capillary inner wall as a novel chiral stationary phase to explore and broaden its application in the direct chiral separation by electrochromatography. The obtained CALB immobilized capillary column was characterized by scanning electron microscopy (SEM), fluorescence imaging and Fourier transform infrared spectroscopy (FT-IR). The enantioseparation property of the CALB immobilized capillary column was confirmed by direct chiral separation of several pairs of monoamine neurotransmitter enantiomers in OT-CEC mode. Outstanding enantioseparation performance for three types of monoamine neurotransmitter enantiomers including epinephrine, norepinephrine and phenylephrine was obtained by the CALB immobilized column. Thanks to the effectiveness of covalent bonding method and the intrinsic stability of CALB, the prepared CALB immobilized capillary columns were quite steady and reproducible. The relative standard deviations for retention times of the enantiomers were as follows: for intra-day (n = 5) runs (≤0.25%), inter-day (n = 3) runs (≤0.72%) and between-columns (n = 3) (≤2.42%). After 90 consecutive runs in CEC mode, the CALB immobilized column still exhibited desirable enantionseparation performance.


Subject(s)
Capillary Electrochromatography , Basidiomycota , Lipase , Spectroscopy, Fourier Transform Infrared , Stereoisomerism
19.
Mol Genet Metab Rep ; 27: 100762, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33996491

ABSTRACT

BACKGROUND: Aromatic L-amino acid decarboxylase (AADC) deficiency and tyrosine hydroxylase (TH) deficiency are rare inherited disorders of monoamine neurotransmitter synthesis which are typically diagnosed using cerebrospinal fluid examination of monoamine neurotransmitter metabolites. Until now, it has not been systematically studied whether analysis of monamine neurotransmitter metabolites in blood or urine has diagnostic value as compared to cerebrospinal fluid examination, or whether monoamine neurotransmitter metabolites in these peripheral body fluids is useful to monitor treatment efficacy. METHODS: Assessment, both by literature review and retrospective analysis of our local university hospital database, of monoamine neurotransmitter metabolites in urine, blood and cerebrospinal fluid, and serum prolactin levels, before and during treatment in patients with AADC and TH deficiency. RESULTS: In AADC deficiency, 3-O-methyldopa in serum or dried blood spots was reported in 34 patients and found to be (strongly) increased in all, serotonin in serum was decreased in 7/7 patients. Serum prolactin was increased in 34/37 and normal in 3 untreated patients. In urine, dopamine was normal or increased in 21/24 patients, 5-hydroxyindoleacetic acid was decreased in 9/10 patients, and vanillactic acid was increased in 19/20 patients. No significant changes were seen in monoamine neurotransmitter metabolites after medical treatment, except for an increase of homovanillic acid in urine and cerebrospinal fluid after levodopa therapy, sometimes even in absence of a clinical response. After gene therapy, cerebrospinal fluid homovanillic acid increased in most patients (8/12), but 5-hydroxyindoleacetic acid remained unchanged in 9/12 patients.In TH deficiency, serum prolactin was increased in 12/14 and normal in the remaining untreated patients. Urinary dopamine was decreased in 2/8 patients and normal in 6. Homovanillic acid concentrations in cerebrospinal fluid increased upon levodopa treatment, even in the absence of a clear treatment response. CONCLUSIONS: This study confirms that cerebrospinal fluid is the most informative body fluid to measure monoamine neurotransmitter metabolites when AADC or TH deficiency is suspected, and that routine follow-up of cerebrospinal fluid measurements to estimate treatment response is not needed. 3-O-methyldopa in dried blood spots and vanillactic acid in urine are promising peripheral biomarkers for diagnosis of AADC deficiency. However, in many patients with TH or AADC deficiency dopamine in urine is normal or increased thereby not reflecting the metabolic block. The value of serum prolactin for follow-up of AADC and TH deficiency should be further studied.

20.
Handb Exp Pharmacol ; 266: 253-280, 2021.
Article in English | MEDLINE | ID: mdl-33751232

ABSTRACT

Precise control of monoamine neurotransmitter levels in the central nervous system (CNS) is crucial for proper brain function. Dysfunctional monoamine signaling is associated with several neuropsychiatric and neurodegenerative disorders. The plasma membrane monoamine transporter (PMAT) is a new polyspecific organic cation transporter encoded by the SLC29A4 gene. Capable of transporting monoamine neurotransmitters with low affinity and high capacity, PMAT represents a major uptake2 transporter in the brain. Broadly expressed in multiple brain regions, PMAT can complement the high-affinity, low-capacity monoamine uptake mediated by uptake1 transporters, the serotonin, dopamine, and norepinephrine transporters (SERT, DAT, and NET, respectively). This chapter provides an overview of the molecular and functional characteristics of PMAT together with its regional and cell-type specific expression in the mammalian brain. The physiological functions of PMAT in brain monoamine homeostasis are evaluated in light of its unique transport kinetics and brain location, and in comparison with uptake1 and other uptake2 transporters (e.g., OCT3) along with corroborating experimental evidences. Lastly, the possibility of PMAT's involvement in brain pathophysiological processes, such as autism, depression, and Parkinson's disease, is discussed in the context of disease pathology and potential link to aberrant monoamine pathways.


Subject(s)
Brain , Dopamine , Animals , Biological Transport , Brain/metabolism , Cell Membrane/metabolism , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...