Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
Waste Manag ; 182: 44-54, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636125

ABSTRACT

Pyrolysis can effectively convert waste tires into high-value products. However, the sulfur-containing compounds in pyrolysis oil and gas would significantly reduce the environmental and economic feasibility of this technology. Here, the desulfurization and upgrade of waste tire pyrolysis oil and gas were performed by adding different metal oxides (Fe2O3, CuO, and CaO). Results showed that Fe2O3 exhibited the highest removal efficiency of 87.7 % for the sulfur-containing gas at 600 °C with an outstanding removal efficiency of 99.5 % for H2S. CuO and CaO were slightly inferior to Fe2O3, with desulfurization efficiencies of 75.9 % and 45.2 % in the gas when added at 5 %. Fe2O3 also demonstrated a notable efficacy in eliminating benzothiophene, the most abundant sulfur compound in pyrolysis oil, with a removal efficiency of 78.1 %. Molecular dynamics simulations and experiments showed that the desulfurization mechanism of Fe2O3 involved the bonding of Fe-S, the breakage of C-S, dehydrogenation and oxygen migration process, which promoted the conversion of Fe2O3 to FeO, FeS and Fe2(SO4)3. Meanwhile, Fe2O3 enhanced the cyclization and dehydrogenation reaction, facilitating the upgrade of oil and gas (monocyclic aromatics to 57.4 % and H2 to 22.3 %). This study may be helpful for the clean and high-value conversion of waste tires.


Subject(s)
Oxides , Pyrolysis , Oxides/chemistry , Sulfur/chemistry , Incineration/methods , Ferric Compounds/chemistry , Gases/chemistry , Rubber/chemistry , Calcium Compounds/chemistry , Copper
2.
Environ Pollut ; 343: 123261, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38159626

ABSTRACT

Monoaromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) are ubiquitous air pollutants from industry, with multiple adverse effects on respiratory system. However, the underlying mechanisms of their mixture to induce asthma is still unclear. Here, we examined mixture of 8 MAHs, mixture of 16 PAHs and a total mixture (MIX) on human bronchial epithelial (16-HBE) cells. Exposure to MIX resulted in increased expressions of asthma alarm cytokines (TSLP, IL-25 and IL-33), indicating potential asthma risk. Exposure to MIX led to significant upregulation of transcriptional level of oxidative stress and inflammation biomarkers through aryl hydrocarbon receptor activation, including SOD-2, NQO-1, IL-1ß, IL-6 and IL-8 with 3.1, 19.9, 3.5, 23.4, 18.7, 28.1-fold change, indicated asthma related epithelial cell lesions. A total of 25, 49 and 59 differential metabolites were identified in cells response to MAH, PAH and MIX exposure, respectively, and enrichment analysis demonstrated MIX exposure disturbing alanine, aspartate and glutamate metabolism, glutathione metabolism, methionine metabolism and sphingolipid metabolism, involved in antioxidative defense and inflammation response. Combined exposure of MAHs and PAHs may result in increased toxic risks, and provide evidence to asthma onset and deterioration.


Subject(s)
Asthma , Polycyclic Aromatic Hydrocarbons , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Amino Acids/metabolism , Lipid Metabolism , Asthma/chemically induced , Asthma/metabolism , Hydrocarbons/metabolism , Epithelium/chemistry , Epithelium/metabolism , Inflammation/metabolism , Biomarkers/metabolism
3.
Environ Res ; 219: 115158, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36580988

ABSTRACT

Occupational workers and residents near petrochemical industry facilities are exposed to multiple contaminants on a daily basis. However, little is known about the co-exposure effects of different pollutants based on biotransformation. The study examined benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon related to the petrochemical industry, to investigate changes in toxicity and co-exposure mechanism associated with different monoaromatic hydrocarbons (MAHs). A central composite design method was used to simulate site co-exposure scenarios to reveal biotransformation of BaP when co-exposed with benzene, toluene, chlorobenzene, or nitrobenzene in microsome systems. BaP metabolism depended on MAH concentration, and association of MAH with microsome concentration/incubation time. Particularly, MAH co-exposure negatively affected BaP glucuronidation, an important phase Ⅱ detoxification process. BaP metabolite intensities decreased to 43%-80% for OH-BaP-G, and 32%-71% for diOH-BaP-G in co-exposure system with MAHs, compared with control group. Furthermore, glucuronidation was affected by competitive and time-dependent inhibition. Co-exposure significantly decreased gene expression of UGT 1A10 and BCRP/ABCG2 in HepG2 cells, which are involved in BaP detoxification through metabolism and transmembrane transportation. Therefore, human co-exposure to multiple contaminants may deteriorate toxic effects of these chemicals by disturbing metabolic pathways. This study provides a reference for assessing toxic effects and co-exposure risks of pollutants.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Humans , Benzo(a)pyrene/toxicity , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Neoplasm Proteins/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Environmental Pollutants/toxicity , Toluene
4.
Front Microbiol ; 14: 1308626, 2023.
Article in English | MEDLINE | ID: mdl-38264488

ABSTRACT

The first step of anaerobic benzoate degradation is the formation of benzoyl-coenzyme A by benzoate-coenzyme A ligase (BCL). The anaerobic route is steered by benzoyl-CoA reductase, which promotes benzoyl-CoA breakdown, which is subsequently oxidized. In certain bacteria at low oxygen conditions, the aerobic metabolism of monoaromatic hydrocarbons occurs through the degradation Box pathway. These pathways have undergone experimental scrutiny in Alphaproteobacteria and Betaproteobacteria and have also been explored bioinformatically in representative Betaproteobacteria. However, there is a gap in our knowledge regarding the distribution of the benzoyl-CoA pathway and the evolutionary forces propelling its adaptation beyond that of representative bacteria. To address these questions, we used bioinformatic procedures to identify the BCLs and the lower pathways that transform benzoyl-CoA. These procedures included the identification of conserved motifs. As a result, we identified two motifs exclusive to BCLs, describing some of the catalytic properties of this enzyme. These motifs helped to discern BCLs from other aryl-CoA ligases effectively. The predicted BCLs and the enzymes of lower pathways were used as genomic markers for identifying aerobic, anaerobic, or hybrid catabolism, which we found widely distributed in Betaproteobacteria. Despite these enhancements, our approach failed to distinguish orthologs from a small cluster of paralogs exhibiting all the specified features to predict an ortholog. Nonetheless, the conducted phylogenetic analysis and the properties identified in the genomic context aided in formulating hypotheses about how this redundancy contributes to refining the catabolic strategy employed by these bacteria to degrade the substrates.

5.
Polymers (Basel) ; 12(4)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290255

ABSTRACT

Aromatic hydrocarbons are extensive environmental pollutants occurring in both water and air media, and their removal is a priority effort for a healthy environment. The use of adsorbents is among the several strategies used for the remediation of these compounds. In this paper, we aim the synthesis of an amphiphilic hydrogel with the potential for the simultaneous sorption of a set of monocyclic and polycyclic aromatic hydrocarbons associated with toxicity effects in humans. Thus, we start by the synthesis of a copolymer-based in chitosan and ß-cyclodextrin previously functionalized with the maleic anhydride. The presence of ß-cyclodextrin will confer the ability to interact with hydrophobic compounds. The resulting material is posteriorly incorporated in a cryogel of poly(vinyl alcohol) matrix. We aim to improve the amphiphilic ability of the hydrogel matrix. The obtained hydrogel was characterized by swelling water kinetics, thermogravimetric analysis, rheological measurements, and scanning electron microscopy. The sorption of aromatic hydrocarbons onto the gel is characterized by pseudo-first-order kinetics and Henry isotherm, suggesting a physisorption mechanism. The results show that the presence of maleic anhydride-ß-cyclodextrin and chitosan into hydrogels leads to an increase in the removal efficiency of the aromatic compounds. Additionally, the capacity of this hydrogel for removing these pollutants from a fossil fuel sample has also been tested.

6.
Sci Total Environ ; 720: 137485, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32135294

ABSTRACT

The main focus of this study is the emission of monoaromatic hydrocarbons because these are the preliminary factors of potential solvent and monomer residues present in single-use plastic barbecue and kitchen utensils comprising polystyrene, polypropylene, natural cellulose, and biodegradable polymers intended for use with hot meal or beverages. Herein, the emissions of monoaromatic hydrocarbons (styrene, benzene, toluene, ethylbenzene, and xylene compounds and the total volatile organic compounds (TVOC)) from nine types of disposable plastic utensils are reported. Seventy two samples of single-use plastic utensils were conditioned at 40 and 80 °C using a stationary emission microchamber system. The average TVOC released from the studied polystyrene, polypropylene, and natural or biodegradable utensils were (2.3 ±â€¯1.3), (1.01 ±â€¯0.15), and (0.48 ±â€¯0.37) µg g-1, respectively, at 40 °C and (11.1 ±â€¯1.2), (46.1 ±â€¯9.5), and (5.5 ±â€¯1.1) µg g-1, respectively, at 80 °C. Significant emissions of styrene (ranged from 3.5 up to 15.3 × 103 ng∙g-1), toluene (from 2.8 up to 0.53 × 103 ng∙g-1), and ethylbenzene (from 3.7 up to 5.7 × 103 ng∙g-1) from the studied samples were observed, especially at 80 °C. Thus, elevated temperatures increase the potential emission of solvent and monomer residues from plastics and could affect the quality of consumed meals or beverages, such as taste. Additionally, to determine the possible interactions between the measured chemical compounds in the plastic utensils, the Pearson's correlation coefficients were calculated.


Subject(s)
Polymers/chemistry , Hydrocarbons , Plastics , Toluene , Volatile Organic Compounds
7.
Environ Geochem Health ; 41(3): 1599-1615, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30648198

ABSTRACT

The objective of this study was to examine whether long-term exposure to low-dose volatile organic compounds (VOCs) will have an effect on the health of non-occupational population. A total of 499 non-occupational participants aged more than 18 that live around Jilin Petrochemical Industrial Zone were chosen by stratified cluster random sampling. Their blood VOCs' levels, hematological parameters and urine indicators together with detailed questionnaire data were used to find possible relationships using binary logistic regression analysis. The detection rate of benzene in the blood was high in the non-occupational population around the industrial area, and it even reached 82.3% in males but no significant difference was recorded between male and female population. In addition, trichloroethane (male: 33.2% V female: 21.7%; p = 0.002), carbon tetrachloride (males: 20.3% V females: 7.5%; p < 0.001) and trichlorethylene (male: 34.9% V female: 24.7%; p = 0.004) all showed significant differences in gender, and without exception, the prevalence of males was higher in these three VOCs than of females. The changes in red blood cell (RBC), hematocrit (HCT) and basophils are correlated with carbon tetrachloride, trichloroethylene and chloroform, respectively. And RBC, HCT and basophils are statistically significant in male compared with female of the study population. The increase in trichlorethylene was associated with an increase of 1.723% (95% CI 1.058-2.806) in HCT. The increase in carbon tetrachloride showed a more significant correlation with an increase of 2.638% in RBC count (95% CI 1.169-5.953). And trichloromethane led to a 1.922% (95% CI 1.051-3.513) increase in basophils. The changes in urinary WBC, urine ketone (KET) and urinary bilirubin (BIL) showed significant correlation with benzene, carbon tetrachloride and dibromochloromethane, respectively. The correlation in females is more significant than in males. The increase of benzene in the female population increased urinary leukocyte count by 2.902% (95% CI 1.275-6.601). The effect of carbon tetrachloride on KET was particularly pronounced, resulting in an increase of 7.000% (95% CI 1.608-30.465). Simultaneously, an increase in dibromochloromethane caused an increase of 4.256% (95% CI 1.373-13.192) in BIL. The changes in RBC, HCT and basophils can only serve as an auxiliary indicator for disease diagnosis, so they have no significant clinical significance. However, the alteration of urinary WBC, KET and BIL has great clinical significances, and it is suggested that the monitoring of the above indicators from low-dose long-term exposure be strengthen in this area.


Subject(s)
Air Pollutants/blood , Environmental Exposure/analysis , Volatile Organic Compounds/blood , Adolescent , Adult , Air Pollutants/toxicity , Benzene/analysis , Bilirubin/urine , Blood Cells/drug effects , Carbon Tetrachloride/blood , Carbon Tetrachloride/toxicity , China , Creatinine/urine , Cross-Sectional Studies , Environmental Exposure/adverse effects , Female , Hematocrit , Humans , Industry , Male , Middle Aged , Surveys and Questionnaires , Volatile Organic Compounds/toxicity
8.
J Sep Sci ; 41(11): 2360-2367, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29473312

ABSTRACT

We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 µg/L, limit of quantitation (1.1-84 µg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 µg/L as well as in effluents after chemical treatment.

9.
Eng. sanit. ambient ; 20(2): 315-321, abr.-jun. 2015. ilus
Article in Portuguese | LILACS | ID: lil-759297

ABSTRACT

A influência do biodiesel de soja na biodegradação dos hidrocarbonetos monoaromáticos benzeno e tolueno foi estudada sob condições anaeróbias em dois microcosmos montados com água subterrânea sintética, inóculo metanogênico, benzeno, tolueno e biodiesel. Na presença de biodiesel não foi observada biodegradação do benzeno e do tolueno. Com a biodegradação do biodiesel ocorreu a formação de acetato e metano, uso do sulfato e um aumento de 45 vezes no número de bactérias sulfato-redutoras. Esses resultados mostraram que, na mistura com benzeno e tolueno, o biodiesel foi biodegradado tanto sob condições de sulfato-redução quanto metanogênicas e que sua presença estimulou o crescimento da biomassa.


The effects of biodiesel on the biodegradation of benzene and toluene under anaerobic conditions were assessed using two microcosms constructed using synthetic groundwater, methanogenic inoculum and amended with benzene, toluene and biodiesel. In the presence of biodiesel, benzene and toluene degradation was substantially inhibited. Biodiesel degradation was followed by a production of acetate and methane, consumption of sulfate and a 45-fold increase in sulfate-reducing concentration. These results demonstrated that, in the presence of benzene and toluene, biodiesel was biodegraded under sulfate-reduction and methanogenic conditions and also stimulated biomass growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...