Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters











Publication year range
1.
J Hazard Mater ; 480: 135982, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39357357

ABSTRACT

Naturally occurring fibrous minerals, such as erionite, can pose a significant threat to human health when disturbed and subsequently respired. Understanding the spatial abundance and characteristics of these hazardous fibrous minerals in ambient air is crucial for minimizing human exposure and assessing risk. Conventional detection methods for airborne hazardous mineral fibers, such as those developed for asbestos, are of limited utility in environmental settings where fiber concentrations are low and different fiber types may be present and can be costly especially when monitoring large areas over long periods of time. This study presents an innovative methodology for detecting and identifying the presence of airborne naturally occurring fibrous zeolites, using leaf surface deposition sampling, SEM-EDX analysis for the detection and assessment of elemental composition, and TEM-SAED with continuous rotation diffraction (MicroED) to determine their crystallographic unit cell parameters. In total, 309 fibrous zeolite particles (FZPs) were identified on a range of tree leaf surfaces across 80 % of the sampling sites located close to both active and disused zeolite quarries in the Taupo Volcanic Region, New Zealand. The FZPs displayed various morphologies including aggregates, bundles, and fibril-like structures. Of the FZPs detected, 92.2 % were < 5 µm in length. Tetrahedral Si:(Si+Al) ratio results indicated that 40 % of the FZPs were in the reference range for zeolite mordenite. TEM-SAED plus MicroED analysis resulted in 61 % of tested FZPs indexed to unit cell parameters that matched with mordenite. This research demonstrates the potential of leaf sampling as a cost-effective method for detecting airborne FZPs while the MicroED data can be utilized for distinguishing between different types of airborne fibrous zeolites in ambient air.

2.
Materials (Basel) ; 17(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39274819

ABSTRACT

The release of Neogene volcanism in the southeastern part of the Iberian Peninsula produced a series of volcanic structures in the form of stratovolcanoes and calderas; however, other materials also accumulated such as large amounts of pyroclastic materials such as cinerites, ashes, and lapilli, which were later altered to form deposits of zeolites and bentonites. This work has focused on an area located on the northern flank of the San José-Los Escullos zeolite deposit, the only one of its kind with industrial capacity in Spain. The main objective of this research is to characterize the zeolite (SZ) of this new area from the mineral, chemical, and technical points of view and establish its possible use as a natural pozzolan. In the first stage, a study of the mineralogical and chemical composition of the selected samples was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and thermogravimetric analysis (TGA); in the second stage, chemical-qualitative and pozzolanicity technical tests were carried out at 8 and 15 days. In addition, a chemical analysis was performed using XRF on the specimens of mortars made with a standardized mixture of Portland cement (PC: 75%) and natural zeolite (SZ: 25%) at the ages of 7, 28, and 90 days. The results of the mineralogical analyses indicated that the samples are made up mainly of mordenite and subordinately by smectite, plagioclase, quartz, halloysite, illite, and muscovite. Qualitative chemical assays indicated a high percentage of reactive silica and reactive CaO and also negligible contents of insoluble residues. The results of the pozzolanicity test indicate that all the samples analyzed behave like natural pozzolans of good quality, increasing their pozzolanic reactivity from 8 to 15 days of testing. Chemical analyses of PC/SZ composite mortar specimens showed how a significant part of SiO2 and Al2O3 are released by zeolite while it absorbs a large part of the SO3 contained in the cement. The results presented in this research could be of great practical and scientific importance as they indicate the continuation of zeolitic mineralization beyond the limits of the San José-Los Escullos deposit, which would result in an increase in geological reserves and the extension of the useful life of the deposit, which is of vital importance to the local mining industry.

3.
Waste Manag ; 186: 205-213, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38924981

ABSTRACT

Multilayer film packaging (MLP) waste was decomposed completely at 500 °C. Catalysts were employed to convert residue polymer to waxes via pyrolysis at 500 °C. The activities achieved from using mordenite (Si/Al = 10), H-ZSM-5 (Si/Al = 25), MCM-41, and Al-MCM-41 (Si/Al ratio of 25, 50, and 75) catalysts were studied. The yield and property of the wax were improved with the use of the catalysis with various acidity and porous structure. The low yield of the waxes, when using mordenite and H-ZSM-5 catalysts, was caused by the microporous structure and strong acidic properties of the catalysts resulting in larger amount of gas production. The MCM-41 catalyst modified with various aluminum content raised the wax yield to 60 %. Al-MCM-41(50) produced the largest amount of wax when compared to Al-MCM-41(25), Al-MCM-41(75), and MCM-41. The mild acidity and mesoporous structure of Al-MCM-41(50) significantly enhanced the paraffins structure of the obtained waxes over other structures, while lower Si/Al ratios favored the conversion of paraffins toward olefin structure. The pyrolysis of MLP with Al-MCM-41(50) produced paraffins and olefins with the middle carbon ranging (C11-20) which were similar quality to pharmaceutical grade of petroleum wax. The spent catalysts of Al-MCM-41 series gradually decreased in wax yield and paraffins composition during the sequential MLP pyrolysis; however, the activity of catalysts was recovered after calcination of the spent catalysts. Furthermore, the viscosity of waxes obtained from Al-MCM-41(50) was 2384 Pa.s at 25 °C similar to the viscosity from commercial petroleum jelly base of 2333 Pa.s.


Subject(s)
Pyrolysis , Waxes , Waxes/chemistry , Catalysis , Product Packaging , Refuse Disposal/methods
4.
Materials (Basel) ; 17(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38793483

ABSTRACT

As the Brønsted acid sites in the 8-membered ring (8-MR) of mordenite (MOR) are reported to be the active center for dimethyl ether (DME) carbonylation reaction, it is of great importance to selectively increase the Brønsted acid amount in the 8-MR. Herein, a series of Fe-HMOR was prepared through one-pot hydrothermal synthesis by adding the EDTA-Fe complex into the gel. By combining XRD, FTIR, UV-Vis, Raman and XPS, it was found that the Fe atoms selectively substituted for the Al atoms in the 12-MR channels because of the large size of the EDTA-Fe complex. The NH3-TPD and Py-IR results showed that with the increase in Fe addition from Fe/Si = 0 to 0.02, the Brønsted acid sites derived from Si-OH-Al in the 8-MR first increased and then decreased, with the maximum at Fe/Si = 0.01. The Fe-modified MOR with Fe/Si = 0.01 showed the highest activity in DME carbonylation, which was three times that of HMOR. The TG/DTG results indicated that the carbon deposition and heavy coke formation in the spent Fe-HMOR catalysts were inhibited due to Fe addition. This work provides a practical way to design a catalyst with enhanced catalytic performance.

5.
Molecules ; 29(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611790

ABSTRACT

In this study, pyrazole tartrate (Pya·DL) and tartaric acid (DL) complexed with cobalt-iron bimetallic modified hydrogen-type mordenite (HMOR) were prepared using the ion exchange method. The results demonstrate that the stability of the dimethyl ether (DME) carbonylation reaction to methyl acetate (MA) was significantly improved after the introduction of Pya·DL to HMOR. The Co∙Fe∙DL-Pya·DL-HMOR (0.8) sample exhibited sustainable stability within 400 h DME carbonylation, exhibiting a DME conversion rate of about 70% and MA selectivity of above 99%. Through modification with the DL-complexed cobalt-iron bimetal, the dispersion of cobalt-iron was greatly enhanced, leading to the formation of new metal Lewis acidic sites (LAS) and thus a significant improvement in catalysis activity. Pya·DL effectively eliminated non-framework aluminum in HMOR, enlarged its pore size, and created channels for carbon deposition diffusion, thereby preventing carbon accumulation and pore blockage. Additionally, Pya·DL shielded the Bronsted acid sites (BAS) in the 12 MR channel, effectively suppressing the side reactions of carbon deposition and reducing the formation of hard carbon deposits. These improvements collectively contribute to the enhanced stability of the DME carbonylation reaction.

6.
ACS Appl Mater Interfaces ; 16(15): 18745-18753, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38573811

ABSTRACT

Zeolite-catalyzed dimethyl ether (DME) carbonylation provides a novel route to producing methyl acetate (MeOAc). Mordenite (MOR) has drawn significant interest because of its remarkable MeOAc selectivity in DME carbonylation, albeit with limited catalytic stability. Herein, novel MOR-based DME carbonylation catalysts, distinguished by long-term stability and high activity were successfully developed, based on an H2-promoted benign coke strategy. Both the H2 cofeeds and the presence of metal species with hydrogenation capability are demonstrated to be crucial for the regulation of coke depositions. The coke deposits can potentially cover the acid sites in the 12-MR main channels, thereby mitigating the occurrence of undesirable methanol-to-hydrocarbon side reactions. Meanwhile, the elimination of ultralarge coke species under the assistance of H2 and Cu species could ensure smooth mass transfer within the catalyst, contributing to its remarkable catalytic performance. The most highlighted DME carbonylation performance was achieved on coke-mediated CuZn-HMOR with a high MeOAc yield of 0.4-0.5 g·gcat-1·h-1 for over 520 h (over 50× enhancement versus HMOR), exhibiting promising industrial application potential. The current strategy is expected to inspire further research into zeolite-catalyzed reactions, which could be potentially improved by the presence of benign coke.

7.
Chempluschem ; : e202300446, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38055793

ABSTRACT

Hydrogen sulfide (H2 S) is a hazardous gas found in natural gas and biogas, lethal over 100 ppm. When released into the atmosphere, it can turn into sulfur dioxide. One option to remove H2 S is using porous materials such as zeolites. Among them, mordenite stands out due to its channel structure, wide availability, and low cost. In this work, we evaluated the H2 S adsorption capacity of mordenite using a volumetric static method. The results show the adsorption capacity of H2 S in mordenite varies with the exchanged cation. The highest was measured in Na-mordenite (~4.08 mmol H2 S/g mordenite). The experimental breakthrough curves for this zeolite confirmed Langmuir-type adsorption and strong affinity between Na+ cations and H2 S. Despite this interaction, the XRD diffractograms of Na-mordenite show that the material retained its crystalline structure. More information about the differences in the amount of H2 S adsorbed in the zeolites caused by the change in exchanged cation was obtained by H2 S adsorption followed by FTIR spectroscopy. The spectra show differences in the position of the peaks related to the different adsorption modes of H2 S caused by a change in the polarizing power of the cations due to their charge and position inside the zeolite pores.

8.
Int J Mol Sci ; 24(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37958879

ABSTRACT

Here, we report the results of our 1H nuclear magnetic resonance study of the dynamics of water molecules confined in zeolites (mordenite and ZSM-5 structures) with hierarchical porosity (micropores in zeolite lamella and mesopores formed by amorphous SiO2 in the inter-lamellar space). 1H nuclear magnetic resonance (NMR) spectra show that water experiences complex behavior within the temperature range from 173 to 298 K. The temperature dependence of 1H spin-lattice relaxation evidences the presence of three processes with different activation energies: freezing (about 30 kJ/mol), fast rotation (about 10 kJ/mol), and translational motion of water molecules (23.6 and 26.0 kJ/mol for pillared mordenite and ZSM-5, respectively). For translational motion, the activation energy is markedly lower than for water in mesoporous silica or zeolites with similar mesopore size but with disordered secondary porosity. This indicates that the process of water diffusion in zeolites with hierarchical porosity is governed not only by the presence of mesopores, but also by the mutual arrangement of meso- and micropores. The translational motion of water molecules is determined mainly by zeolite micropores.


Subject(s)
Zeolites , Zeolites/chemistry , Silicon Dioxide/chemistry , Water/chemistry , Magnetic Resonance Spectroscopy/methods
9.
ACS Catal ; 13(3): 1906-1915, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-37377676

ABSTRACT

The industrial implementation of a direct methane to methanol process would lead to environmental and economic benefits. Copper zeolites successfully execute this reaction at relatively low temperatures, and mordenite zeolites in particular enable high methanol production. When loaded to a Cu/Al ratio of 0.45, mordenite (Si/Al 5 to 9) has been shown to host three active sites: two [CuOCu]2+ sites labeled MOR1 and MOR2, and a mononuclear [CuOH]+ site. Also at low copper loadings (Cu/Al < 0.20), mordenite has been demonstrated to activate methane, but its active site has never been reported. Here, we investigate Na+ mordenite with varying copper loadings to better understand copper speciation in mordenite. At low copper loadings, we uncover an unidentified active site ('MOR3') with a strong overlap with the [CuOH]+ site's spectroscopic signal. By changing the co-cation, we selectively speciate more MOR3 relative to [CuOH]+, allowing its identification as a [CuOCu]2+ site. Active site identification in heterogeneous catalysts is a frequent problem due to signal overlap. By changing cation composition, we introduce an innovative method for simplifying a material to allow better analysis. This has implications for the study of Cu zeolites for methane to methanol and NOx catalysis, but also for studying and tuning heterogeneous catalysts in general.

10.
Nanomaterials (Basel) ; 13(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242019

ABSTRACT

In the present work, natural mordenite originated from volcanic soils in Greek islands, activated using HCl solution and HCl solution followed by NaOH solution, was used as support for preparing two metallic nickel catalysts (30 wt.% Ni). The catalysts were thoroughly characterized (XRF, N2 adsorption-desorption, SEM, XRD, TEM, H2-TPR, NH3-TPD) and evaluated for biodiesel upgrading to green (renewable) diesel. Double activation of natural mordenite optimized its supporting characteristics, finally resulting in a supported nickel catalyst with (i) enhanced specific surface area (124 m2 g-1) and enhanced mean pore diameter (14 nm) facilitating mass transfer; (ii) easier nickel phase reduction; (iii) enhanced Ni0 dispersion and thus high active surface; (iv) balanced population of moderate and strong acid sites; (v) resistance to sintering; and (vi) low coke formation. Over the corresponding catalyst, the production of a liquid consisting of 94 wt.% renewable diesel was achieved, after 9 h of reaction at 350 °C and 40 bar H2 pressure, in a semi-batch reactor under solvent-free conditions.

11.
Materials (Basel) ; 16(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37109861

ABSTRACT

The formation and properties of silver and iron nanoscale components in the Ag-Fe bimetallic system deposited on mordenite depend on several parameters during their preparation. Previously, it was shown that an important condition for optimizing nano-center properties in a bimetallic catalyst is to change the order of sequential deposition of components; the order "first Ag+, then Fe2+" was chosen as optimal. In this work, the influence of exact Ag/Fe atomic proportion on the system's physicochemical properties was studied. This ratio has been confirmed to affect the stoichiometry of the reduction-oxidation processes involving Ag+ and Fe2+, as shown by XRD, DR UV-Vis, XPS, and XAFS data, while HRTEM, SBET and TPD-NH3 show little change. However, it was found the correlation between the occurrence and amount of the Fe3+ ions incorporated into the zeolite's framework and the experimentally determined catalytic activities towards the model de-NOx reaction along the series of nanomaterials elucidated in this present paper.

12.
Article in English | MEDLINE | ID: mdl-37010684

ABSTRACT

In this work, post-synthetic effective acid (HNO3) and base (NaOH) etching technique are used to create hierarchical mordenite having different pore structure. The powder X-ray diffraction (P-XRD) technique was used to confirm the crystalline structure of the base-modified and acid-modified mordenite. Field emission-scanning electron microscope (FE-SEM) was employed to confirm the structural morphology of the materials. The modified mordenite was further characterised by inductive coupled plasma-optical emission spectrometry (ICP-OES), N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), and acid-base titration, to confirm the structural integrity, presence of active acidic sites, and other vital parameters. The structure was well conserved after the change, as evidenced by the characterisation. The toluene benzylation with benzyl alcohol using hierarchical mordenite and H-mordenite produced mono-benzylated toluene. Comparison between acid treated, base treated, and H-mordenite was done. All samples were catalytically active as proved by the catalytic result in the benzylation reaction. The results show that the base alteration dramatically enhances the mesoporous surface area of H-mordenite. Furthermore, the acid-treated mordenite had the highest benzyl alcohol conversion (75%), but the base-modified mordenite had benzyl alcohol conversion of 73% with the highest mono-benzylated toluene selectivity (61%). The process was further optimised by varying the reaction temperature, duration, and catalyst quantity. Gas chromatography (GC) was used to evaluate the reaction products and gas chromatography-mass spectrometry (GC-MS) was used to confirm them. Introduction of mesoporosity in the microporous mordenite was found to have significant effect on their catalytic activity.

13.
Environ Sci Pollut Res Int ; 30(10): 28238-28246, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36401004

ABSTRACT

The H2O2 evaporation rate directly affected the oxidation of NO by H2O2. Green zeolite and synthetic mordenite were selected to promote H2O2 thermal decomposition and NO oxidation. The effects of different zeolites, evaporation conditions, temperatures, and reactant concentrations on the NO oxidation ratio were explored. The promotion mechanism of zeolite on NO oxidation by H2O2 thermal decomposition was explained. The results show that the zeolite surface can significantly accelerate the H2O2 evaporation rate to obtain a high NO oxidation ratio. The hydrophilicity and rich pore structure of zeolite enable the rapid diffusion and evaporation of droplets on the zeolite surface. Compared with the green zeolite with the mesoporous structure, the synthetic mordenite with the hierarchical pore structure has a more obvious promotion effect on the NO oxidation by H2O2 thermal decomposition. The reason is that the synthetic mordenite contains micropores, resulting in a larger specific surface area, and the mesoporous structure is conducive to the mass transfer and diffusion of H2O2 on its surface. The product of NO oxidation is mainly NO2, which proves that ·OH plays a major role in the process.


Subject(s)
Zeolites , Zeolites/chemistry , Hydrogen Peroxide/chemistry , Aluminum Silicates/chemistry , Oxidation-Reduction
14.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35957053

ABSTRACT

Mordenite is a well-known zeolite widely used for industrial processes. However, its pore architecture can be inconvenient due to diffusional issues. A study of the synthesis parameters from an organic-free dense gel was carried out to control the crystal morphology, which resulted in finned mordenite zeolite particles. The obtained materials were characterized by XRD, FTIR, 29Si and 27Al MAS-NMR, elemental analysis, nitrogen physisorption, SEM, and TEM. We found that careful manipulation of the hydrothermal parameters directly affected the sizes and morphologies of the crystallites and particles, as well as the textural properties of the final products. Additionally, it was found that mordenite could exhibit a fin morphology with additional mesoporosity, which is a promising means to reduce the diffusional problems of one-dimensional-channel zeolites.

15.
Materials (Basel) ; 15(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806778

ABSTRACT

The present study evaluates the feasibility of partially dealuminated natural mordenite as a catalyst support by studying improvement in its textural properties. This is the first study that reports the dealumination of natural zeolite-based tuffs from Ecuador. For this purpose, mordenite-rich tuffs were obtained from deposits close to Guayaquil, Ecuador. The raw material was micronized in order to increase its surface, and treated with NH4Cl. NH4+ cation-exchanged samples were finally reacted with HCl(aq) to complete the dealumination process. The partially dealuminated samples were characterized using techniques such as XRD, FT-IR, SEM-EDS, and identification of their textural properties. Dealumination with HCl(aq) increased the Si/Al ratio up to 9 and kept the crystallographic structure of natural mordenite, as XRD results showed that the structure of mordenite was not altered after the dealumination process. On the other hand, textural properties such as surface area and microporosity were improved as compared to natural mordenite. In view of these results, the feasibility of using natural mordenite as a catalyst support is discussed in this study.

16.
Angew Chem Int Ed Engl ; 61(31): e202203859, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35638158

ABSTRACT

The selective conversion of methane to high value-added chemicals under mild conditions is of great significance for the commercially viable and sustainable utilization of methane but remains a formidable challenge. Herein, we report a strategy for efficiently converting methane to acetic acid via CH3 Cl as an intermediate. Up to 99.3 % acetic acid and methyl acetate (AA+MA) selectivity was achieved over pyridine-pretreated MOR (MOR-8) under moderate conditions of 523 K and 2.0 MPa. Water, conventionally detrimental to carbonylation reaction over zeolite catalysts, was conducive to the production of AA in the current reaction system. In the 100 h continuous test with the MOR-8 catalyst, the average AA+MA selectivity remained over 98 %. AA was formed by carbonylation of methoxy groups within 8-membered rings of MOR followed by hydrolysis. This strategy provided an approach for highly efficient utilization of methane to oxygenates under mild reaction conditions.

17.
J Environ Radioact ; 244-245: 106824, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35121278

ABSTRACT

Both granular activated carbon (GAC) and silver mordenite (AgM) are utilized for the removal of contaminants and radionuclides (e.g., radioiodine) from off-gas streams in nuclear fuel reprocessing and high temperature immobilization of nuclear waste. Following their service lifetimes, the GAC and AgM contain an inventory of contaminants and radionuclides and require stabilization in a matrix for disposal. GAC and AgM are referred to as solid secondary waste (SSW) materials. Cementitious waste forms can be used as the stabilization matrix for SSW, however, for successful stabilization, the inclusion of GAC and AgM should not negatively impact the physical behavior of the cementitious waste form or increase release of the contaminants/radionuclides compared to the baseline case without stabilization. The present work focuses on evaluation of cement formulations, with and without slag, for the stabilization of iodine-loaded GAC or AgM. The results showed that both a slag-containing and slag-free formulations were able to stabilize GAC and AgM, up to 30 vol%, without deleterious impacts on the bulk physical properties of the encapsulating matrix. When monolithic samples of the GAC or AgM containing cement formulations were subjected to leach tests, it was observed that iodide leached from the SSW) had limited sorption to either of the cement matrices. Nonetheless, the iodine can interact with the SSW materials themselves. Specifically, iodine retention within monolithic samples containing the iodine-loaded GAC or AgM was improved for AgM containing waste forms while no improvement was observed for the GAC containing waste forms. The improvement for the AgM containing waste forms was likely due to an enrichment of Ag at the interface between the AgM particles and the cement matrix that can impede iodine migration out from the waste form. The results are significant in highlighting the potential for long-term retention of iodine in specific cementitious waste forms.


Subject(s)
Iodine , Radiation Monitoring , Aluminum Silicates , Charcoal , Iodides , Iodine Radioisotopes , Silver
18.
Front Chem ; 10: 1078668, 2022.
Article in English | MEDLINE | ID: mdl-36712985

ABSTRACT

The reprocessing used nuclear fuel (UNF) releases volatile fission and activation products, including 129I, into the off-gas of a processing plant. Mitigation of the release of vapor phase radionuclides is necessary for meeting regulatory requirements in the United States and other countries. In an aqueous reprocessing plant, volatile radioiodine could be present in several forms, depending on the chemistry of the process used. Inorganic iodine will be the predominate species in any shearing or voloxidation pretreatment off-gas and dissolver off-gas (DOG). Organic iodides such as CH3I, C4H9I, and C12H25I have been proposed to be generated during solvent extraction; thus, these species must be captured from the vessel off-gas (VOG). The abatement of inorganic and organic iodide species to meet United States regulatory requirements has been demonstrated in laboratory experiments using Ag-based solid sorbents. The data presented in this paper includes the effect of gas composition (e.g., the presence of water vapor and NO x ), iodine speciation (I2, CH3I, C4H9I, C12H25I), and sorbent bed parameters (e.g., temperature, sorbent age) on complete iodine capture on Ag-mordenite in an aqueous reprocessing plant.

19.
Materials (Basel) ; 16(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36614559

ABSTRACT

Multimetallic systems, instead of monometallic systems, have been used to develop materials with diverse supported species to improve their catalytic, antimicrobial activity, etc., properties. The changes in the types of nanospecies obtained through the thermal reduction of ternary Ag+-Cu2+-Zn2+/mordenite systems in hydrogen, followed by their cooling in an air or hydrogen atmosphere, were studied. Such combinations of trimetallic systems with different metal content, variable ratios (between them), and alternating atmosphere types (during the cooling after reducing the samples in hydrogen at 350 °C) lead to diversity in the obtained copper and silver nanospecies. No reduction of Zn2+ was evidenced. A low silver content leads to the formation of reduced silver clusters, while the formation of nanoparticles of a bigger size takes place in the trimetallic samples with high silver content. The cooling of the reduced trimetallic samples in the air causes the oxidation of the obtained metallic clusters and silver and copper nanoparticles. In the case of copper, such conditions lead to the formation of mainly copper (II) oxide, while the silver nanospecies are converted mainly into clusters and nanoparticles. The zinc cations provoked changes in the mordenite matrix, which was associated with the formation of point oxygen defects in the mordenite structure and the formation of surface zinc oxide sub-nanoparticles in the samples cooled in the air.

20.
Angew Chem Int Ed Engl ; 60(49): 25891-25896, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34582094

ABSTRACT

A series of gas-phase reactants is used to treat a Cu-exchanged mordenite zeolite with the aim of studying the influence of the reaction environment on the formation of Cu pairs. The rearrangement of Cu ions to form multimeric sites as a function of their oxidation state was probed by X-ray absorption spectroscopy (XAS) and also by applying advanced analysis through wavelet transform, a method able to specifically locate Cu-Cu interactions also in the presence of overlapping contributions from other scattering paths. The nature of the Cu-oxo species formed upon oxidation was further crosschecked by DFT-assisted fitting of the EXAFS data and by resonant Raman spectroscopy. Altogether, the CuI /CuII speciation clearly correlates with Cu proximity, with metal ion pairs quantitatively forming under an oxidative environment.

SELECTION OF CITATIONS
SEARCH DETAIL