Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Psychiatry Res Neuroimaging ; 343: 111847, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968754

ABSTRACT

BACKGROUND: While prior studies have explored the efficacy of Morinda officinalis oligosaccharides (MOs) as a treatment for patients with major depressive disorder (MDD), the mechanistic basis for the effects of MOs on brain function or the default-mode network (DMN) has yet to be characterized. The objective of this was to examine the effects of MOs treatment on functional connectivity in different regions of the DMN. METHODS: In total, 27 MDD patients and 29 healthy control subjects (HCs) underwent resting-state functional magnetic resonance imaging. The patients were then treated with MOs for 8 weeks, and scanning was performed at baseline and the end of the 8-week treatment period. Changes in DMN homogeneity associated with MOs treatment were assessed using network homogeneity (NH) analyses of the imaging data, and pattern classification approaches were employed to determine whether abnormal baseline NH deficits could differentiate between MDD patients and controls. The ability of NH abnormalities to predict patient responses to MOs treatment was also evaluated. RESULTS: Relative to HCs, patients exhibited a baseline reduction in NH values in the right precuneus (PCu). At the end of the 8-week treatment period, the MDD patients showed reduced and increased NH values in the right PCu and left superior medial frontal gyrus (SMFG), respectively. Compared to these patients at baseline, the 8-week MOs treatment was associated with reduced NH values in the right angular gyrus and increased NH values in the left middle temporal gyrus and the right PCu. Support vector machine (SVM) analyses revealed that NH abnormalities in the right PCu and left SMFG were the most accurate (87.50%) for differentiating between MDD patients and HCs. CONCLUSION: These results indicated that MOs treatment could alter default-mode NH in patients with MDD. The results provide a foundation for elucidation of the effects of MOs on brain function and suggest that the distinctive NH patterns observed in this study may be useful as imaging biomarkers for distinguishing between patients with MDD and healthy subjects.

2.
J Ethnopharmacol ; 328: 118124, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38556138

ABSTRACT

ETHNOPHAMACOLOGICAL RELEVANCE: Morinda officinalis oligosaccharides (MOs) is a mixture of oligosaccharides extracted from the roots of Morinda officinalis (MO). It is approved by Chinese Food and Drug Administration (CFDA) for depression treatment. MOs could improve the antidepressant efficacy of escitalopram in clinic. AIM OF THE STUDY: We aim to explore the antidepressant activity and potential mechanism of the combination usage of MOs and escitalopram on animal model of depression. MATERIALS AND METHODS: Depressive animal model was induced by chronic mild stress (CMS). Behavioral tests were conducted to evaluate the antidepressant efficacy of MOs and escitalopram. Serum neurotransmitter levels were detected by High-performance liquid chromatography (HPLC). Quantitative real-time PCR and Western blotting were applied to assay the hippocampus neurotrophic factors' mRNA and protein levels. Peripheral cytokines levels were measured through Enzyme-Linked Immunosorbent Assay (ELISA). Micorglia polization phenotype was assayed by immunofluorescence and flow cytometry. RESULTS: MOs and escitalopram obviously attenuated depression-like behaviors of CMS mice. Importantly, MOs plus escitalopram exhibited better antidepressant activity on CMS mice than monotherapy. At the same time, MOs combined escitalopram treatment significantly increased hippocampus neurotransmitters and neurotrophic factor levels, stimulated hippocampus neurogenesis and relieved central nervous system (CNS) microglia over-activation of CMS mice. The combination therapy had greater effect on neuroprotection and inflammation attenuation of CMS mice than monotherapy. CONCLUSION: Our results indicates MOs combined escitalopram might produce antidepressant activity through protecting neuron activity, relieving inflammation and modulating microglia polarization process.


Subject(s)
Escitalopram , Morinda , Mice , Animals , Depression/drug therapy , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Oligosaccharides/pharmacology , Oligosaccharides/therapeutic use , Inflammation/drug therapy , Stress, Psychological/drug therapy , Disease Models, Animal
3.
Chem Biodivers ; 21(5): e202400506, 2024 May.
Article in English | MEDLINE | ID: mdl-38507138

ABSTRACT

Acute lung injury (ALI) is a disease characterized by extensive lung damage and rampant inflammation, with a high mortality rate and no effective treatments available. Morinda officinalis oligosaccharides (MOOs), derived from the root of the traditional Chinese medicinal herb Morinda officinalis, known for its immune-boosting properties, presents a novel therapeutic possibility. To date, the impact of MOOs on ALI has not been explored. Our study aimed to investigate the potential protective effects of MOOs against ALI and to uncover the underlying mechanisms through an integrated approach of network pharmacology, molecular docking, and experimental validation. We discovered that MOOs significantly mitigated the pathological damage and decreased the expression of pro-inflammatory cytokines in LPS-induced ALI in mice. Complementary in vitro studies further demonstrated that MOOs effectively attenuated the M1 polarization induced by LPS. Network pharmacology analysis identified HSP90AA1, HSP90AB1, and NF-κB as key overlapping targets within a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses elucidated the biological processes and signaling pathways implicated in MOOs' therapeutic action on ALI. Subsequently, molecular docking affirmed the binding of MOOs to the active sites of these identified targets. Corroborating these findings, our in vivo and in vitro experiments consistently demonstrated that MOOs significantly inhibited the LPS-induced upregulation of HSP90 and NF-κB. Collectively, these findings suggest that MOOs confer protection against ALI through a multi-target, multi-pathway mechanism, offering a promising new therapeutic strategy to mitigate this severe pulmonary condition.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Molecular Docking Simulation , Morinda , Oligosaccharides , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Animals , Morinda/chemistry , Mice , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Oligosaccharides/isolation & purification , Male , RAW 264.7 Cells , Mice, Inbred C57BL , Cytokines/metabolism , NF-kappa B/metabolism
4.
J Neuroinflammation ; 20(1): 31, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36765376

ABSTRACT

OBJECTIVE: Patients with hypertension have a risk of depression. Morinda officinalis oligosaccharides (MOOs) have anti-depressant properties. In this study, we aimed to determine whether MOOs can improve the symptoms of depression in individuals with hypertension. METHODS: Dahl salt-sensitive rats fed with a high-salt diet were stimulated by chronic unpredictable mild stress to mimic hypertension with depression. Primary astrocytes and neurons were isolated from these rats. Astrocytes underwent LPS stimulation to simulate the inflammatory astrocytes during depression. MOOs were administrated at 0.1 mg/g/day in vivo and 1.25, 2.5, and 5 mg/mL in vitro. Mitophagy was inhibited using 5 mM 3-methyladenine (3-MA). Astrocyte-mediated neurotoxicity was detected by co-culturing astrocytes and neurons. RESULTS: MOOs decreased systolic pressure, diastolic pressure, and mean arterial pressure, thereby improving depression-like behavior, including behavioral despair, lack of enthusiasm, and loss of pleasure during hypertension with depression. Furthermore, MOOs inhibited inflammation, astrocytic dysfunction, and mitochondrial damage in the brain. Then, MOOs promoted autophagosome and lysosome enriched in mitochondria in LPS-stimulated astrocytes. MOOs suppressed mitochondrial damage and the release of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1ß in astrocytes undergoing LPS stimulation. Importantly, MOOs rescued the impaired neurons co-cultured with astrocytes. The effects of MOOs on LPS-stimulated astrocytes were reversed by 3-MA. Finally, MOOs upregulated LPS-downregulated Mfn2 expression in astrocytes. Mfn2 inhibition partly reversed the effects of MOOs on hypertension with depression. Intriguingly, Mfn2 suppression activated PI3K/Akt/mTOR pathway during MOOs treatment. CONCLUSIONS: Astrocytes develop neuroinflammation in response to mitochondrial damage during hypertension with depression. MOOs upregulated Mfn2 expression to activate the PI3K/Akt/mTOR pathway-mediated mitophagy, thereby removing impaired mitochondria in astrocytes. HIGHLIGHTS: 1. MOOs have anti-hypertensive and anti-depressive properties. 2. MOOs inhibit inflammation and injury in astrocytes during hypertension with depression. 3. MOOs induce mitophagy activation in inflammatory astrocytes with mitochondrial damage. 4. MOOs upregulate Mfn2 expression in astrocytes. 5. Mfn2 activates mitophagy to resist mitochondrial damage in astrocytes.


Subject(s)
Hypertension , Morinda , Rats , Animals , Mitophagy , Depression/drug therapy , Depression/etiology , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Rats, Inbred Dahl , Inflammation/metabolism , Interleukin-6/metabolism , Hypertension/metabolism , TOR Serine-Threonine Kinases/metabolism , Oligosaccharides/metabolism , Oligosaccharides/pharmacology , Astrocytes/metabolism
5.
Front Pharmacol ; 13: 855964, 2022.
Article in English | MEDLINE | ID: mdl-36052143

ABSTRACT

Morinda officinalis oligosaccharides (MOs) are natural herbal extracts that have been shown to exert antidepressant effects. However, the mechanism of this effect remains unclear. Here, we explored the mechanism by which MOs improved experimental depression. Using a chronic mild stress (CMS) murine model, we examined whether MOs could protect against depressive-like behaviour. Lipopolysaccharide (LPS)- and ATP-treated BV2 cells were used to examine the potential mechanism by which MOs mediate the inflammatory response. We found that MOs prevented the CMS-induced reduction in the sucrose preference ratio in the sucrose preference test (SPT) and shortened the immobility durations in both the tail suspension test (TST) and forced swim test (FST). We also noticed that MOs suppressed inflammatory effects by deactivating the MyD88/PI3K pathway via E2F2 in CMS mice or LPS- and ATP-stimulated BV2 cells. Furthermore, overexpression of E2F2 blunted the beneficial effects of MOs in vitro. Collectively, these data showed that MOs exerted antidepressant effects in CMS mice by targeting E2F2-mediated MyD88/PI3K signalling pathway.

6.
Acta Pharm Sin B ; 12(8): 3298-3312, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35967282

ABSTRACT

Morinda officinalis oligosaccharides (MOO) are an oral drug approved in China for the treatment of depression in China. However, MOO is hardly absorbed so that their anti-depressant mechanism has not been elucidated. Here, we show that oral MOO acted on tryptophan â†’ 5-hydroxytryptophan (5-HTP) â†’ serotonin (5-HT) metabolic pathway in the gut microbiota. MOO could increase tryptophan hydroxylase levels in the gut microbiota which accelerated 5-HTP production from tryptophan; meanwhile, MOO inhibited 5-hydroxytryptophan decarboxylase activity, thus reduced 5-HT generation, and accumulated 5-HTP. The raised 5-HTP from the gut microbiota was absorbed to the blood, and then passed across the blood-brain barrier to improve 5-HT levels in the brain. Additionally, pentasaccharide, as one of the main components in MOO, exerted the significant anti-depressant effect through a mechanism identical to that of MOO. This study reveals for the first time that MOO can alleviate depression via increasing 5-HTP in the gut microbiota.

7.
CNS Neurosci Ther ; 27(12): 1570-1586, 2021 12.
Article in English | MEDLINE | ID: mdl-34559953

ABSTRACT

AIMS: Morinda officinalis oligosaccharides (MOOs), a traditional Chinese medicine, have been used to treat mild and moderate depressive episodes. In this study, we investigated whether MOOs can ameliorate depressive-like behaviors in post-stroke depression (PSD) rats and further explored its mechanism by suppressing microglial NLRP3 inflammasome activation to inhibit hippocampal inflammation. METHODS: Behavioral tests were performed to evaluate the effect of MOOs on depressive-like behaviors in PSD rats. The effects of MOOs on the expression of IL-18, IL-1ß, and nucleotide-binding domain leucine-rich repeat (NLR) family pyrin domain containing 3 (NLRP3) inflammasome were measured in both PSD rats and lipopolysaccharide (LPS) and adenosine triphosphate (ATP) stimulated primary rat microglia by reverse transcription polymerase chain reaction (RT-PCR), immunofluorescence and Western blot analysis. Adeno-associated virus (AAV) was injected into the hippocampus to regulate NLRP3 inflammasome expression. The detailed molecular mechanism underlying the effects of MOOs was analyzed by Western blot and immunofluorescence. RESULTS: MOOs can alleviate depressive-like behaviors in PSD rats. PSD rats showed increased expression of IL-18, IL-1ß, and NLRP3 inflammasome in the ischemic hippocampus, while MOOs reversed the elevation. NLRP3 downregulation ameliorated depressive-like behaviors and hippocampal inflammation response in PSD rats, while NLRP3 upregulation inhibited the effect of MOOs on depressive-like behaviors and hippocampal inflammation response in PSD rats. Moreover, we found that NLRP3 was mainly expressed on microglia. In vitro, MOOs effectively inhibited the expression of IL-18, IL-1ß, and NLRP3 inflammasome in LPS + ATP treated primary rat microglia. We also showed that modulation of NLRP3 inflammasome by MOOs was associated with the IκB/NF-κB p65 signaling pathway. CONCLUSION: Overall, our study reveals the antidepressive effect of MOOs on PSD rats through modulation of microglial NLRP3 inflammasome. We also provide a novel insight into hippocampal inflammation response in PSD pathology and put forward NLRP3 inflammasome as a potential therapeutic target for PSD.


Subject(s)
Antidepressive Agents/pharmacology , Depression/drug therapy , Drugs, Chinese Herbal/pharmacology , Hippocampus/drug effects , Inflammasomes/drug effects , Morinda , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , Neuroinflammatory Diseases/drug therapy , Stroke/complications , Animals , Antidepressive Agents/administration & dosage , Behavior, Animal/drug effects , Depression/etiology , Disease Models, Animal , Drugs, Chinese Herbal/administration & dosage , Male , Rats , Rats, Sprague-Dawley
8.
FASEB J ; 34(10): 13376-13395, 2020 10.
Article in English | MEDLINE | ID: mdl-32812265

ABSTRACT

Poststroke depression (PSD) is one of the most common psychiatric diseases afflicting stroke survivors, yet the underlying mechanism is poorly understood. The pathophysiology of PSD is presumably multifactorial, involving ischemia-induced disturbance in the context of psychosocial distress. The homeostasis of glucose metabolism is crucial to neural activity. In this study, we showed that glucose consumption was decreased in the medial prefrontal cortex (mPFC) of PSD rats. The suppressed glucose metabolism was due to decreased glucose transporter-3 (GLUT3) expression, the most abundant and specific glucose transporter of neurons. We also found Morinda officinalis oligosaccharides (MOOs), approved as an antidepressive Chinese medicine, through upregulating GLUT3 expression in the mPFC, improved glucose metabolism, and enhanced synaptic activity, which ultimately ameliorated depressive-like behavior in PSD rats. We further confirmed the mechanism that MOOs induce GLUT3 expression via the PKA/pCREB pathway in PSD rats. Our work showed that MOOs treatment is capable of restoring GLUT3 level to improve depressive-like behaviors in PSD rats. We also propose GLUT3 as a potential therapeutic target for PSD and emphasize the importance of metabolism disturbance in PSD pathology.


Subject(s)
Antidepressive Agents , Depressive Disorder/drug therapy , Glucose Transporter Type 3/metabolism , Morinda/chemistry , Oligosaccharides , Prefrontal Cortex/drug effects , Stroke/complications , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Cells, Cultured , Depressive Disorder/etiology , Depressive Disorder/metabolism , Glucose/metabolism , Male , Neurons/drug effects , Neurons/metabolism , Oligosaccharides/pharmacology , Oligosaccharides/therapeutic use , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Primary Cell Culture , Rats , Rats, Sprague-Dawley
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-701206

ABSTRACT

AIM:To explore the protective effect of morinda officinalis oligosaccharides monomer HexB on hy -poxia/reoxygenation(H/R)-induced injury in human umbilical vein endothelia cells(HUVECs).METHODS:HUVECs were treated with HexB,4-phenylbutyric acid(4-PBA)and thapsigargin(TG),respectively.The cells were divided into control group,HexB group,H/R group,HexB+H/R group,4-PBA+H/R group,TG group and HexB+TG group.The cell viability was measured by CCK-8 assay.The apoptotic rate was detected by flow cytometry.Western blot was used to determine the protein levels of endoplasmic reticulum stress(ERS)related molecules chaperone protein glucose-regulated protein 78(GRP78),C/EBP homologous protein(CHOP),apoptosis-related protein caspase-12 and phosphorylated c-Jun NH2-terminal kinase(p-JNK).RESULTS: The viability of HUVECs was reduced in H/R group and TG group(P<0.05),increased in HexB+H/R,4-PBA+H/R and HexB+TG group(P<0.05).The apoptotic rate,the protein levels of GRP78,CHOP,caspase-12 and p-JNK were increased in H/R group and TG group(P<0.05),weakened in the HexB+H/R group(P<0.05),4-PBA+H/R group and HexB+TG group(P<0.05).No significant change in the apoptotic rate,cell viability,protein levels of GRP78, CHOP, caspase-12, p-JNK between HexB +H/R group and 4-PBA+H/R group was observed.CONCLUSION:HexB attenuates HUVECs injury caused by H/R through suppressing ERS and ap-optosis.The possible mechanism may be involved in the apoptotic pathways related to GRP 78,CHOP,caspase-12 and p-JNK.

10.
Int J Neuropsychopharmacol ; 20(1): 83-93, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27729466

ABSTRACT

Background: Morinda officinalis oligosaccharides have been reported to exert neuroprotective and antidepressant-like effects in the forced swim test in mice. However, the mechanisms that underlie the antidepressant-like effects of Morinda officinalis oligosaccharides are unclear. Methods: Chronic unpredictable stress and forced swim test were used to explore the antidepressant-like effects of Morinda officinalis oligosaccharides and resilience to stress in rats. The phosphoinositide-3 kinase inhibitor LY294002 was microinjected in the medial prefrontal cortex to explore the role of glycogen synthase kinase-3ß in the antidepressant-like effects of Morinda officinalis oligosaccharides. The expression of brain-derived neurotrophic factor, phosphorylated-Ser9-glycogen synthase kinase 3ß, ß-catenin, and synaptic proteins was determined in the medial prefrontal cortex and the orbitofrontal cortex by western blot. Results: We found that Morinda officinalis oligosaccharides effectively ameliorated chronic unpredictable stress-induced depression-like behaviors in the sucrose preference test and forced swim test. The Morinda officinalis oligosaccharides also significantly rescued chronic unpredictable stress-induced abnormalities in the brain-derived neurotrophic factor-glycogen synthase kinase-3ß-ß-catenin pathway and synaptic protein deficits in the medial prefrontal cortex but not orbitofrontal cortex. The activation of glycogen synthase kinase-3ß by the phosphoinositide-3 kinase inhibitor LY294002 abolished the antidepressant-like effects of Morinda officinalis oligosaccharides in the forced swim test. Naïve rats that were treated with Morinda officinalis oligosaccharides exhibited resilience to chronic unpredictable stress, accompanied by increases in the expression of brain-derived neurotrophic factor, phosphorylated-Ser9-glycogen synthase kinase-3ß, and ß-catenin in the medial prefrontal cortex. Conclusion: Our findings indicate that the brain-derived neurotrophic factor-glycogen synthase kinase-3ß-ß-catenin pathway in the medial prefrontal cortex may underlie the antidepressant-like effect of Morinda officinalis oligosaccharides and resilience to stress.


Subject(s)
Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Oligosaccharides/pharmacology , Prefrontal Cortex/drug effects , beta Catenin/metabolism , Animals , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Disease Models, Animal , Male , Morinda , Prefrontal Cortex/metabolism , Rats, Sprague-Dawley , Resilience, Psychological/drug effects , Stress, Psychological/drug therapy , Stress, Psychological/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...