Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 359
Filter
1.
Micromachines (Basel) ; 15(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38793158

ABSTRACT

As a cutting-edge technology, animal robots based on living organisms are being extensively studied, with potential for diverse applications in the fields of neuroscience, national security, and civil rescue. However, it remains a significant challenge to reliably control the animal robots with the objective of protecting their long-term survival, and this has seriously hindered their practical implementation. To address this issue, this work explored the use of a bio-friendly neurostimulation system that includes integrated stimulation electrodes together with a remote wireless stimulation circuit to control the moving behavior of rat robots. The integrated electrodes were implanted simultaneously in four stimulation sites, including the medial forebrain bundle (MFB) and primary somatosensory cortex, barrel field (S1BF). The control system was able to provide flexibility in adjusting the following four stimulation parameters: waveform, amplitude, frequency, and duration time. The optimized parameters facilitated the successful control of the rat's locomotion, including forward movement and left and right turns. After training for a few cycles, the rat robots could be guided along a designated route to complete the given mission in a maze. Moreover, it was found that the rat robots could survive for more than 20 days with the control system implanted. These findings will ensure the sustained and reliable operation of the rat robots, laying a robust foundation for advances in animal robot regulation technology.

2.
J Mot Behav ; : 1-14, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735557

ABSTRACT

When one directs their attention to an intended effect (external focus of attention, EFOA), motor performance is generally better than when one directs their attention to their own body movements (internal focus of attention, IFOA). However, the effect of attentional focus is unclear when a skill is practiced through motor imagery (MI) in the absence of physical trials. Participants (N = 30, M = 22.33 yrs, SD = 2.69) in the present study completed three physical trials of a reciprocal aiming task before and (24-h) after MI practice. During MI practice, the EFOA (n = 15) and IFOA (n = 15) groups mentally practiced the task with no physical practice with EFOA-MI or IFOA-MI, respectively, for three consecutive days. Our results showed that both groups significantly improved in accuracy (F1,28 = 6.49, p = .017), supporting the benefit of MI in motor skill acquisition. However, a significant effect of attentional focus was not observed (F1.,28 = 0.445, p = 0.51). We discussed two potential explanations: EFOA/IFOA requires physical trials to affect performance, or individuals must use both EFOA and IFOA in the process of creating imagery of the environment and movements, which may obscure the effect of EFOA and IFOA.

3.
Epilepsy Behav ; 157: 109866, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38820680

ABSTRACT

Natural compounds are increasingly being studied for their potential neuroprotective effects against inflammatory neurological diseases. Epilepsy is a common neurological disease associated with inflammatory processes, and around 30% of people with epilepsy do not respond to traditional treatments. Some flavonoids, when taken along with antiseizure medications can help reduce the likelihood of drug-resistant epilepsy. Baicalin, a plant-based compound, has been shown to possess pharmacological properties such as anti-inflammatory, neuroprotective, anticonvulsant, and antioxidant activities. In this study, we tested the effect of baicalin on an established model of pharmacologically induced seizure in zebrafish using measures of both locomotor behavior and calcium imaging of neuronal activity. The results of our study showed that, at the tested concentration, and contrary to other studies in rodents, baicalin did not have an anti-seizure effect in zebrafish larvae. However, given its known properties, other concentrations and approaches should be explored to determine if it could potentially have other beneficial effects, either alone or when administered in combination with classic antiseizure medications.

4.
Sci Total Environ ; 930: 172425, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38643874

ABSTRACT

Aedes albopictus, a virus-vector pest, is primarily controlled through the use of insecticides. In this study, we investigated the mechanisms of resistance in Ae. albopictus in terms of chlorpyrifos neurotoxicity to Ae. albopictus and its effects on the olfactory system. We assessed Ca2+-Mg2+-ATP levels, choline acetyltransferase (ChAT), Monoamine oxidase (MAO), odorant-binding proteins (OBPs), and olfactory receptor (OR7) gene expression in Ae. albopictus using various assays including Y-shaped tube experiments and DanioVision analysis to evaluate macromotor behavior. Our findings revealed that cumulative exposure to chlorpyrifos reduced the activity of neurotoxic Ca2+-Mg2+-ATPase and ChAT enzymes in Ae. albopictus to varying degrees, suppressed MAO-B enzyme expression, altered OBPs and OR7 expression patterns, as well as affected evasive response, physical mobility, and cumulative locomotor time under chlorpyrifos stress conditions for Ae. albopictus individuals. Consequently, these changes led to decreased feeding ability, reproductive capacity, and avoidance behavior towards natural enemies in Ae. albopictus populations exposed to chlorpyrifos stressors over time. To adapt to unfavorable living environments, Ae. albopictus may develop certain tolerance mechanisms against organophosphorus pesticides. This study provides valuable insights for guiding rational insecticide usage or dosage adjustments targeting the nervous system of Ae. albopictus.


Subject(s)
Aedes , Chlorpyrifos , Insecticides , Animals , Chlorpyrifos/toxicity , Aedes/drug effects , Insecticides/toxicity , Insecticide Resistance/genetics , Pesticide Residues
5.
Brain Sci ; 14(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38671991

ABSTRACT

Pigeons have natural advantages in robotics research, including a wide range of activities, low energy consumption, good concealment performance, strong long-distance weight bearing and continuous flight ability, excellent navigation, and spatial cognitive ability, etc. They are typical model animals in the field of animal robot research and have important application value. A hot interdisciplinary research topic and the core content of pigeon robot research, altering pigeon motor behavior using brain stimulation involves multiple disciplines including animal ethology, neuroscience, electronic information technology and artificial intelligence technology, etc. In this paper, we review the progress of altering pigeon motor behavior using brain stimulation from the perspectives of the neural basis and neuro-devices. The recent literature on altering pigeon motor behavior using brain stimulation was investigated first. The neural basis, structure and function of a system to alter pigeon motor behavior using brain stimulation are briefly introduced below. Furthermore, a classified review was carried out based on the representative research achievements in this field in recent years. Our summary and discussion of the related research progress cover five aspects including the control targets, control parameters, control environment, control objectives, and control system. Future directions that need to be further studied are discussed, and the development trend in altering pigeon motor behavior using brain stimulation is projected.

6.
Cell Rep ; 43(4): 113986, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598336

ABSTRACT

Layer 5 neurons of the neocortex receive their principal inputs from layer 2/3 neurons. We seek to identify the nature and extent of the plasticity of these projections with motor learning. Using optogenetic and viral intersectional tools to selectively stimulate distinct neuronal subsets in rat primary motor cortex, we simultaneously record from pairs of corticospinal neurons associated with distinct features of motor output control: distal forelimb vs. proximal forelimb. Activation of Channelrhodopsin2-expressing layer 2/3 afferents onto layer 5 in untrained animals produces greater monosynaptic excitation of neurons controlling the proximal forelimb. Following skilled grasp training, layer 2/3 inputs onto corticospinal neurons controlling the distal forelimb associated with skilled grasping become significantly stronger. Moreover, peak excitatory response amplitude nearly doubles while latency shortens, and excitatory-to-inhibitory latencies become significantly prolonged. These findings demonstrate distinct, highly segregated, and cell-specific plasticity of layer 2/3 projections during skilled grasp motor learning.


Subject(s)
Forelimb , Motor Cortex , Neuronal Plasticity , Animals , Forelimb/physiology , Neuronal Plasticity/physiology , Motor Cortex/physiology , Motor Cortex/cytology , Rats , Learning/physiology , Hand Strength/physiology , Neurons/physiology , Male , Pyramidal Tracts/physiology , Motor Skills/physiology , Female , Optogenetics , Rats, Long-Evans
7.
Discov Nano ; 19(1): 60, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564106

ABSTRACT

Neurotensin-polyplex nanoparticles provide efficient gene transfection of nigral dopaminergic neurons when intracerebrally injected in preclinical trials of Parkinson's disease because they do not cross the blood-brain barrier (BBB). Therefore, this study aimed to open BBB with focused ultrasound (FUS) on the substantia nigra to attain systemic and intranasal transfections and evaluate its detrimental effect in rats. Systemically injected Evans Blue showed that a two-pulse FUS opened the nigral BBB. Accordingly, 35 µL of neurotensin-polyplex nanoparticles encompassing the green fluorescent protein plasmid (79.6 nm mean size and + 1.3 mV Zeta-potential) caused its expression in tyrosine hydroxylase(+) cells (dopaminergic neurons) of both substantiae nigrae upon delivery via internal carotid artery, retro-orbital venous sinus, or nasal mucosa 30 min after FUS. The intracarotid delivery yielded the highest transgene expression, followed by intranasal and venous administration. However, FUS caused neuroinflammation displayed by infiltrated lymphocytes (positive to cluster of differentiation 45), activated microglia (positive to ionized calcium-binding adaptor molecule 1), neurotoxic A1 astrocytes (positive to glial fibrillary acidic protein and complement component 3), and neurotrophic A2 astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10), that ended 15 days after FUS. Dopaminergic neurons and axonal projections decreased but recuperated basal values on day 15 after transfection, correlating with a decrease and recovery of locomotor behavior. In conclusion, FUS caused transient neuroinflammation and reversible neuronal affection but allowed systemic and intranasal transfection of dopaminergic neurons in both substantiae nigrae. Therefore, FUS could advance neurotensin-polyplex nanotechnology to clinical trials for Parkinson's disease.

8.
Open Life Sci ; 19(1): 20220834, 2024.
Article in English | MEDLINE | ID: mdl-38465343

ABSTRACT

Parkinson's disease (PD) is a ubiquitous brain cell degeneration disease and presents a significant therapeutic challenge. By injecting 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle, rats were made to exhibit PD-like symptoms and treated by intranasal administration of a low-dose (2 × 105) or high-dose (1 × 106) human neural stem cells (hNSCs). Apomorphine-induced rotation test, stepping test, and open field test were implemented to evaluate the motor behavior and high-performance liquid chromatography was carried out to detect dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin, and 5-hydroxyindole-3-acetic acid in the striatum of rats. Animals injected with 6-OHDA showed significant motor function deficits and damaged dopaminergic system compared to the control group, which can be restored by hNSCs treatment. Treatment with hNSCs significantly increased the tyrosine hydroxylase-immunoreactive cell count in the substantia nigra of PD animals. Moreover, the levels of neurotransmitters exhibited a significant decline in the striatum tissue of animals injected with 6-OHDA when compared to that of the control group. However, transplantation of hNSCs significantly elevated the concentration of DA and DOPAC in the injured side of the striatum. Our study offered experimental evidence to support prospects of hNSCs for clinical application as a cell-based therapy for PD.

9.
Sci Rep ; 14(1): 3721, 2024 02 14.
Article in English | MEDLINE | ID: mdl-38355892

ABSTRACT

Parkinson's disease (PD) is the second most common age-related neurodegenerative disease, with a progressive loss of dopaminergic cells and fibers. The purpose of this study was to use different doses of 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB) of mice to mimic the different stages of the disease and to characterize in detail their motor and non-motor behavior, as well as neuropathological features in the nigrostriatal pathway. MFB were injected with 0.5 µg, 1 µg, 2 µg of 6-OHDA using a brain stereotaxic technique. 6-OHDA induced mitochondrial damage dose-dependently, as well as substantia nigra pars compacta (SNpc) tyrosine hydroxylase-positive (TH+) cell loss and striatal TH fiber loss. Activation of astrocytes and microglia in the SNpc and striatum were consistently observed at 7 weeks, suggesting a long-term glial response in the nigrostriatal system. Even with a partial or complete denervation of the nigrostriatal pathway, 6-OHDA did not cause anxiety, although depression-like behavior appeared. Certain gait disturbances were observed in 0.5 µg 6-OHDA lesioned mice, and more extensive in 1 µg group. Despite the loss of more neurons from 2 µg 6-OHDA, there was no further impairment in behaviors compared to 1 µg 6-OHDA. Our data have implications that 1 µg 6-OHDA was necessary and sufficient to induce motor and non-motor symptoms in mice, thus a valuable mouse tool to explore disease progression and new treatment in PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Mice , Animals , Oxidopamine/metabolism , Medial Forebrain Bundle/metabolism , Medial Forebrain Bundle/pathology , Neurodegenerative Diseases/metabolism , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Substantia Nigra/metabolism , Corpus Striatum/metabolism , Disease Models, Animal , Tyrosine 3-Monooxygenase/metabolism
10.
J Fish Biol ; 104(5): 1350-1365, 2024 May.
Article in English | MEDLINE | ID: mdl-38332499

ABSTRACT

Dam construction alters the hydrodynamic conditions, consequently impacting the swimming behavior of fish. To explore the effect of flow hydrodynamics on fish swimming behavior, five endemic fish species in the upper Yangtze River basin were selected. Through high-speed video visualization and computer analysis, these species' swimming patterns under different flow velocities (0.1-1.2 m/s) were investigated. The kinematic and morphological characteristics of the fish were presented. The principal component analysis was used to analyse the main factors influencing the swimming ability of fish and to determine the correlation coefficients among fish behavior indicators. Fish exhibited three different swimming patterns under different flow velocities. Low velocity (0.1-0.3 m/s) corresponds to free motion, middle velocity (0.4-0.7 m/s) corresponds to cruising motion, and high velocity corresponds to stress motion (0.8-1.2 m/s). The fish kinematic index curves were obtained, and four of five fish species showed two extreme points, which means the optimal and adverse swimming strategies can be determined. With the increase in flow velocity, the tail-beat frequency showed an increasing trend, whereas the tail-beat angle and amplitude showed a decreasing trend. Morphological and kinematic parameters were the two main indexes that affect the swimming ability of fish, which accounts for 41.9% and 26.9%, respectively.


Subject(s)
Hydrodynamics , Rivers , Swimming , Animals , China , Biomechanical Phenomena , Fishes/physiology , Fishes/anatomy & histology , Principal Component Analysis , Video Recording
11.
J Neural Eng ; 21(1)2024 02 27.
Article in English | MEDLINE | ID: mdl-38335553

ABSTRACT

Objective: Transcranial focused low-intensity ultrasound has the potential to noninvasively modulate confined regions deep inside the human brain, which could provide a new tool for causal interrogation of circuit function in humans. However, it has been unclear whether the approach is potent enough to modulate behavior.Approach: To test this, we applied low-intensity ultrasound to a deep brain thalamic target, the ventral intermediate nucleus, in three patients with essential tremor.Main results: Brief, 15 s stimulations of the target at 10% duty cycle with low-intensity ultrasound, repeated less than 30 times over a period of 90 min, nearly abolished tremor (98% and 97% tremor amplitude reduction) in 2 out of 3 patients. The effect was observed within seconds of the stimulation onset and increased with ultrasound exposure time. The effect gradually vanished following the stimulation, suggesting that the stimulation was safe with no harmful long-term consequences detected.Significance: This result demonstrates that low-intensity focused ultrasound can robustly modulate deep brain regions in humans with notable effects on overt motor behavior.


Subject(s)
Deep Brain Stimulation , Essential Tremor , Humans , Essential Tremor/therapy , Tremor/therapy , Thalamus/diagnostic imaging , Brain , Treatment Outcome
12.
Article in English | MEDLINE | ID: mdl-38279716

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the nigrostriatal pathway. Even with scientific and technological advances, the therapeutic approaches used for the treatment of PD have shown to be largely ineffective in controlling the progression of symptoms in the long term. There is a growing demand for the development of novel therapeutic strategies for PD treatment. Different herbs and supplements have been considered as adjuvant to treat the symptoms of Parkinsonism. The carrot is one of the most consumed vegetable species worldwide, and its root is known for its content of anthocyanins, which possess antioxidant and antiinflammatory properties. This study evaluated the neuroprotective effect of purple carrot extract (CAR) in rats on the reserpine (RES)-induced progressive parkinsonism model. METHODS: Male rats (6-month-old) received orally the CAR (400 mg/kg) or vehicle and subcutaneously RES (0.01 mg/kg) or vehicle for 28 days (Preventive Phase). From the 29th day, rats received CAR or vehicle daily and RES (0.1 mg/kg) or vehicle every other day (for 23 days, Protective phase). Behavioral tests were conducted throughout the treatment. Upon completion, the animals' brain were processed for tyrosine hydroxylase (TH) immunohistochemical assessment. RESULTS: Our results showed that the chronic treatment of CAR protected against motor disabilities, reducing the time of catalepsy behavior and decreasing the frequency of oral movements, possibly by preserving TH levels in the Ventral Tegmental Area (VTA) and SNpc. CONCLUSION: CAR extract is effective to attenuate motor symptoms in rats associated with increased TH+ levels in the Ventral Tegmental Area (VTA) and SNpc, indicating the potential nutraceutical benefits of CAR extract in a progressive parkinsonism model induced by RES.

13.
Sci Total Environ ; 915: 170131, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38246379

ABSTRACT

The extensive utilization and potential adverse impacts of the replacement flame-retardant 2-Ethylhexyl Diphenyl Phosphate (EHDPP) have raised concerns. Currently, there is limited knowledge regarding the developmental, neurological, and immunotoxic consequences of EHDPP exposure, as well as its potential behavioral outcomes. In this study, we undertook a comprehensive examination and characterization of the toxic effects over the EHDPP concentration range of 14-1400 nM. Our findings unveiled that EHDPP, even at an environmentally relevant concentration of 14 nM, exhibited excitatory neurotoxicity, eliciting a 13.5 % increase in the swimming speed of zebrafish larvae. This effect might be attributed to the potential influence of EHDPP on the release of neurotransmitters like serotonin and dopamine, which, in turn, mediated anxiety-like behavior in the zebrafish larvae. Conversely, sublethal dose EHDPP (1400 nM) exposure significantly suppressed the swimming vigor of zebrafish larvae, accompanied by morphological changes, abnormal behaviors, and alterations in intracerebral molecules. Transcriptomics revealed the underlying mechanism. The utilization of pathway inhibitors reshaped the inflammatory homeostasis and alleviated the toxicity induced by EHDPP exposure, anchoring the pivotal role played by the TLR4/NF-κB signaling pathway in EHDPP-induced adverse changes in zebrafish behavior and neurophysiology. This study observed the detrimental effects of EHDPP on fish sustainability at environmentally relevant concentrations, highlighting the practical significance for EHDPP risk management. Elucidating the toxic mechanisms of EHDPP will contribute to a deeper comprehension of how environmental pollutants can intricately influence human health.


Subject(s)
Biphenyl Compounds , Flame Retardants , Perciformes , Animals , Humans , Organophosphates/toxicity , Zebrafish , Larva , Phosphates , Flame Retardants/toxicity , Inflammation
14.
Psychol Sport Exerc ; 70: 102547, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37832211

ABSTRACT

Internal focus has been shown to be detrimental to performance by disrupting the motor system, whereas external focus enhances performance by promoting automaticity. One hypothesis, which explains the underlying mechanism of the disruption of the motor system, proposes that internal focus affects the type of thoughts (explicit rules) by invoking self-conscious, evaluative thoughts (McKay et al., 2015). In contrast, another hypothesis proposes that internal focus increases the number of explicit rules, loading working memory (Poolton et al., 2006). To examine the competing hypotheses, neurotypical young adults (22.98 ± 4.46 years old, n = 20 males, n = 40 females) were assigned to one of three groups: external focus (n = 20), internal focus (n = 20), and control (n = 20) groups, and practiced a reciprocal aiming task for two days with retention/transfer tests. Between trials, participant's thoughts were evaluated by an open-ended questionnaire. The type of explicit rules was analyzed using a chi-square test, and the number of explicit rules was analyzed using a mixed-effect Poisson regression. The results showed that external focus resulted in a greater proportion of explicit rules about the task and a lesser proportion of self-evaluative thoughts. The number of explicit rules did not differ between groups. Our results suggest that external focus may strengthen focus on task-relevant features, while internal focus moves people's attention away from important features, potentially explaining why the motor system is disrupted by internal focus.


Subject(s)
Cues , Motor Skills , Male , Female , Young Adult , Humans , Adolescent , Adult , Attention , Memory, Short-Term , Consciousness
15.
Neurosci Biobehav Rev ; 155: 105475, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37996047

ABSTRACT

The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.


Subject(s)
Brain , Emotions , Animals , Humans , Emotions/physiology , Brain/physiology , Movement/physiology , Neurons
16.
PeerJ ; 11: e16019, 2023.
Article in English | MEDLINE | ID: mdl-37842033

ABSTRACT

The purpose of this study was to investigate the relationship between swimming speed, intra-cycle variation of horizontal speed of displacement (dv), and Froude efficiency (ηF) in front-crawl during three consecutive stroke cycles. The sample consisted of 15 boys aged 16.07 ± 0.77 years and 15 girls aged 15.05 ± 1.07 years. Swimming speed, dv and ηF were measured during a 25 m front-crawl trial. Three consecutive stroke cycles were measured. Swimming speed showed a non-significant stroke-by-stroke effect (F = 2.55, p = 0.087, η2 = 0.08), but a significant sex effect (F = 90.46, p < 0.001, η2 = 0.76). The dv and ηF had the same trend as the swimming speed for the stroke-by-stroke effect, but a non-significant sex effect (p > 0.05). The Spearman correlation matrix between swimming speed and dv, and swimming speed and ηF showed non-significant correlations for the three stroke cycles in both sexes. However, the tendency of the former was not always inverse, and the latter was not always direct. Coaches and swimmers need to be aware that lower dvs are not always associated with faster swimming speeds and vice-versa, and that ηF is a predictor of swimming speed, not dv.


Subject(s)
Swimming , Male , Female , Humans , Adolescent , Biomechanical Phenomena
17.
Cell Rep ; 42(10): 113287, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37843977

ABSTRACT

The activity of substantia nigra pars reticulata (SNr) neurons, the main output structure of basal ganglia, is altered in Parkinson's disease (PD). However, neither the underlying mechanisms nor the type of neurons responsible for PD-related motor dysfunctions have been elucidated yet. Here, we show that parvalbumin-expressing SNr neurons (SNr-PV+) occupy dorsolateral parts and possess specific electrophysiological properties compared with other SNr cells. We also report that only SNr-PV+ neurons' intrinsic excitability is reduced by downregulation of sodium leak channels in a PD mouse model. Interestingly, in anesthetized parkinsonian mice in vivo, SNr-PV+ neurons display a bursty pattern of activity dependent on glutamatergic tone. Finally, we demonstrate that chemogenetic inhibition of SNr-PV+ neurons is sufficient to alleviate motor impairments in parkinsonian mice. Overall, our findings establish cell-type-specific dysfunction in experimental parkinsonism in the SNr and provide a potential cellular therapeutic target to alleviate motor symptoms in PD.


Subject(s)
Parkinson Disease , Pars Reticulata , Mice , Animals , Substantia Nigra , Parvalbumins , Neurons/physiology
18.
Psychon Bull Rev ; 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848660

ABSTRACT

An exhaustive review is reported of over 25 years of research with the Discrete Sequence Production (DSP) task as reported in well over 100 articles. In line with the increasing call for theory development, this culminates into proposing the second version of the Cognitive framework of Sequential Motor Behavior (C-SMB 2.0), which brings together known models from cognitive psychology, cognitive neuroscience, and motor learning. This processing framework accounts for the many different behavioral results obtained with the DSP task and unveils important properties of the cognitive system. C-SMB 2.0 assumes that a versatile central processor (CP) develops multimodal, central-symbolic representations of short motor segments by repeatedly storing the elements of these segments in short-term memory (STM). Independently, the repeated processing by modality-specific perceptual and motor processors (PPs and MPs) and by the CP when executing sequences gradually associates successively used representations at each processing level. The high dependency of these representations on active context information allows for the rapid serial activation of the sequence elements as well as for the executive control of tasks as a whole. Speculations are eventually offered as to how the various cognitive processes could plausibly find their neural underpinnings within the intricate networks of the brain.

19.
Elife ; 122023 10 19.
Article in English | MEDLINE | ID: mdl-37855376

ABSTRACT

Frontal motor areas are central to controlling voluntary movements. In non-human primates, the motor areas contain independent, somatotopic, representations of the forelimb (i.e., motor maps). But are the neural codes for actions spatially organized within those forelimb representations? Addressing this question would provide insight into the poorly understood structure-function relationships of the cortical motor system. Here, we tackle the problem using high-resolution optical imaging and motor mapping in motor (M1) and dorsal premotor (PMd) cortex. Two macaque monkeys performed an instructed reach-to-grasp task while cortical activity was recorded with intrinsic signal optical imaging (ISOI). The spatial extent of activity in M1 and PMd was then quantified in relation to the forelimb motor maps, which we obtained from the same hemisphere with intracortical microstimulation. ISOI showed that task-related activity was concentrated in patches that collectively overlapped <40% of the M1 and PMd forelimb representations. The spatial organization of the patches was consistent across task conditions despite small variations in forelimb use. Nevertheless, the largest condition differences in forelimb use were reflected in the magnitude of cortical activity. Distinct time course profiles from patches in arm zones and patches in hand zones suggest functional differences within the forelimb representations. The results collectively support an organizational framework wherein the forelimb representations contain subzones enriched with neurons tuned for specific actions. Thus, the often-overlooked spatial dimension of neural activity appears to be an important organizing feature of the neural code in frontal motor areas.


Subject(s)
Motor Cortex , Animals , Motor Cortex/physiology , Brain Mapping , Macaca , Forelimb/physiology , Neurons , Electric Stimulation
20.
Hum Factors ; : 187208231198932, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732402

ABSTRACT

OBJECTIVE: Varying driver distraction algorithms were developed using vehicle kinematics and driver gaze data obtained from a camera-based driver monitoring system (DMS). BACKGROUND: Distracted driving characteristics can be difficult to accurately detect due to wide variation in driver behavior across driving environments. The growing availability of information about drivers and their involvement in the driving task increases the opportunity for accurately recognizing attention state. METHOD: A baseline for driver distraction levels was developed using a video feed of 24 separate drivers in varying naturalistic driving conditions. This initial assessment was used to develop four buffer-based algorithms that aimed to determine a driver's real-time attentiveness, via a variety of metrics and combinations thereof. RESULTS: Of those tested, the optimal algorithm included ungrouped glance locations and speed. Notably, as an algorithm's performance of detecting very distracted drivers improved, its accuracy for correctly identifying attentive drivers decreased. CONCLUSION: At a minimum, drivers' gaze position and vehicle speed should be included when designing driver distraction algorithms to delineate between glance patterns observed at high and low speeds. Distraction algorithms should be designed with an understanding of their limitations, including instances in which they may fail to detect distracted drivers, or falsely notify attentive drivers. APPLICATION: This research adds to the body of knowledge related to driver distraction and contributes to available methods to potentially address and reduce occurrences. Machine learning algorithms can build on the data elements discussed to increase distraction detection accuracy using robust artificial intelligence.

SELECTION OF CITATIONS
SEARCH DETAIL
...