Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 695
Filter
1.
Front Cell Dev Biol ; 12: 1429759, 2024.
Article in English | MEDLINE | ID: mdl-38966427

ABSTRACT

Familial amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder that is due to mutations in one of several target genes, including SOD1. So far, clinical records, rodent studies, and in vitro models have yielded arguments for either a primary motor neuron disease, or a pleiotropic pathogenesis of ALS. While mouse models lack the human origin, in vitro models using human induced pluripotent stem cells (hiPSC) have been recently developed for addressing ALS pathogenesis. In spite of improvements regarding the generation of muscle cells from hiPSC, the degree of maturation of muscle cells resulting from these protocols has remained limited. To fill these shortcomings, we here present a new protocol for an enhanced myotube differentiation from hiPSC with the option of further maturation upon coculture with hiPSC-derived motor neurons. The described model is the first to yield a combination of key myogenic maturation features that are consistent sarcomeric organization in association with complex nAChR clusters in myotubes derived from control hiPSC. In this model, myotubes derived from hiPSC carrying the SOD1 D90A mutation had reduced expression of myogenic markers, lack of sarcomeres, morphologically different nAChR clusters, and an altered nAChR-dependent Ca2+ response compared to control myotubes. Notably, trophic support provided by control hiPSC-derived motor neurons reduced nAChR cluster differences between control and SOD1 D90A myotubes. In summary, a novel hiPSC-derived neuromuscular model yields evidence for both muscle-intrinsic and nerve-dependent aspects of neuromuscular dysfunction in SOD1-based ALS.

2.
Cell Mol Life Sci ; 81(1): 286, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970652

ABSTRACT

Paralog factors are considered to ensure the robustness of biological processes by providing redundant activity in cells where they are co-expressed. However, the specific contribution of each factor is frequently underestimated. In the developing spinal cord, multiple families of transcription factors successively contribute to differentiate an initially homogenous population of neural progenitors into a myriad of neuronal subsets with distinct molecular, morphological, and functional characteristics. The LIM-homeodomain transcription factors Lhx3, Lhx4, Isl1 and Isl2 promote the segregation and differentiation of spinal motor neurons and V2 interneurons. Based on their high sequence identity and their similar distribution, the Lhx3 and Lhx4 paralogs are considered to contribute similarly to these processes. However, the specific contribution of Lhx4 has never been studied. Here, we provide evidence that Lhx3 and Lhx4 are present in the same cell populations during spinal cord development. Similarly to Lhx3, Lhx4 can form multiproteic complexes with Isl1 or Isl2 and the nuclear LIM interactor NLI. Lhx4 can stimulate a V2-specific enhancer more efficiently than Lhx3 and surpasses Lhx3 in promoting the differentiation of V2a interneurons in chicken embryo electroporation experiments. Finally, Lhx4 inactivation in mice results in alterations of differentiation of the V2a subpopulation, but not of motor neuron production, suggesting that Lhx4 plays unique roles in V2a differentiation that are not compensated by the presence of Lhx3. Thus, Lhx4 could be the major LIM-HD factor involved in V2a interneuron differentiation during spinal cord development and should be considered for in vitro differentiation of spinal neuronal populations.


Subject(s)
Cell Differentiation , Interneurons , LIM-Homeodomain Proteins , Spinal Cord , Transcription Factors , Animals , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Interneurons/metabolism , Interneurons/cytology , Spinal Cord/cytology , Spinal Cord/metabolism , Spinal Cord/embryology , Chick Embryo , Mice , Motor Neurons/metabolism , Motor Neurons/cytology , Humans , Gene Expression Regulation, Developmental
3.
Cell Rep Med ; 5(5): 101546, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703766

ABSTRACT

Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neuron (MN) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice significantly improves their motor function, delays disease progression, and extends survival. Moreover, MIF treatment reduces neuroinflammation and misfolded SOD1 accumulation, rescues MNs, and corrects dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we reveal low MIF levels in human induced pluripotent stem cell-derived MNs from familial ALS patients with different genetic mutations, as well as in post mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Macrophage Migration-Inhibitory Factors , Motor Neurons , Superoxide Dismutase-1 , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/pathology , Animals , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Mice , Induced Pluripotent Stem Cells/metabolism , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Mice, Transgenic , Dependovirus/genetics , Disease Models, Animal , Male , Mutation/genetics , Female , Protein Folding
4.
Cells ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786016

ABSTRACT

The primary neural circuit affected in Amyotrophic Lateral Sclerosis (ALS) patients is the corticospinal motor circuit, originating in upper motor neurons (UMNs) in the cerebral motor cortex which descend to synapse with the lower motor neurons (LMNs) in the spinal cord to ultimately innervate the skeletal muscle. Perturbation of these neural circuits and consequent loss of both UMNs and LMNs, leading to muscle wastage and impaired movement, is the key pathophysiology observed. Despite decades of research, we are still lacking in ALS disease-modifying treatments. In this review, we document the current research from patient studies, rodent models, and human stem cell models in understanding the mechanisms of corticomotor circuit dysfunction and its implication in ALS. We summarize the current knowledge about cortical UMN dysfunction and degeneration, altered excitability in LMNs, neuromuscular junction degeneration, and the non-cell autonomous role of glial cells in motor circuit dysfunction in relation to ALS. We further highlight the advances in human stem cell technology to model the complex neural circuitry and how these can aid in future studies to better understand the mechanisms of neural circuit dysfunction underpinning ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Motor Neurons , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/pathology , Humans , Motor Neurons/pathology , Motor Neurons/physiology , Animals , Nerve Net/physiopathology , Nerve Net/pathology , Neuromuscular Junction/physiopathology , Neuromuscular Junction/pathology , Disease Models, Animal , Motor Cortex/physiopathology , Motor Cortex/pathology
5.
Res Sq ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38798533

ABSTRACT

Motor neurons (MNs) and oligodendrocyte precursor cells (OPCs) emerge sequentially from the pMN precursor domain during spinal cord development. MNs diversify into muscle specific subtypes and settle in stereotypic locations in the ventral horns. In contrast, OPCs are mobile and appear to evenly populate the parenchyma. Whether earlier born MNs influence OPC production is controversial. We found that Sonic Hedgehog signaling emanating from nascent MNs of the lateral motor column is critical for maintaining a larger and more yielding pMN domain at limb levels compared to trunk levels during OPC production. Reduced Shh signaling resulted in unrecoverable diminishment of pMN domain based OPC production leaving the spinal cord impoverished of OPC. Our results suggest that production of OPC at limb levels is contingent on completion of MN production.

6.
Regen Ther ; 27: 365-380, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38694448

ABSTRACT

Brachial plexus injury (BPI) with motor neurons (MNs) damage still remain poor recovery in preclinical research and clinical therapy, while cell-based therapy approaches emerged as novel strategies. Previous work of rat skin precursor-derived Schwann cells (SKP-SCs) provided substantial foundation for repairing peripheral nerve injury (PNI). Given that, our present work focused on exploring the repair efficacy and possible mechanisms of SKP-SCs implantation on rat BPI combined with neurorrhaphy post-neurotomy. Results indicated the significant locomotive and sensory function recovery, with improved morphological remodeling of regenerated nerves and angiogenesis, as well as amelioration of target muscles atrophy and motor endplate degeneration. Besides, MNs could restore from oxygen-glucose-deprivation (OGD) injury upon SKP-SCs-sourced secretome treatment, implying the underlying paracrine mechanisms. Moreover, rat cytokine array assay detected 67 cytokines from SKP-SC-secretome, and bioinformatic analyses of screened 32 cytokines presented multiple functional clusters covering diverse cell types, including inflammatory cells, Schwann cells, vascular endothelial cells (VECs), neurons, and SKP-SCs themselves, relating distinct biological processes to nerve regeneration. Especially, a panel of hypoxia-responsive cytokines (HRCK), can participate into multicellular biological process regulation for permissive regeneration milieu, which underscored the benefits of SKP-SCs and sourced secretome, facilitating the chorus of nerve regenerative microenvironment. Furthermore, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor-A (VEGF-A) were outstanding cytokines involved with nerve regenerative microenvironment regulating, with significantly elevated mRNA expression level in hypoxia-responsive SKP-SCs. Altogether, through recapitulating the implanted SKP-SCs and derived secretome as niche sensor and paracrine transmitters respectively, HRCK would be further excavated as molecular underpinning of the neural recuperative mechanizations for efficient cell therapy; meanwhile, the analysis paradigm in this study validated and anticipated the actions and mechanisms of SKP-SCs on traumatic BPI repair, and was beneficial to identify promising bioactive molecule cocktail and signaling targets for cell-free therapy strategy on neural repair and regeneration.

7.
J Physiol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787922

ABSTRACT

Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies agrees more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.

8.
Histochem Cell Biol ; 161(6): 507-519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38597938

ABSTRACT

The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.


Subject(s)
Endocytosis , Lysosomes , Motor Neurons , Silicon Dioxide , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism , Lysosomes/metabolism , Humans , Motor Neurons/metabolism , Motor Neurons/cytology , HeLa Cells , Cells, Cultured , Magnetite Nanoparticles/chemistry , Animals , Magnetic Iron Oxide Nanoparticles/chemistry
9.
bioRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38585915

ABSTRACT

A hexanucleotide repeat expansion (HRE) in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, patients with the HRE exhibit a wide disparity in clinical presentation and age of symptom onset suggesting an interplay between genetic background and environmental stressors. Neurotrauma as a result of traumatic brain or spinal cord injury has been shown to increase the risk of ALS/FTD in epidemiological studies. Here, we combine patient-specific induced pluripotent stem cells (iPSCs) with a custom-built device to deliver biofidelic stretch trauma to C9orf72 patient and isogenic control motor neurons (MNs) in vitro. We find that mutant but not control MNs exhibit selective degeneration after a single incident of severe trauma, which can be partially rescued by pretreatment with a C9orf72 antisense oligonucleotide. A single incident of mild trauma does not cause degeneration but leads to cytoplasmic accumulation of TDP-43 in C9orf72 MNs. This mislocalization, which only occurs briefly in isogenic controls, is eventually restored in C9orf72 MNs after 6 days. Lastly, repeated mild trauma ablates the ability of patient MNs to recover. These findings highlight alterations in TDP-43 dynamics in C9orf72 ALS/FTD patient MNs following traumatic injury and demonstrate that neurotrauma compounds neuropathology in C9orf72 ALS/FTD. More broadly, our work establishes an in vitro platform that can be used to interrogate the mechanistic interactions between ALS/FTD and neurotrauma.

10.
Sports Med Open ; 10(1): 35, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598018

ABSTRACT

BACKGROUND: Ankle sprains lead to an unexplained reduction of ankle eversion strength, and arthrogenic muscle inhibition (AMI) in peroneal muscles is considered one of the underlying causes. This study aimed to observe the presence of AMI in peroneal muscles among people with chronic ankle instability (CAI). METHODS: Sixty-three people with CAI and another sixty-three without CAI conducted maximal voluntary isometric contraction (MVIC) and superimposed burst (SIB) tests during ankle eversion, then fifteen people with CAI and fifteen without CAI were randomly invited to repeat the same tests to calculate the test-retest reliability. Electrical stimulation was applied to the peroneal muscles while the participants were performing MVIC, and the central activation ratio (CAR) was obtained by dividing MVIC torque by the sum of MVIC and SIB torques, representing the degree of AMI. RESULTS: The intra-class correlation coefficients were 0.77 (0.45-0.92) and 0.92 (0.79-0.97) for the affected and unaffected limbs among people with CAI, and 0.97 (0.91-0.99) and 0.93 (0.82-0.97) for the controlled affected and unaffected limbs among people without CAI; Significant group × limb interaction was detected in the peroneal CAR (p = 0.008). The CARs were lower among people with CAI in the affected and unaffected limbs, compared with those without CAI (affected limb = 82.54 ± 9.46%, controlled affected limb = 94.64 ± 6.37%, p < 0.001; unaffected limb = 89.21 ± 8.04%, controlled unaffected limb = 94.93 ± 6.01%, p = 0.016). The CARs in the affected limbs were lower than those in the unaffected limbs among people with CAI (p = 0.023). No differences between limbs were found for CAR in the people without CAI (p = 0.10). CONCLUSIONS: Bilateral AMI of peroneal muscles is observed among people with CAI. Their affected limbs have higher levels of AMI than the unaffected limbs.

11.
Hum Mol Genet ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676626

ABSTRACT

MicroRNAs (miRNAs) are a subset of small non-coding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression of a variety of transcript targets. Therefore altered miRNA expression may result in the dysregulation of key genes and biological pathways that has been reported with the onset and progression of neurodegenerative diseases, such as Amyotrophic lateral sclerosis (ALS). ALS is marked by a progressive degeneration of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Although the pathomechanism underlying molecular interactions of ALS remains poorly understood, alterations in RNA metabolism, including dysregulation of miRNA expression in familial as well as sporadic forms are still scarcely studied. In this study, we performed combined transcriptomic data and miRNA profiling in MN samples of the same samples of iPSC-derived MNs from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls. We report a global upregulation of mature miRNAs, and suggest that differentially expressed (DE) miRNAs have a significant impact on mRNA-level in SOD1-, but not in TARDBP-linked ALS. Furthermore, in SOD1-ALS we identified dysregulated miRNAs such as miR-124-3p, miR-19b-3p and miR-218 and their potential targets previously implicated in important functional process and pathogenic pathways underlying ALS. These miRNAs may play key roles in the neuronal development and cell survival related functions in SOD1-ALS. Altogether, we provide evidence of miRNA regulated genes expression mainly in SOD1 rather than TDP43-ALS.

12.
Cell Rep ; 43(4): 113999, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38554281

ABSTRACT

Motor neuron (MN) demise is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Post-transcriptional gene regulation can control RNA's fate, and defects in RNA processing are critical determinants of MN degeneration. N6-methyladenosine (m6A) is a post-transcriptional RNA modification that controls diverse aspects of RNA metabolism. To assess the m6A requirement in MNs, we depleted the m6A methyltransferase-like 3 (METTL3) in cells and mice. METTL3 depletion in embryonic stem cell-derived MNs has profound and selective effects on survival and neurite outgrowth. Mice with cholinergic neuron-specific METTL3 depletion display a progressive decline in motor behavior, accompanied by MN loss and muscle denervation, culminating in paralysis and death. Reader proteins convey m6A effects, and their silencing phenocopies METTL3 depletion. Among the m6A targets, we identified transactive response DNA-binding protein 43 (TDP-43) and discovered that its expression is under epitranscriptomic control. Thus, impaired m6A signaling disrupts MN homeostasis and triggers neurodegeneration conceivably through TDP-43 deregulation.


Subject(s)
Cholinergic Neurons , Methyltransferases , Neuromuscular Diseases , Animals , Humans , Mice , Adenosine/metabolism , Adenosine/analogs & derivatives , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Neuromuscular Diseases/metabolism , Neuromuscular Diseases/pathology
13.
J Appl Physiol (1985) ; 136(5): 1113-1121, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38511211

ABSTRACT

The number of motor neurons (MNs) declines precipitously during the final trimester before birth. Thereafter, the number of MNs remains relatively stable, with their connections to skeletal muscle dependent on neurotrophins, including brain-derived neurotrophic factor (BDNF) signaling through its high-affinity full-length tropomyosin-related kinase receptor subtype B (TrkB.FL) receptor. As a genetic knockout of BDNF leads to extensive MN loss and postnatal death within 1-2 days after birth, we tested the hypothesis that postnatal inhibition of BDNF/TrkB.FL signaling is important for postnatal phrenic MN (PhMN) survival. In the present study, we used a 1NMPP1-sensitive TrkBF616A mutant mouse to evaluate the effects of inhibition of TrkB kinase activity on phrenic MN (PhMN) numbers and diaphragm muscle (DIAm) fiber cross-sectional area (CSA). Pups were exposed to 1NMPP1 or vehicle (DMSO) from birth to 21 days old (weaning) via the mother's ingestion in the drinking water. Following weaning, the right phrenic nerve was exposed in the neck and the proximal end dipped in a rhodamine solution to retrogradely label PhMNs. After 24 h, the cervical spinal cord and DIAm were excised. Labeled PhMNs were imaged using confocal microscopy, whereas DIAm strips were frozen at ∼1.5× resting length, cryosectioned, and stained with hematoxylin and eosin to assess CSA. We observed an ∼34% reduction in PhMN numbers and increased primary dendrite numbers in 1NMPP1-treated TrkBF616A mice. The distribution of PhMN size (somal surface area) DIAm fiber cross-sectional areas did not differ. We conclude that survival of PhMNs during early postnatal development is sensitive to BDNF/TrkB.FL signaling.NEW & NOTEWORTHY During early postnatal development, BDNF/TrkB signaling promotes PhMN survival. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact PhMN size. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact the number or CSA of DIAm fibers.


Subject(s)
Brain-Derived Neurotrophic Factor , Motor Neurons , Phrenic Nerve , Receptor, trkB , Signal Transduction , Animals , Female , Male , Mice , Animals, Newborn , Brain-Derived Neurotrophic Factor/metabolism , Cell Survival/physiology , Cell Survival/drug effects , Diaphragm/metabolism , Mice, Inbred C57BL , Motor Neurons/metabolism , Motor Neurons/physiology , Motor Neurons/drug effects , Phrenic Nerve/physiology , Phrenic Nerve/metabolism , Phrenic Nerve/drug effects , Pyrazoles , Pyrimidines , Receptor, trkB/metabolism , Signal Transduction/physiology
14.
Neurotherapeutics ; 21(3): e00340, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472048

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular disease characterized by severe muscle weakness mainly due to degeneration and death of motor neurons. A peculiarity of the neurodegenerative processes is the variable susceptibility among distinct neuronal populations, exemplified by the contrasting resilience of motor neurons innervating the ocular motor system and the more vulnerable facial and hypoglossal motor neurons. The crucial role of vascular endothelial growth factor (VEGF) as a neuroprotective factor in the nervous system is well-established since a deficit of VEGF has been related to motoneuronal degeneration. In this study, we investigated the survival of ocular, facial, and hypoglossal motor neurons utilizing the murine SOD1G93A ALS model at various stages of the disease. Our primary objective was to determine whether the survival of the different brainstem motor neurons was linked to disparate VEGF expression levels in resilient and susceptible motor neurons throughout neurodegeneration. Our findings revealed a selective loss of motor neurons exclusively within the vulnerable nuclei. Furthermore, a significantly higher level of VEGF was detected in the more resistant motor neurons, the extraocular ones. We also examined whether TDP-43 dynamics in the brainstem motor neuron of SOD mice was altered. Our data suggests that the increased VEGF levels observed in extraocular motor neurons may potentially underlie their resistance during the neurodegenerative processes in ALS in a TDP-43-independent manner. Our work might help to better understand the underlying mechanisms of selective vulnerability of motor neurons in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain Stem , Motor Neurons , Superoxide Dismutase-1 , Vascular Endothelial Growth Factor A , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Brain Stem/metabolism , Disease Models, Animal , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Superoxide Dismutase/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics
15.
J Neurosci ; 44(15)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38438257

ABSTRACT

DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.


Subject(s)
Dystonia Musculorum Deformans , Dystonia , Dystonic Disorders , ran GTP-Binding Protein , Humans , Active Transport, Cell Nucleus , Molecular Chaperones/genetics , Motor Neurons/metabolism
16.
Cell Rep ; 43(3): 113885, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38457337

ABSTRACT

Amyotrophic lateral sclerosis damages proteostasis, affecting spinal and upper motor neurons earlier than a subset of cranial motor neurons. To aid disease understanding, we exposed induced cranial and spinal motor neurons (iCrMNs and iSpMNs) to proteotoxic stress, under which iCrMNs showed superior survival, quantifying the transcriptome and proteome for >8,200 genes at 0, 12, and 36 h. Two-thirds of the proteome showed cell-type differences. iSpMN-enriched proteins related to DNA/RNA metabolism, and iCrMN-enriched proteins acted in the endoplasmic reticulum (ER)/ER chaperone complex, tRNA aminoacylation, mitochondria, and the plasma/synaptic membrane, suggesting that iCrMNs expressed higher levels of proteins supporting proteostasis and neuronal function. When investigating the increased proteasome levels in iCrMNs, we showed that the activity of the 26S proteasome, but not of the 20S proteasome, was higher in iCrMNs than in iSpMNs, even after a stress-induced decrease. We identified Ublcp1 as an iCrMN-specific regulator of the nuclear 26S activity.


Subject(s)
Amyotrophic Lateral Sclerosis , Proteostasis , Humans , Proteostasis/physiology , Proteome/metabolism , Motor Neurons/metabolism , Amyotrophic Lateral Sclerosis/genetics , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress
17.
Front Aging Neurosci ; 16: 1301012, 2024.
Article in English | MEDLINE | ID: mdl-38529054

ABSTRACT

Background: Vibration of one limb affects motor performance of the contralateral limb, and this may have clinical implications for people with lateralized motor impairments through vibration-induced increase in cortical activation, descending neural drive, or spinal excitability. Objective: The objective of this study was to evaluate the effects of acute biceps brachii tendon vibration on force steadiness and motor unit activity in the contralateral limb of persons with Parkinson's disease. Methods: Ten participants with mild to moderate Parkinson's disease severity performed a ramp, hold and de-ramp isometric elbow flexion at 5% of maximum voluntary contraction with the more-affected arm while vibration was applied to the distal biceps brachii tendon on the contralateral, less-affected arm. Using intramuscular fine wire electrodes, 33 MUs in the biceps brachii were recorded across three conditions (baseline, vibration, and post-vibration). Motor unit recruitment & derecruitment thresholds, discharge rates & variability, and elbow flexion force steadiness were compared between conditions with and without vibration. Results: Coefficient of variation of force and discharge rate variability decreased 37 and 17%, respectively in post-vibration compared with baseline and vibration conditions. Although the motor unit discharge rates did not differ between conditions the total number of motor units active at rest after de-ramp were fewer in the post-vibration condition. Conclusion: Contralateral tendon vibration reduces MU discharge rate variability and enhances force control on the more affected side in persons with Parkinson's disease.

18.
Ann Anat ; 253: 152225, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38346566

ABSTRACT

The purpose of this review is to analyze the origin of ocular motor neurons, define the pattern of innervation of nerve fibers that project to the extraocular eye muscles (EOMs), describe congenital disorders that alter the development of ocular motor neurons, and provide an overview of vestibular pathway inputs to ocular motor nuclei. Six eye muscles are innervated by axons of three ocular motor neurons, the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI) neurons. Ocular motor neurons (CNIII) originate in the midbrain and innervate the ipsilateral orbit, except for the superior rectus and the levator palpebrae, which are contralaterally innervated. Trochlear motor neurons (CNIV) originate at the midbrain-hindbrain junction and innervate the contralateral superior oblique muscle. Abducens motor neurons (CNVI) originate variously in the hindbrain of rhombomeres r4-6 that innervate the posterior (or lateral) rectus muscle and innervate the retractor bulbi. Genes allow a distinction between special somatic (CNIII, IV) and somatic (CNVI) ocular motor neurons. Development of ocular motor neurons and their axonal projections to the EOMs may be derailed by various genetic causes, resulting in the congenital cranial dysinnervation disorders. The ocular motor neurons innervate EOMs while the vestibular nuclei connect with the midbrain-brainstem motor neurons.


Subject(s)
Motor Neurons , Oculomotor Muscles , Animals , Oculomotor Muscles/innervation , Motor Neurons/physiology , Vertebrates , Orbit , Eyelids , Oculomotor Nerve/physiology
19.
Curr Biol ; 34(4): 910-915.e2, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38307023

ABSTRACT

Rhythmic locomotor activity, such as flying, swimming, or walking, results from an interplay between higher-order centers in the central nervous system, which initiate, maintain, and modify task-specific motor activity, downstream central pattern-generating neural circuits (CPGs) that can generate a default rhythmic motor output, and, finally, feedback from sense organs that modify basic motor activity toward functionality.1,2,3 In this context, CPGs provide phasic synaptic drive to motor neurons (MNs) and thereby support the generation of rhythmic activity for locomotion. We analyzed the synaptic drive that the leg MNs supplying the three main leg joints receive from CPGs in pharmacologically activated and deafferented preparations of the stick insect (Carausius morosus). We show that premotor CPGs pattern the tonic activity of five of the six leg MN pools by phasic inhibitory synaptic drive. These are the antagonistic MN pools supplying the thoraco-coxal joint and the femur-tibial joint4,5 and the levator MN pool supplying the coxa-trochanteral (CTr) joint. In contrast, rhythmic activity of the depressor MN pool supplying the CTr joint was found to be primarily based on a phasic excitatory drive. This difference is likely related to the pivotal role of the depressor muscle in generating leg stance during any walking situation. Thus, our results provide evidence for qualitatively differing mechanisms to generate rhythmic activity between MN pools in the same locomotor system.


Subject(s)
Insecta , Walking , Animals , Insecta/physiology , Walking/physiology , Locomotion/physiology , Motor Neurons/physiology
20.
Cell Rep ; 43(3): 113857, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38421866

ABSTRACT

Motor neurons (MNs) constitute an ancient cell type targeted by multiple adult-onset diseases. It is therefore important to define the molecular makeup of adult MNs in animal models and extract organizing principles. Here, we generate a comprehensive molecular atlas of adult Caenorhabditis elegans MNs and a searchable database. Single-cell RNA sequencing of 13,200 cells reveals that ventral nerve cord MNs cluster into 29 molecularly distinct subclasses. Extending C. elegans Neuronal Gene Expression Map and Network (CeNGEN) findings, all MN subclasses are delineated by distinct expression codes of either neuropeptide or transcription factor gene families. Strikingly, combinatorial codes of homeodomain transcription factor genes succinctly delineate adult MN diversity in both C. elegans and mice. Further, molecularly defined MN subclasses in C. elegans display distinct patterns of connectivity. Hence, our study couples the connectivity map of the C. elegans motor circuit with a molecular atlas of its constituent MNs and uncovers organizing principles and conserved molecular codes of adult MN diversity.


Subject(s)
Caenorhabditis elegans Proteins , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Motor Neurons/metabolism , Gene Expression Regulation , Caenorhabditis elegans Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...