Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.176
Filter
1.
Redox Biol ; 75: 103261, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38963974

ABSTRACT

Squamous cell carcinomas (SCCs), including lung, head & neck, bladder, and skin SCCs often display constitutive activation of the KEAP1-NRF2 pathway. Constitutive activation is achieved through multiple mechanisms, including activating mutations in NFE2L2 (NRF2). To determine the functional consequences of Nrf2 activation on skin SCC development, we assessed the effects of mutant Nrf2E79Q expression, one of the most common activating mutations in human SCCs, on tumor promotion and progression in the mouse skin multistage carcinogenesis model using a DMBA-initiation/TPA-promotion protocol where the Hras A->T mutation (Q61L) is the canonical driver mutation. Nrf2E79Q expression was temporally and conditionally activated in the epidermis at two stages of tumor development: 1) after DMBA initiation in the epidermis but before cutaneous tumor development and 2) in pre-existing DMBA-initiated/TPA-promoted squamous papillomas. Expression of Nrf2E79Q in the epidermis after DMBA initiation but before tumor occurrence inhibited the development/promotion of 70% of squamous papillomas. However, the remaining papillomas often displayed non-canonical Hras and Kras mutations and enhanced progression to SCCs compared to control mice expressing wildtype Nrf2. Nrf2E79Q expression in pre-existing tumors caused rapid regression of 60% of papillomas. The remaining papillomas displayed the expected canonical Hras A->T mutation (Q61L) and enhanced progression to SCCs. These results demonstrate that mutant Nrf2E79Q enhances the promotion and progression of a subset of skin tumors and alters the frequency and diversity of oncogenic Ras mutations when expressed early after initiation.

2.
Elife ; 132024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963781

ABSTRACT

Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.


Stress, spicy foods and elevated temperatures can all trigger specialized gland cells to move water to the skin ­ in other words, they can make us sweat. This process is one of the most important ways by which our bodies regulate their temperature and avoid life-threatening conditions such as heatstroke. Disorders in which this function is impaired, such as AIGA (acquired idiopathic generalized anhidrosis), pose significant health risks. Finding treatments for sweat-related diseases requires a detailed understanding of the molecular mechanisms behind sweating, which has yet to be achieved. Recent research has highlighted the role of two ion channels, TRPV4 and ANO1, in regulating fluid secretion in glands that produce tears and saliva. These gate-like proteins control how certain ions move in or out of cells, which also influences water movement. Once activated by external stimuli, TRPV4 allows calcium ions to enter the cell, causing ANO1 to open and chloride ions to leave. This results in water also exiting the cell through dedicated channels, before being collected in ducts connected to the outside of the body. TRPV4, which is activated by heat, is also present in human sweat gland cells. This prompted Kashio et al. to examine the role of these channels in sweat production, focusing on mice as well as AIGA patients. Probing TRPV4, ANO1 and AQP5 (a type of water channel) levels using fluorescent antibodies confirmed that these channels are all found in the same sweat gland cells in the foot pads of mice. Further experiments highlighted that TRPV4 mediates sweat production in these animals via ANO1 activation. As rodents do not regulate their body temperature by sweating, Kashio et al. explored the biological benefits of having sweaty paws. Mice lacking TRPV4 had reduced sweating and were less able to climb a slippery slope, suggesting that a layer of sweat helps improve traction. Finally, Kashio et al. compared samples obtained from healthy volunteers with those from AIGA patients and found that TRPV4 levels are lower in individuals affected by the disease. Overall, these findings reveal new insights into the underlying mechanisms of sweating, with TRPV4 a potential therapeutic target for conditions like AIGA. The results also suggest that sweating could be controlled by local changes in temperature detected by heat-sensing channels such as TRPV4. This would depart from our current understanding that sweating is solely controlled by the autonomic nervous system, which regulates involuntary bodily functions such as saliva and tear production.


Subject(s)
Sweating , TRPV Cation Channels , Temperature , Animals , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Mice , Sweating/physiology , Mice, Knockout , Anoctamin-1/metabolism , Anoctamin-1/genetics , Sweat Glands/metabolism , Humans , Male
3.
Gen Comp Endocrinol ; 356: 114579, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964422

ABSTRACT

The Krüppel-like factors (KLFs) have emerged as important transcriptional regulators of various cellular processes, including neural development. Some of them have been described as intrinsic factors involved in axon regeneration in the central nervous system (CNS) of vertebrates. Zebrafish are known for their ability to regenerate several tissues in adulthood, including the CNS, a capability lost during vertebrate evolution and absent in adult mammals. The role that KLFs could play in this differential ability remains unknown. Therefore, in this study, we analyzed the endogenous response of certain KLFs implicated in axon regeneration (KLFs 6, 7, 9, and 13) during retina development and after axon injury. The results showed that the expression of Klfs 6, 7, and 13 decreases in the developing retina of mice but not in zebrafish, while the mRNA levels of Klf9 strongly increase in both species. The response to injury was further analyzed using optic nerve crush (ONC) as a model of lesion. Our analysis during the acute phase (hours) demonstrated an induction of Klfs 6 and 7 expression exclusively in the zebrafish retina, while Klfs 9 and 13 mRNA levels increased in both species. Further analysis of the chronic response (days) showed that mRNA levels of Klf6 transiently increase in the retinas of both zebrafish and mice, whereas those of Klf7 decrease later after optic nerve injury. In addition, the analysis revealed that the expression of Klf9 decreases, while that of Klf13 increases in the retinas of zebrafish in response to optic nerve injury but remains unaltered in mice. Altogether, these findings support the hypothesis that KLFs may play a role in the differential axon regeneration abilities exhibited by fish and mice.

4.
Mol Ther Oncol ; 32(2): 200818, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38966038

ABSTRACT

Bladder cancer (BlCa) is an extensively heterogeneous disease that leads to great variability in tumor evolution scenarios and lifelong patient surveillance, emphasizing the need for modern, minimally invasive precision medicine. Here, we explored the clinical significance of copy number alterations (CNAs) in BlCa. CNA profiling was performed in 15 patient-derived xenografts (PDXs) and validated in The Cancer Genome Atlas BlCa (TCGA-BLCA; n = 408) and Lindgren et al. (n = 143) cohorts. CDKN2A copy number loss was identified as the most frequent CNA in bladder tumors, associated with reduced CDKN2A expression, tumors of a papillary phenotype, and prolonged PDX survival. The study's screening cohort consisted of 243 BlCa patients, and CDKN2A copy number was assessed in genomic DNA and cell-free DNA (cfDNA) from 217 tumors and 189 pre-treatment serum samples, respectively. CDKN2A copy number loss was correlated with superior disease-free and progression-free survival of non-muscle-invasive BlCa (NMIBC) patients. Moreover, a higher CDKN2A index (CDKN2A/LEP ratio) in pre-treatment cfDNA was associated with advanced tumor stage and grade and short-term NMIBC progression to invasive disease, while multivariate models fitted for CDKN2A index in pre-treatment cfDNA offered superior risk stratification of T1/high-grade and EORTC high-risk patients, enhancing prediction of treatment outcome. CDKN2A copy number status could serve as a minimally invasive tool to improve risk stratification and support personalized prognosis in BlCa.

5.
Biochem Biophys Res Commun ; 728: 150324, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38968772

ABSTRACT

Ras homolog gene family member C (RhoC) is a GTPase involved in cell migration, implicated in epithelial-mesenchymal transition and treatment resistance and metastasis of cancer. For example, RhoC has been shown to be involved in resistance to radiation in cervical carcinoma. Here, the effect of X-ray irradiation on RhoC expression in prostate cancer (PCa) xenografts was investigated in both xenografts in regression and relapse. Male BALB/cAnNRj-Foxn1nu/nu mice were inoculated with 4-6 million LNCaP-FGC cells and established xenografts were irradiated with X-rays (200 kV, 1 Gymin-1), 5, 10 or 15 Gy using a Gulmay Medical X-ray system. Expression of RhoC and Ki67, a known proliferation marker, was investigated in xenografts, given 15 Gy, 7 days (midst response as measured by size) or 3 weeks (relapse) post irradiation. Staining was quantified using the Halo software (v2.3.2089.34) with the Indica Labs - cytonuclear v1.6 algorithm. RhoC and Ki67 staining was divided into weak, medium, and strong staining and the percentage of cells stained, single and dual staining, was quantified. The HALO software was further used to classify the tissue in each section so that analysis of RhoC and Ki67 expression in cancer cells, stroma and necrotic areas could be done separately. The results showed that RhoC expression in cancer and stroma cells was significantly higher in relapsed xenografts than in those in regression. This was not seen for Ki67 staining, where the percentage of stained cells were the same in regressing and relapsing tumors. RhoC could be a useful biomarker to confirm relapse following external beam radiation therapy.

6.
Biomed Pharmacother ; 177: 117090, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968796

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by irreversible cognitive impairment. A deleterious feedback loop between oxidative stress and neuroinflammation in early AD exacerbates AD-related pathology. Platycodon grandiflorum root extract (PGE) has antioxidant and anti-inflammatory effects in several organs. However, the mechanisms underlying the effects of PGE in the brain remain unclear, particularly regarding its impact on oxidative/inflammatory damage and Aß deposition. Thus, we aim to identify the mechanism through which PGE inhibits Aß deposition and oxidative stress in the brain by conducting biochemical and histological analyses. First, to explore the antioxidant mechanism of PGE in the brain, we induced oxidative stress in mice injected with scopolamine and investigated the effect of PGE on cognitive decline and oxidative damage. We also assessed the effect of PGE on reactive oxygen species (ROS) generation and the expressions of antioxidant enzymes and neurotrophic factor in H2O2- and Aß-treated HT22 hippocampal cells. Next, we investigated whether PGE, which showed antioxidant effects, could reduce Aß deposition by mitigating neuroinflammation, especially microglial phagocytosis. We directly verified the effect of PGE on microglial phagocytosis, microglial activation markers, and pro-inflammatory cytokines in Aß-treated BV2 microglial cells. Moreover, we examined the effect of PGE on neuroinflammation, inducing microglial responses in Aß-overexpressing 5XFAD transgenic mice. PGE exerts antioxidant effects in the brain, enhances microglial phagocytosis of Aß, and inhibits neuroinflammation and Aß deposition, ultimately preventing neuronal cell death in AD. Taken together, our findings indicate that the therapeutic potential of PGE in AD is mediated by its targeting of multiple pathological processes.

7.
Front Immunol ; 15: 1425938, 2024.
Article in English | MEDLINE | ID: mdl-38953020

ABSTRACT

Introduction: P2X receptors are a family of homo- and heterotrimeric cation channels gated by extracellular ATP. The P2X4 and P2X7 subunits show overlapping expression patterns and have been involved in similar physiological processes, such as pain and inflammation as well as various immune cell functions. While formation of P2X2/P2X3 heterotrimers produces a distinct pharmacological phenotype and has been well established, functional identification of a P2X4/P2X7 heteromer has been difficult and evidence for and against a physical association has been found. Most of this evidence stems, however, from in vitro model systems. Methods: Here, we used a P2X7-EGFP BAC transgenic mouse model as well as P2X4 and P2X7 knock-out mice to re-investigate a P2X4-P2X7 interaction in mouse lung by biochemical and immunohistochemical experiments as well as quantitative expression analysis. Results: No detectable amounts of P2X4 could be co-purified from mouse lung via P2X7-EGFP. In agreement with these findings, immuno-histochemical analysis using a P2X7-specific nanobody revealed only limited overlap in the cellular and subcellular localizations of P2X4 and P2X7 in both the native lung tissue and primary cells. Comparison of P2X4 and P2X7 transcript and protein levels in the respective gene-deficient and wild type mice showed no mutual interrelation between their expression levels in whole lungs. However, a significantly reduced P2rx7 expression was found in alveolar macrophages of P2rx4 -/- mice. Discussion: In summary, our detailed analysis of the cellular and subcellular P2X4 and P2X7 localization and expression does not support a physiologically relevant direct association of P2X4 and P2X7 subunits or receptors in vivo.


Subject(s)
Lung , Mice, Knockout , Mice, Transgenic , Receptors, Purinergic P2X4 , Receptors, Purinergic P2X7 , Animals , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Mice , Lung/metabolism , Lung/immunology , Mice, Inbred C57BL , Protein Binding
8.
Elife ; 122024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953285

ABSTRACT

We studied lysosomal Ca2+ in inflammasome. Lipopolysaccharide (LPS) + palmitic acid (PA) decreased lysosomal Ca2+ ([Ca2+]Lys) and increased [Ca2+]i through mitochondrial ROS, which was suppressed in Trpm2-KO macrophages. Inflammasome activation and metabolic inflammation in adipose tissue of high-fat diet (HFD)-fed mice were ameliorated by Trpm2 KO. ER→lysosome Ca2+ refilling occurred after lysosomal Ca2+ release whose blockade attenuated LPS + PA-induced inflammasome. Subsequently, store-operated Ca2+entry (SOCE) was activated whose inhibition suppressed inflammasome. SOCE was coupled with K+ efflux whose inhibition reduced ER Ca2+ content ([Ca2+]ER) and impaired [Ca2+]Lys recovery. LPS + PA activated KCa3.1 channel, a Ca2+-activated K+ channel. Inhibitors of KCa3.1 channel or Kcnn4 KO reduced [Ca2+]ER, attenuated increase of [Ca2+]i or inflammasome activation by LPS + PA, and ameliorated HFD-induced inflammasome or metabolic inflammation. Lysosomal Ca2+ release induced delayed JNK and ASC phosphorylation through CAMKII-ASK1. These results suggest a novel role of lysosomal Ca2+ release sustained by ER→lysosome Ca2+ refilling and K+ efflux through KCa3.1 channel in inflammasome activation and metabolic inflammation.


Subject(s)
Calcium , Endoplasmic Reticulum , Inflammasomes , Inflammation , Lysosomes , Mice, Knockout , Potassium , Animals , Inflammasomes/metabolism , Mice , Lysosomes/metabolism , Calcium/metabolism , Potassium/metabolism , Inflammation/metabolism , Endoplasmic Reticulum/metabolism , Lipopolysaccharides , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Mice, Inbred C57BL , Macrophages/metabolism , Male , Diet, High-Fat
9.
Sci Rep ; 14(1): 15066, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956113

ABSTRACT

Living cells have spontaneous ultraweak photon emission derived from metabolic reactions associated with physiological conditions. The ORCA-Quest CMOS camera (Hamamatsu Photonics, Japan) is a highly sensitive and essential tool for photon detection; its use with a microscope incubator (Olympus) enables the detection of photons emitted by embryos with the exclusion of harmful visible light. With the application of the second law of thermodynamics, the low-entropy energy absorbed and used by embryos can be distinguished from the higher-entropy energy released and detectable in their environment. To evaluate higher-entropy energy data from embryos, we developed a unique algorithm for the calculation of the entropy-weighted spectral fractal dimension, which demonstrates the self-similar structure of the energy (photons) released by embryos. Analyses based on this structure enabled the distinction of living and degenerated mouse embryos, and of frozen and fresh embryos and the background. This novel detection of ultra-weak photon emission from mouse embryos can provide the basis for the development of a photon emission embryo control system. The ultraweak photon emission fingerprints of embryos may be used for the selection of viable specimens in an ideal dark environment.


Subject(s)
Algorithms , Embryo, Mammalian , Photons , Animals , Mice , Female
10.
BMC Cancer ; 24(1): 792, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956496

ABSTRACT

The in vivo functions of SerpinB2 in tumor cells and tumor-associated macrophages (TAMs) during breast cancer development and metastasis remain elusive. SerpinB2-deficient MMTV-PyMT mice (PyMTSB2-/-) were previously produced to explore the biological roles of SerpinB2 in breast cancer. Compared with MMTV-PyMT wild-type (PyMTWT) mice, PyMTSB2-/- mice showed delayed tumor progression and reduced CK8 + tumor cell dissemination to lymph nodes. RNA-Seq data revealed significantly enriched genes associated with inflammatory responses, especially upregulated M1 and downregulated M2 macrophage marker genes in PyMTSB2-/- tumors. Decreased CD206+M2 and increased NOS2+M1 markers were detected in the primary tumors and metastatic lymph nodes of PyMTSB2-/- mice. In an in vitro study, SerpinB2 knockdown decreased the sphere formation and migration of MDA-MB-231 cells and suppressed protumorigenic M2 polarization of RAW264.7 cells. The combination of low SerpinB2, high NOS2, and low CD206 expression was favorable for survival in patients with breast cancer, as assessed in the BreastMark dataset. Our study demonstrates that SerpinB2 deficiency delays mammary tumor development and metastasis in PyMTWT mice, along with reduced sphere formation and migration abilities of tumor cells and decreased macrophage protumorigenic polarization.


Subject(s)
Breast Neoplasms , Plasminogen Activator Inhibitor 2 , Animals , Mice , Female , Plasminogen Activator Inhibitor 2/genetics , Plasminogen Activator Inhibitor 2/metabolism , Plasminogen Activator Inhibitor 2/deficiency , Humans , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Macrophages/metabolism , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Mice, Knockout , RAW 264.7 Cells , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/genetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Cell Movement/genetics
11.
Cell Biosci ; 14(1): 88, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956702

ABSTRACT

This study investigates NADPH oxidase 4 (NOX4) involvement in iron-mediated astrocyte cell death in Alzheimer's Disease (AD) using single-cell sequencing data and transcriptomes. We analyzed AD single-cell RNA sequencing data, identified astrocyte marker genes, and explored biological processes in astrocytes. We integrated AD-related chip data with ferroptosis-related genes, highlighting NOX4. We validated NOX4's role in ferroptosis and AD in vitro and in vivo. Astrocyte marker genes were enriched in AD, emphasizing their role. NOX4 emerged as a crucial player in astrocytic ferroptosis in AD. Silencing NOX4 mitigated ferroptosis, improved cognition, reduced Aß and p-Tau levels, and alleviated mitochondrial abnormalities. NOX4 promotes astrocytic ferroptosis, underscoring its significance in AD progression.

12.
Epigenetics ; 19(1): 2374979, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38970823

ABSTRACT

TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.


Subject(s)
5-Methylcytosine , Cerebral Cortex , DNA Methylation , Proto-Oncogene Proteins , Animals , Mice , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , Cerebral Cortex/metabolism , Mice, Knockout , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , CpG Islands , Mutation
13.
Elife ; 122024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976495

ABSTRACT

Mammals have evolved sex-specific adaptations to reduce energy usage in times of food scarcity. These adaptations are well described for peripheral tissue, though much less is known about how the energy-expensive brain adapts to food restriction, and how such adaptations differ across the sexes. Here, we examined how food restriction impacts energy usage and function in the primary visual cortex (V1) of adult male and female mice. Molecular analysis and RNA sequencing in V1 revealed that in males, but not in females, food restriction significantly modulated canonical, energy-regulating pathways, including pathways associated waith AMP-activated protein kinase, peroxisome proliferator-activated receptor alpha, mammalian target of rapamycin, and oxidative phosphorylation. Moreover, we found that in contrast to males, food restriction in females did not significantly affect V1 ATP usage or visual coding precision (assessed by orientation selectivity). Decreased serum leptin is known to be necessary for triggering energy-saving changes in V1 during food restriction. Consistent with this, we found significantly decreased serum leptin in food-restricted males but no significant change in food-restricted females. Collectively, our findings demonstrate that cortical function and energy usage in female mice are more resilient to food restriction than in males. The neocortex, therefore, contributes to sex-specific, energy-saving adaptations in response to food restriction.


Subject(s)
Energy Metabolism , Neocortex , Animals , Female , Male , Neocortex/physiology , Neocortex/metabolism , Mice , Visual Cortex/physiology , Visual Cortex/metabolism , Sex Factors , Food Deprivation/physiology , Mice, Inbred C57BL , Sex Characteristics , Leptin/metabolism , Leptin/blood , Adaptation, Physiological , Caloric Restriction
14.
Cell Rep Med ; : 101643, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38981484

ABSTRACT

Chlamydia trachomatis (Ct) is the most common cause for bacterial sexually transmitted infections (STIs) worldwide with a tremendous impact on public health. With the aim to unravel novel targets of the chlamydia life cycle, we screen a compound library and identify 28 agents to significantly reduce Ct growth. The known anti-infective agent pentamidine-one of the top candidates of the screen-shows anti-chlamydia activity in low concentrations by changing the metabolism of host cells impairing chlamydia growth. Furthermore, it effectively decreases the Ct burden upon local or systemic application in mice. Pentamidine also inhibits the growth of Neisseria gonorrhea (Ng), which is a common co-infection of Ct. The conducted compound screen is powerful in exploring antimicrobial compounds against Ct in a medium-throughput format. Following thorough in vitro and in vivo assessments, pentamidine emerges as a promising agent for topical prophylaxis or treatment against Ct and possibly other bacterial STIs.

15.
Hum Mol Genet ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981620

ABSTRACT

Hearing loss is the most common congenital sensory deficit worldwide and exhibits high genetic heterogeneity, making molecular diagnoses elusive for most individuals. Detecting novel mutations that contribute to hearing loss is crucial to providing accurate personalized diagnoses, tailored interventions, and improving prognosis. Copy number variants (CNVs) are structural mutations that are understudied, potential contributors to hearing loss. Here, we present the Abnormal Wobbly Gait (AWG) mouse, the first documented mutant exhibiting waltzer-like locomotor dysfunction, hyperactivity, circling behaviour, and profound deafness caused by a spontaneous CNV deletion in cadherin 23 (Cdh23). We were unable to identify the causative mutation through a conventional whole-genome sequencing (WGS) and variant detection pipeline, but instead found a linked variant in hexokinase 1 (Hk1) that was insufficient to recapitulate the AWG phenotype when introduced into C57BL/6J mice using CRISPR-Cas9. Investigating nearby deafness-associated genes revealed a pronounced downregulation of Cdh23 mRNA and a complete absence of full-length CDH23 protein, which is critical for the development and maintenance of inner ear hair cells, in whole head extracts from AWG neonates. Manual inspection of WGS read depth plots of the Cdh23 locus revealed a putative 10.4 kb genomic deletion of exons 11 and 12 that was validated by PCR and Sanger sequencing. This study underscores the imperative to refine variant detection strategies to permit identification of pathogenic CNVs easily missed by conventional variant calling to enhance diagnostic precision and ultimately improve clinical outcomes for individuals with genetically heterogenous disorders such as hearing loss.

16.
Dev Dyn ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984461

ABSTRACT

BACKGROUND: Mouse nodal immotile cilia mechanically sense the bending direction for left-right (L-R) determination and activate the left-side-specific signaling cascade, leading to increased Nodal activity. Asymmetric distribution of Pkd2, a crucial channel for L-R determination, on immotile cilia has been reported recently. However, the causal relationship between the asymmetric Pkd2 distribution and direction-dependent flow sensing is not well understood. Furthermore, the underlying molecular mechanism directing this asymmetric Pkd2 distribution remains unclear. RESULTS: The effects of several recombinant proteins and inhibitors on the Pkd2 distribution were analyzed using super-resolution microscopy. Notably, bone morphogenetic protein 4 (BMP4) affected the Pkd2 distribution. Additionally, three-dimensional manipulation of nodal immotile cilia using optical tweezers revealed that excess BMP4 caused defects in the mechanosensing ability of the cilia. CONCLUSIONS: Experimental data together with model calculations suggest that BMP4 regulates the asymmetric distribution of Pkd2 in nodal immotile cilia, thereby affecting the ability of these cilia to sense the bending direction for L-R determination. This study, for the first time, provides insight into the relationship between the asymmetric protein distribution in cilia and their function.

17.
Acta Histochem Cytochem ; 57(3): 109-118, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38988691

ABSTRACT

Retinoic acid (RA) plays a critical role in cell growth and tissue development. RA is synthesized from retinoids through oxidation processes by the retinaldehyde dehydrogenase (Raldh) family. However, the expression of Raldhs during pituitary development and the identification of Raldh-expressing cells in the adult pituitary have not been fully elucidated. Here, we performed in situ hybridization to localize the three Raldh isoforms (Raldh1-3) in fetal and adult mouse pituitary glands. The results showed that Raldh2 expression was observed in Rathke's pouch from embryonic day 13.5 (E13.5), and this expression was sustained in the anterior lobe of the pituitary primordium from E15.5 to E17.5. In contrast, Raldh1 and Raldh3 were rarely detectable. Real-time PCR analysis revealed that Raldh2 was the predominant isoform expressed in the adult pituitary, although Raldh1 was also expressed to a lesser extent. In the adult pituitary, Raldh1-expressing cells were primarily observed in the posterior lobe. Raldh2-expressing cells were found in the marginal cell layer and parenchyma of the anterior lobe and were immunopositive for aldolase C (folliculostellate cells), but not for anterior pituitary hormones. These results suggest that RA is an important regulatory factor in the functions of the pituitary throughout its development in mice.

18.
Neuro Oncol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990913

ABSTRACT

Brain tumors, particularly glioblastoma (GBM), are devastating and challenging to treat, with a low 5-year survival rate of only 6.6%. Mouse models are established to understand tumorigenesis and develop new therapeutic strategies. Large-scale genomic studies have facilitated the identification of genetic alterations driving human brain tumor development and progression. Genetically engineered mouse models (GEMMs) with clinically relevant genetic alterations are widely used to investigate tumor origin. Additionally, syngeneic implantation models, utilizing cell lines derived from GEMMs or other sources, are popular for their consistent and relatively short latency period, addressing various brain cancer research questions. In recent years, the success of immunotherapy in specific cancer types has led to a surge in cancer immunology-related research which specifically necessitates the utilization of immunocompetent mouse models. In this review, we provide a comprehensive summary of GEMMs and syngeneic mouse models for adult brain tumors, emphasizing key features such as model origin, genetic alteration background, oncogenic mechanisms, and immune-related characteristics. Our review serves as a valuable resource for the brain tumor research community, aiding in the selection of appropriate models to study cancer immunology.

19.
Int J Hyperthermia ; 41(1): 2376678, 2024.
Article in English | MEDLINE | ID: mdl-38991553

ABSTRACT

PURPOSE: To investigate how passive hyperthermia affect the resting-state functional brain activity based on an acute mouse model after heat stress exposure. MATERIALS AND METHODS: Twenty-eight rs-fMRI data of C57BL/6J male mice which weighing about 24 ∼ 29 g and aged 12 ∼ 16 weeks were collected. The mice in the hyperthermia group (HT, 40 °C ± 0.5 °C, 40 min) were subjected to passive hyperthermia before the anesthesia preparation for scanning. While the normal control group (NC) was subjected to normothermia condition (NC, 20 °C ± 2 °C, 40 min). After data preprocessing, we performed independent component analysis (ICA) and region of interested (ROI)-ROI functional connectivity (FC) analyses on the data of both HT (n = 13) and NC (n = 15). RESULTS: The group ICA analysis showed that the HT and the NC both included 11 intrinsic connectivity networks (ICNs), and can be divided into four types of networks: the cortical network (CN), the subcortical network (SN), the default mode network (DMN), and cerebellar networks. CN and SN belongs to sensorimotor network. Compared with NC, the functional network organization of ICNs in the HT was altered and the overall functional intensity was decreased. Furthermore, 13 ROIs were selected in CN, SN, and DMN for further ROI-ROI FC analysis. The ROI-ROI FC analysis showed that passive hyperthermia exposure significantly reduced the FC strength in the overall brain represented by CN, SN, DMN of mice. CONCLUSION: Prolonged exposure to high temperature has a greater impact on the overall perception and cognitive level of mice, which might help understand the relationship between neuronal activities and physiological thermal sensation and regulation as well as behavioral changes.


Subject(s)
Brain , Hyperthermia , Mice, Inbred C57BL , Animals , Mice , Male , Brain/physiopathology , Brain/diagnostic imaging , Hyperthermia/physiopathology , Magnetic Resonance Imaging/methods
20.
Exp Gerontol ; : 112520, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992823

ABSTRACT

Medium-chain triglycerides (MCTs) and docosahexaenoic acid (DHA, Cn-3, 22:6) are essential in improving cognitive function and protecting neurocytes. This study explored the effects of the combined intervention of MCTs and DHA on inhibiting neurocyte apoptosis of the brain and improving cognitive function in senescence-accelerated mouse-prone 8 (SAMP8). Four-month-old male SAMP8 mice were randomly divided into four treatment groups (12 mice/group): DHA, MCT, DHA + MCT, and control groups, which intervened for seven months. Twelve age-matched male senescence-accelerated mouse resistant 1 (SAMR1) was used as the natural aging group. TUNEL assay and HE staining were used to assess neurocyte apoptosis and damage in the brain of mice. Moreover, the cognitive function was analyzed using the Morris water maze (MWM) and open field (OF) tests. The results showed that the cognitive function of 11-month-old SAMP8 mice decreased with age, and further pathological examination revealed the damaged neurocyte structure, karyopyknosis, cell atrophy, and even apoptosis. MCTs combined with DHA supplementation could increase octanoic acid (C8:0), decanoic acid (C10:0), and DHA levels in the serum, inhibit neurocyte apoptosis, improve neurocyte damage, moreover delay age-related cognitive decline after seven-month treatment. Furthermore, combining MCTs and DHA was significantly more beneficial than MCTs or DHA alone. In conclusion, MCTs combined with DHA could delay cognitive decline by inhibiting neurocyte apoptosis of the brain in SAMP8 mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...