Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 14: 1251731, 2023.
Article in English | MEDLINE | ID: mdl-37954857

ABSTRACT

Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) infection, currently lacks specific preventive and therapeutic interventions. Here, we demonstrated that Pien Tze Huang (PZH) could dose-dependently inhibit EV-A71 replication at the cellular level, resulting in significant reductions in EV-A71 virus protein 1 (VP1) expression and viral yields in Vero and human rhabdomyosarcoma cells. More importantly, we confirmed that PZH could protect mice from EV-A71 infection for the first time, with Ribavirin serving as a positive control. PZH treatment reduced EV-A71 VP1 protein expression, viral yields in infected muscles, and improved muscle pathology. Additionally, we conducted a preliminary mechanism study using quantitative proteomics. The results suggested that the suppression of the PI3K/AKT/mTOR and NF-κB signaling pathways may contribute to the anti-EV-A71 activity of PZH. These findings provide strong evidence supporting the potential therapeutic application of PZH for EV-A71 infection management.

2.
Front Neurosci ; 17: 1183023, 2023.
Article in English | MEDLINE | ID: mdl-37325043

ABSTRACT

Introduction: Cognitive impairment associated with old age or various brain disorders may be very disabling for affected individuals, placing their carers and public health services under considerable stress. The standard-of-care drugs produce only transient improvement of cognitive impairment in older people, so the search for novel, safe and effective therapeutics that would help to reverse or delay cognitive impairment is warranted. Repurposing pharmacological therapies with well-established safety record for additional indications is a promising recent trend in drug development. Vertigoheel (VH-04), a multicomponent drug made of Ambra grisea, Anamirta cocculus L., Conium maculatum, and Petroleum rectificatum, has been successfully used for several decades in the treatment of vertigo. Here, we investigated effects of VH-04 on cognitive performance in standard behavioral tests assessing different types of memory and explored cellular and molecular underpinnings of VH-04's biological activity. Methods: In the majority of behavioral experiments, namely in the spontaneous and rewarded alternation tests, passive avoidance test, contextual/cued fear conditioning, and social transmission of food preference, we examined the ability of single and repeated intraperitoneal administrations of VH-04 to improve cognitive parameters of mice and rats disrupted by the application of the muscarinic antagonist scopolamine. In addition, we also assessed how VH-04 affected novel object recognition and influenced performance of aged animals in Morris water maze. Furthermore, we also studied the effects of VH-04 on primary hippocampal neurons in vitro and mRNA expression of synaptophysin in the hippocampus. Results: Administration of VH-04 positively influenced visual recognition memory in the novel object recognition test and alleviated the impairments in spatial working memory and olfactory memory caused by the muscarinic antagonist scopolamine in the spontaneous alternation and social transmission of food preference tests. In addition, VH-04 improved retention of the spatial orientation memory of old rats in the Morris water maze. In contrast, VH-04 did not have significant effects on scopolamine-induced impairments in tests of fear-aggravated memory or rewarded alternation. Experiments in vitro showed that VH-04 stimulated neurite growth and possibly reversed the age-dependent decrease in hippocampal synaptophysin mRNA expression, which implies that VH-04 may preserve synaptic integrity in the aging brain. Discussion: Our findings allow a cautious conclusion that in addition to its ability to alleviate manifestations of vertigo, VH-04 may be also used as a cognitive enhancer.

3.
Front Pharmacol ; 12: 604009, 2021.
Article in English | MEDLINE | ID: mdl-34867309

ABSTRACT

Background: Viral pneumonia is one of the most serious respiratory diseases, and multicomponent traditional Chinese medicines have been applied in the management of infected patients. As a representative TCM, HouYanQing (HYQ) oral liquid shows antiviral activity. However, the unclear mechanisms, as well as the ambiguous clinical effects, limit widespread application of this treatment. Therefore, in this study, a proteomics-based approach was utilized to precisely investigate its efficacy. Methods: Based on the efficacy evaluation of HYQ in a mouse model of pneumonia caused by influenza A virus (H1N1) and the subsequent proteomics analysis, specific signatures regulated by HYQ treatment of viral pneumonia were identified. Results: Experimental verifications indicate that HYQ may show distinctive effects in viral pneumonia patients, such as elevated galectin-3-binding protein and glutathione peroxidase 3 levels. Conclusion: This study provides a precise investigation of the efficacy of a multicomponent drug against viral pneumonia and offers a promising alternative for personalized management of viral pneumonia.

4.
Pharmacol Res ; 169: 105617, 2021 07.
Article in English | MEDLINE | ID: mdl-33872811

ABSTRACT

Traditional Chinese multi-herb-combined prescriptions usually show better performance than a single agent since a group of effective compounds interfere multiple disease-relevant targets simultaneously. Huang-Lian-Jie-Du decoction is a remedy made of four herbs that are widely used to treat oral ulcers, gingivitis, and periodontitis. However, the active ingredients and underlying mechanisms are not clear. To address these questions, we prepared a water extract solution of Huang-Lian-Jie-Du decoction (HLJDD), called it as WEH (Water Extract Solution of HLJDD), and used it to treat LPS-induced systemic inflammation in mice. We observed that WEH attenuated inflammatory responses including reducing production of cytokines, chemokines and interferons (IFNs), further attenuating emergency myelopoiesis, and preventing mice septic lethality. Upon LPS stimulation, mice pretreated with WEH increased circulating Ly6C- patrolling and splenic Ly6C+ inflammatory monocytes. The acute myelopoiesis related transcriptional factor profile was rearranged by WEH. Mechanistically we confirmed that WEH interrupted LPS/TLR4/CD14 signaling-mediated downstream signaling pathways through its nine principal ingredients, which blocked LPS stimulated divergent signaling cascades, such as activation of NF-κB, p38 MAPK, and ERK1/2. We conclude that the old remedy blunts LPS-induced "danger" signal recognition and transduction process at multiple sites. To translate our findings into clinical applications, we refined the crude extract into a pure multicomponent drug by directly mixing these nine chemical entities, which completely reproduced the effect of protecting mice from lethal septic shock. Finally, we reduced a large number of compounds within a multi-herb water extract to seven-chemical combination that exhibited superior therapeutic efficacy compared with WEH.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Inflammation/drug therapy , Monocytes/drug effects , Plant Extracts/therapeutic use , Transcription Factors/drug effects , Animals , Cellular Reprogramming/drug effects , Coptis chinensis , Drugs, Chinese Herbal/administration & dosage , Flow Cytometry , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Plant Extracts/administration & dosage , RAW 264.7 Cells/drug effects , Transcription Factors/metabolism
5.
Cell Physiol Biochem ; 45(4): 1455-1471, 2018.
Article in English | MEDLINE | ID: mdl-29466787

ABSTRACT

BACKGROUND/AIMS: Traditional Chinese medicine (TCM) has been used in clinical practice for thousands of years and has accumulated considerable knowledge concerning the in vivo efficacy of targeting complicated diseases. TCM formulae are a mixture of hundreds of chemical components with multiple potential targets, essentially acting as a combination therapy of multi-component drugs. However, the obscure substances and the unclear molecular mechanisms are obstacles to their further development and internationalization. Therefore, it is necessary to develop new modern drugs based on the combination of effective components in TCM with exact clinical efficacy. In present study, we aimed to detect optimal ratio of the combination of effective components based on Sheng-Mai-San for myocardial ischemia. METHODS: On the basis of preliminary studies and references of relevant literature about Sheng-Mai-San for myocardial ischemia, we chose three representative components (ginsenoside Rb1 (G), ruscogenin (R) and schisandrin (S)) for the optimization design studies. First, the proper proportion of the combination was explored in different myocardial ischemia mice induced by isoproterenol and pituitrin based on orthogonal design. Then, the different proportion combinations were further optimized through uniform design in a multi-model and multi-index mode. Finally, the protective effect of combination was verified in three models of myocardial ischemia injured by ischemia/reperfusion, chronic intermittent hypoxia and acute infarction. RESULTS: The optimized combination GRS (G: 6 mg/kg, R: 0.75 mg/kg, S: 6 mg/kg) obtained by experimental screening exhibited a significant protective effect on myocardial ischemia injury, as evidenced by decreased myocardium infarct size, ameliorated histological features, decreased myocardial myeloperoxidase (MPO) and malondiadehyde (MDA), calcium overload, and decreased serum lactate dehydrogenase (LDH), creatine kinase MB isoenzyme (CK-MB), cardiac troponin I (cTn-I) activity. In addition, the interactions of three components in combination GRS were also investigated. The combination, compared to G, R and S, could significantly reduce the concentration of serum CK-MB and cTn-I, and decrease myocardial infarct size, which demonstrated the advantages of this combination for myocardial ischemia. CONCLUSION: Our results demonstrated that the optimized combination GRS could exert significant cardioprotection against myocardial ischemia injury with similar effect compared to Sheng Mai preparations, which might provide some pharmacological evidences for further development of new modern Chinese drug for cardiovascular diseases basing on traditional Chinese formula with affirmative therapeutic effect.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Myocardial Ischemia/drug therapy , Animals , Creatine Kinase, MB Form/blood , Cyclooctanes/therapeutic use , Disease Models, Animal , Drug Combinations , Ginsenosides/therapeutic use , Heart/drug effects , Isoproterenol/toxicity , L-Lactate Dehydrogenase/blood , Lignans/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Myocardial Infarction/pathology , Myocardial Ischemia/chemically induced , Myocardial Ischemia/mortality , Myocardial Ischemia/pathology , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Pituitary Hormones, Posterior/toxicity , Polycyclic Compounds/therapeutic use , Spirostans/therapeutic use , Troponin I/blood
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-845570

ABSTRACT

Alzheimer's disease (AD) is a complex and progressive neurodegenerative disorder. The available therapy is mainly Acetyl cholinesterase (AChE) inhibitors and N-methyl-D-aspartate (NMDA) antagonist, which are single-target AD drugs. They are limited symptomatic treatment and their efficacy remains unsatisfactory. Due to the complexity and multifactorial etiology of AD, the multi-target-directed ligand approach is a hopeful way of searching new anti-AD drugs. Here we review the advancement of multitarget AD drugs in recent years: single compound with more than one target, multicomponent drug and drug combination.

7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-463977

ABSTRACT

Druggability is crucial in pharmaceutical drug development as the source of drug research. Druggability research will face greater challenges because Chinese materia medica (CMM) is the multicomponent drug. In this paper, ideas and methods of study on CMM druggability were mainly proposed in combination with the chemical material basis of muticomponents of CMM.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-854501

ABSTRACT

The core of multicomponent drug metabolism is the mutual influence of the transporters and drug metabolic enzymes interaction of more ingredients, with the simultaneous determination for multiple components as the principle, and with many components changes on the environmental impact as the emphasis. Its theoretical content composes by sequential metabolism, concurrent metabolism, and multiple metabolism. On the principles of multicomponent simultaneous determination, metabolic continuous time records, metabolic continuous space records, and the combination of qualitative and quantitative research, the multicomponent drug metabolism is researched by the experimental methods of in vivo, in situ, and in vitro. In visual mode of the comparative analysis with the quantitative data evaluation, multicomponent drug metabolism can be thought of emerging research direction with solid academic foundation and advanced technical means.

SELECTION OF CITATIONS
SEARCH DETAIL
...