Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 472
Filter
1.
Glob Chang Biol ; 30(7): e17409, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978455

ABSTRACT

Although positive effects of arbuscular mycorrhizal (AM) fungi on plant performance under drought have been well documented, how AM fungi regulate soil functions and multifunctionality requires further investigation. In this study, we first performed a meta-analysis to test the potential role of AM fungi in maintaining soil functions under drought. Then, we conducted a greenhouse experiment, using a pair of hyphal ingrowth cores to spatially separate the growth of AM fungal hyphae and plant roots, to further investigate the effects of AM fungi on soil multifunctionality and its resistance against drought. Our meta-analysis showed that AM fungi promote multiple soil functions, including soil aggregation, microbial biomass and activities of soil enzymes related to nutrient cycling. The greenhouse experiment further demonstrated that AM fungi attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. Moreover, this buffering effect of AM fungi persists across different frequencies of water supply and plant species. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought. Our study highlights the importance of AM fungi as a nature-based solution to sustaining multiple soil functions in a world where drought events are intensifying.


Subject(s)
Droughts , Mycorrhizae , Soil Microbiology , Soil , Mycorrhizae/physiology , Soil/chemistry , Plant Roots/microbiology , Plant Roots/growth & development , Biomass
2.
Small ; : e2401034, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949312

ABSTRACT

Creating durable and efficient multifunctional electrocatalysts capable of high current densities at low applied potentials is crucial for widespread industrial use in hydrogen production. Herein, a Co-Ni-Fe-Cu-Mo (oxy)hydroxide electrocatalyst with abundant grain boundaries on nickel foam using a scalable coating method followed by chemical precipitation is synthesized. This technique efficiently organizes hierarchical Co-Ni-Fe-Cu-Mo (oxy)hydroxide nanoparticles within ultrafine crystalline regions (<4 nm), enriched with numerous grain boundaries, enhancing catalytic site density and facilitating charge and mass transfer. The resulting catalyst, structured into nanosheets enriched with grain boundaries, exhibits superior electrocatalytic activity. It achieves a reduced overpotential of 199 mV at 10 mA cm2 current density with a Tafel slope of 48.8 mV dec1 in a 1 m KOH solution, maintaining stability over 72 h. Advanced analytical techniques reveal that incorporating high-valency copper and molybdenum elements significantly enhances lattice oxygen activation, attributed to weakened metal-oxygen bonds facilitating the lattice oxygen mechanism (LOM). Synchrotron radiation studies confirm a synergistic interaction among constituent elements. Furthermore, the developed high-entropy electrode demonstrates exceptional long-term stability under high current density in alkaline environments, showcasing the effectiveness of high-entropy strategies in advancing electrocatalytic materials for energy-related applications.

3.
Materials (Basel) ; 17(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38930204

ABSTRACT

Ferroelectric materials, with their spontaneous electric polarization, are renewing research enthusiasm for their deployment in high-performance micro/nano energy harvesting devices such as triboelectric nanogenerators (TENGs). Here, the introduction of ferroelectric materials into the triboelectric interface not only significantly enhances the energy harvesting efficiency, but also drives TENGs into the era of intelligence and integration. The primary objective of the following paper is to tackle the newest innovations in TENGs based on ferroelectric materials. For this purpose, we begin with discussing the fundamental idea and then introduce the current progress with TENGs that are built on the base of ferroelectric materials. Various strategies, such as surface engineering, either in the micro or nano scale, are discussed, along with the environmental factors. Although our focus is on the enhancement of energy harvesting efficiency and output power density by utilizing ferroelectric materials, we also highlight their incorporation in self-powered electronics and sensing systems, where we analyze the most favorable and currently accessible options in attaining device intelligence and multifunctionality. Finally, we present a detailed outlook on TENGs that are based on ferroelectric materials.

4.
Microorganisms ; 12(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38930499

ABSTRACT

Soil desertification is an important challenge in global soil management, and effectively and stably restoring soil function is an urgent problem. Using synthetic microbial communities (SynComs) is a burgeoning microbial strategy aimed at enhancing soil nutrients through functional synergies among diverse microorganisms; nevertheless, their effectiveness in restoring desertified soils remains unknown. In this study, we conducted a two-year field experiment using a SynCom constructed by in situ probiotic bacteria and set up control, chemical fertilizer, and combined SynCom-chemical fertilizer (combined fertilizer) treatments to investigate the linkage between microbial communities and soil multifunctionality in the soil surface layer (0-10 cm). Both the bacterial and fungal communities differed the most under the combined fertilizer treatment compared to the control. The bacterial communities differed more under treatments of the SynCom than the chemical fertilizer, while the fungal communities differed more under the chemical fertilizer treatment than the SynCom treatment. Regarding soil function, the SynCom strengthened the correlation between enzyme activities and both bacterial communities and functional properties. pH and available potassium were the main influencing factors under the chemical fertilizer and combined fertilizer treatments. The beta-diversity of the bacterial communities was significantly correlated with soil multifunctionality. Random forest analyses showed that the SynCom significantly enhanced the bacterial communities, driving soil multifunctionality, and that some potential microbial taxa drove multiple nutrient cycles simultaneously. In summary, the SynCom effectively increased the abundance of most carbon, nitrogen, and phosphorus functional genes as well as soil enzyme activities. The bacterial community composition contributed significantly to soil multifunctionality. Hence, the development of novel microbial agents holds significant potential for improving soil functionality and managing desertification.

5.
Biosens Bioelectron ; 261: 116494, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38901394

ABSTRACT

Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.


Subject(s)
Biosensing Techniques , Nucleic Acids , Biosensing Techniques/methods , Nucleic Acids/chemistry , Humans , Nucleic Acid Conformation , Animals
6.
Trends Ecol Evol ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38910081

ABSTRACT

Soil microbial communities play pivotal roles in maintaining soil health in agroecosystems. However, how the delivery of multiple microbial functions in agroecosystems is maintained remains poorly understood. This may put us at risk of incurring unexpected trade-offs between soil functions. We elucidate how interactions between soil microbes can lead to trade-offs in the functioning of agricultural soils. Interactions within soil microbial communities can result in not only positive but also neutral and negative relationships among soil functions. Altering soil conditions through soil health-improving agricultural management can alleviate these functional trade-offs by promoting the diversity and interrelationships of soil microbes, which can help to achieve more productive and sustainable agroecosystems.

7.
Environ Sci Technol ; 58(25): 11027-11040, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857061

ABSTRACT

Conversion from natural lands to cropland, primarily driven by agricultural expansion, could significantly alter soil microbiome worldwide; however, influences of forest-to-cropland conversion on microbial hierarchical interactions and ecosystem multifunctionality have not been fully understood. Here, we examined the effects of forest-to-cropland conversion on intratrophic and cross-trophic microbial interactions and soil ecosystem multifunctionality and further disclosed their underlying drivers at a national scale, using Illumina sequencing combined with high-throughput quantitative PCR techniques. The forest-to-cropland conversion significantly changed the structure of soil microbiome (including prokaryotic, fungal, and protistan communities) while it did not affect its alpha diversity. Both intrakingdom and interkingdom microbial networks revealed that the intratrophic and cross-trophic microbial interaction patterns generally tended to be more modular to resist environmental disturbance introduced from forest-to-cropland conversion, but this was insufficient for the cross-trophic interactions to maintain stability; hence, the protistan predation behaviors were still disturbed under such conversion. Moreover, key soil microbial clusters were declined during the forest-to-cropland conversion mainly because of the increased soil total phosphorus level, and this drove a great degradation of the ecosystem multifunctionality (by 207%) in cropland soils. Overall, these findings comprehensively implied the negative effects of forest-to-cropland conversion on the agroecosystem, from microbial hierarchical interactions to ecosystem multifunctionality.


Subject(s)
Ecosystem , Forests , Soil Microbiology , Microbiota , Agriculture , Soil , Crops, Agricultural
8.
Adv Healthc Mater ; : e2304157, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38870600

ABSTRACT

For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α4ß1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols.

9.
Imeta ; 3(3): e187, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898982

ABSTRACT

The role of diverse soil microbiota in restoring erosion-induced degraded lands is well recognized. Yet, the facilitative interactions among symbiotic arbuscular mycorrhizal (AM) fungi, rhizobia, and heterotrophic bacteria, which underpin multiple functions in eroded ecosystems, remain unclear. Here, we utilized quantitative microbiota profiling and ecological network analyses to explore the interplay between the diversity and biotic associations of root-associated microbiota and multifunctionality across an eroded slope of a Robinia pseudoacacia plantation on the Loess Plateau. We found explicit variations in slope multifunctionality across different slope positions, associated with shifts in limiting resources, including soil phosphorus (P) and moisture. To cope with P limitation, AM fungi were recruited by R. pseudoacacia, assuming pivotal roles as keystones and connectors within cross-kingdom networks. Furthermore, AM fungi facilitated the assembly and composition of bacterial and rhizobial communities, collectively driving slope multifunctionality. The symbiotic association among R. pseudoacacia, AM fungi, and rhizobia promoted slope multifunctionality through enhanced decomposition of recalcitrant compounds, improved P mineralization potential, and optimized microbial metabolism. Overall, our findings highlight the crucial role of AM fungal-centered microbiota associated with R. pseudoacacia in functional delivery within eroded landscapes, providing valuable insights for the sustainable restoration of degraded ecosystems in erosion-prone regions.

10.
Nanomicro Lett ; 16(1): 221, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884840

ABSTRACT

Considering the serious electromagnetic wave (EMW) pollution problems and complex application condition, there is a pressing need to amalgamate multiple functionalities within a single substance. However, the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges. Herein, reduced graphene oxide/carbon foams (RGO/CFs) with two-dimensional/three-dimensional (2D/3D) van der Waals (vdWs) heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying, immersing absorption, secondary freeze-drying, followed by carbonization treatment. Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching, the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances, achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of - 50.58 dB with the low matching thicknesses. Furthermore, the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties, good corrosion resistance performances as well as outstanding thermal insulation capabilities, displaying the great potential in complex and variable environments. Accordingly, this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures, but also outlined a powerful mixed-dimensional assembly strategy for engineering multifunctional foams for electromagnetic protection, aerospace and other complex conditions.

11.
Exploration (Beijing) ; 4(2): 20230057, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38855621

ABSTRACT

3D graphene porous materials (3GPM), which have low density, large porosity, excellent compressibility, high conductivity, hold huge promise for a wide range of applications. Nevertheless, most 3GPM have brittle and weak network structures, which limits their widespread use. Therefore, the preparation of a robust and elastic graphene porous network is critical for the functionalization of 3GPM. Herein, the recent research of 3GPM with excellent mechanical properties are summarized and the focus is on the effect factors that affect the mechanical properties of 3GPM. Moreover, the applications of elastic 3GPM in various fields, such as adsorption, energy storage, solar steam generation, sensors, flexible electronics, and electromagnetic wave shielding are comprehensively reviewed. At last, the new challenges and perspective for fabrication and functionalization of robust and elastic 3GPM are outlined. It is expected that the perspective will inspire more new ideas in preparation and functionalization of 3GPM.

12.
Regen Biomater ; 11: rbae056, 2024.
Article in English | MEDLINE | ID: mdl-38845853

ABSTRACT

Bacteria-infected wounds healing has been greatly hindered by antibiotic resistance and persistent inflammation. It is crucial to develop multifunctional nanocomposites that possess effective antibacterial properties and can simultaneously accelerate the wound healing process to overcome the above challenges. Herein, we prepared a yolk-shell structured Ag nanowires (NWs)@amorphous hollow ZIF-67 by etching ZIF-67 onto the Ag NWs for infected wound healing for the first time. The etched hollow structure of amorphous ZIF-67 in the nanocomposite makes it a promising platform for loading healing-promoting drugs. We extensively studied the antibacterial and healing-promoting properties of the curcumin (CCM)-loaded nanocomposite (Ag NWs@C-HZ67). Ag NWs, being noble metal materials with plasmonic effects, can absorb a broad range of natural light and convert it to thermal energy. This photothermal conversion further improves the release of antibacterial components and wound healing drugs when exposed to light. During the healing process of an infected wound, Ag and Co ions were released from Ag NWs@C-HZ67 upon direct contact with the wound exudate and under the influence of light irradiation. Simultaneously, the loaded CCM leaked out to repair the infected wound. The minimum inhibitory concentrations of the Ag NWs@C-HZ67 groups against Escherichia coli and Staphylococcus aureus bacteria decreased to 3 and 3 µg ml-1 when exposed to white light. Furthermore, an in vivo assessment of infected wound healing demonstrated that combining Ag NWs@C-HZ67 with light significantly accelerated the wound healing process, achieving 70% healing by the 6th day and almost complete healing by the 8th day. This advanced nanocomposite, consisting of components that possess antibacterial and growth-promoting properties, offers a safe, effective and clinically-translatable solution for accelerating the healing process of infected wounds.

13.
J Environ Manage ; 363: 121395, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852407

ABSTRACT

Vegetation degradation caused by intense human disturbances poses a significant challenge to the preservation and improvement of ecosystem functions and services in the karst region of southwest China. Soil microorganisms are major regulators of ecosystem multifunctionality (EMF). Currently, there is a dearth of knowledge regarding the effects of vegetation degradation on soil microbial communities and their corresponding multiple ecosystem functions in karst regions. In this study, we selected the vegetation degradation sequences of second natural forest (NF), agroforestry (AS) and cropland (CL) to investigate the diversity of bacterial, fungal and protistan communities, and their hierarchical co-occurrence network, and EMF to explore the relationships between them. Compared to the NF, the carbon cycling index, nitrogen cycling index, soil water regulation power, and the EMF were significantly decreased by 8.2%-50.6%, 48.7%-86.8%, 19.8%-24.5%, and 31.4%-69.5% in the AS and CL, respectively. The development of EMF can be explained by the fungal, protistan and microbial hierarchical ß-diversity, as well as the complexity (e.g. degree) of microbial hierarchical interactions during the process of vegetation degradation. Notably, correlations between the abundances of sensitive amplicon sequence variants (sASVs) for different karst vegetation types and EMF varied in distinct network modules, being positive in module 1 and negative in module 2. Moreover, the relative abundance of keystone taxa in fungal and protistan communities provided greater contributions to EMF than the bacterial communities. Additionally, random forest modeling showed that carbon and nitrogen sources, and soil water content, and trace elements (e.g. exchangeable magnesium, iron, manganese, and zinc) were identified as key driving factors of the EMF. Collectively, our findings demonstrate that vegetation degradation obviously alters soil microbial diversities and hierarchical interactions, emphasizing their key role in maintaining ecosystem functions and health in karst regions.


Subject(s)
Ecosystem , Soil Microbiology , Soil , China , Soil/chemistry , Fungi , Microbiota , Forests , Bacteria/classification
14.
Small ; : e2401939, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924354

ABSTRACT

3D carbon-based porous sponges are recognized for significant potential in oil absorption and electromagnetic interference (EMI). However, their widespread application is hindered by a common compromise between high performance and affordability of mass production. Herein, a novel approach is introduced that involves laser-assisted micro-zone heating melt-blown spinning (LMHMS) to address this challenge by creating pitch-based submicron carbon fibers (PSCFs) sponge with 3D interconnected structures. These structures bestow the resulting sponge exceptional characteristics including low density (≈20 mg cm-3), high porosity (≈99%), remarkable compressibility (80% maximum strain), and superior conductivity (≈628 S m-1). The resultant PSCF sponges realize an oil/organic solvent sorption capacity over 56 g/g and possess remarkable regenerated ability. In addition to their effectiveness in cleaning up oil/organic solvent spills, they also demonstrated strong electromagnetic shielding capabilities, with a total shielding effectiveness (SE) exceeding 60 dB across the X-band GHz range. In virtue of extreme lightweight of ≈20 mg cm-3, the specific SE of the PSCF sponge reaches as high as ≈1466 dB cm3 g-1, surpassing the performance of numerous carbon-based porous structures. Thus, the unique blend of properties renders these sponges promising for transforming strategies in addressing oil/organic solvent contaminations and providing effective protection against EMI.

15.
Microorganisms ; 12(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38792779

ABSTRACT

The use of green manure can substantially increase the microbial diversity and multifunctionality of soil. Green manuring practices are becoming popular for tobacco production in China. However, the influence of different green manures in tobacco fields has not yet been clarified. Here, smooth vetch (SV), hairy vetch (HV), broad bean (BB), common vetch (CV), rapeseed (RS), and radish (RD) were selected as green manures to investigate their impact on soil multifunctionality and evaluate their effects on enhancing soil quality for tobacco cultivation in southwest China. The biomass of tobacco was highest in the SV treatment. Soil pH declined, and soil organic matter (SOM), total nitrogen (TN), and dissolved organic carbon (DOC) content in CV and BB and activity of extracellular enzymes in SV and CV treatments were higher than those in other treatments. Fungal diversity declined in SV and CV but did not affect soil multifunctionality, indicating that bacterial communities contributed more to soil multifunctionality than fungal communities. The abundance of Firmicutes, Rhizobiales, and Micrococcales in SV and CV treatments increased and was negatively correlated with soil pH but positively correlated with soil multifunctionality, suggesting that the decrease in soil pH contributed to increases in the abundance of functional bacteria. In the bacteria-fungi co-occurrence network, the relative abundance of key ecological modules negatively correlated with soil multifunctionality and was low in SV, CV, BB, and RS treatments, and this was associated with reductions in soil pH and increases in the content of SOM and nitrate nitrogen (NO3--N). Overall, we found that SV and CV are more beneficial for soil multifunctionality, and this was driven by the decrease in soil pH and the increase in SOM, TN, NO3--N, and C- and N-cycling functional bacteria.

16.
Small ; : e2401387, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773909

ABSTRACT

Bulk hexagonal boron nitride (h-BN) ceramics with structural integrity, high-temperature resistance and low expansion rate are expected for multifunctional applications in extreme conditions. However, due to its sluggish self-diffusion and intrinsic inertness, it remains a great challenge to overcome high-energy barrier for h-BN powder sintering. Herein, a cross-linking and pressureless-welding strategy is reported to produce bulk boron nitride nanosheets (BNNSs) ceramics with well-crystalized and dense B-N covalent-welding frameworks. The essence of this synthesis strategy lies in the construction of >B─O─H2C─H2C─H2N:→B< bond bridge connection structure among hydroxyl functionalized BNNSs (BNNSs-OH) using bifunctional monoethanolamine (MEA) as cross-linker through esterification and intermolecular-coordination reactions. The prepared BNNSs-interlaced ceramics have densities not less than 1.2 g cm-3, and exhibit exceptional mechanical robustness and resiliency, excellent thermomechanical stability, ultra-low linear thermal expansion coefficient of 0.06 ppm °C-1, and high thermal diffusion coefficient of 4.76 mm2 s-1 at 25 °C and 3.72 mm2 s-1 at 450 °C. This research not only reduces the free energy barrier from h-BN particles to bulk ceramics through facile multi-step physicochemical reaction, but also stimulates further exploration of multifunctional applications for bulk h-BN ceramics over a wide temperature range.

17.
Sci Total Environ ; 934: 173128, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38734106

ABSTRACT

Grazing potential represents the potential carrying capacity of steppe livestock production. Understanding the impact of changes in plant diversity and community structure on ecosystem multifunctionality (EMF) at different grazing potentials is crucial for the sustainable management of steppe ecosystems. We examined the associations between plant diversity, community structure, above-ground ecosystem multifunctionality (AEMF), and below-ground ecosystem multifunctionality (BEMF) at various grazing potentials. Our assessment employed generalized linear mixed-effects models and structural equation models to determine the impact of these factors on ecosystem multifunctionality. Our study results indicated that ecosystem multifunctionality differed depending on the level of grazing potential and decreased as grazing potential declined. The impact of plant diversity and community structure on above- and below-ground ecosystem multifunctionality varied. Plant diversity and community structure correlated more with AEMF than BEMF. Plant diversity had the most significant effect on EMF under high grazing potential, while community structure had the greatest effect on EMF under moderate and low grazing potential. These improve our understanding of the correlation between steppe plant diversity, community structure, and above- and below-ground ecosystem multifunctionality. This understanding is necessary to develop strategies to increase plant diversity or regulate community structure and the sustainability of steppes.


Subject(s)
Biodiversity , Grassland , Herbivory , Animals , Plants , Ecosystem , Livestock/physiology , Environmental Monitoring , Conservation of Natural Resources
18.
Adv Healthc Mater ; : e2400912, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716872

ABSTRACT

Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.

19.
Sci Total Environ ; 931: 172862, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705286

ABSTRACT

Intricate microbial associations contribute greatly to the multiple functions (multifunctionality) of natural ecosystems. However, the relationship between microbial associations and soil multifunctionality (SMF) in artificial ecosystems, particularly in agricultural ecosystem with frequent fertilization, remains unclear. In this study, based on a 28-year paddy field experiment, high-throughput sequencing and networks analysis was performed to investigate changes in soil microbial (archaea, bacteria, fungi, and protists) associations and how these changes correlate with SMF under long-term fertilization. Compared to no fertilization (CK), both chemical fertilization with N, P, and K (CF) and chemical fertilization plus rice straw retention (CFR) treatments showed significantly higher soil nutrient content, grain yield, microbial abundance, and SMF. With the exception of archaeal diversity, the CF treatment exhibited the lowest bacterial, fungal, and protist diversity, and the simplest microbial co-occurrence network. In contrast, the CFR treatment had the lowest archaeal diversity, but the highest bacterial, fungal, and protist diversity. Moreover, the CFR treatment exhibited the most complex microbial co-occurrence network with the highest number of nodes, edges, and interkingdom edges. These results highlight that both chemical fertilization with and without straw retention caused high ecosystem multifunctionality while changing microbial association oppositely. Furthermore, these results indicate that rice straw retention contributes to the development of the soil microbiome and ensures the sustainability of high-level ecosystem multifunctionality.


Subject(s)
Agriculture , Fertilizers , Soil Microbiology , Soil , Fertilizers/analysis , Soil/chemistry , Agriculture/methods , Bacteria/classification , Fungi , Oryza , Ecosystem , Microbiota/drug effects , Archaea
20.
Nanomicro Lett ; 16(1): 200, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782792

ABSTRACT

Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology. It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties. Herein, a boron-silica-tantalum ternary hybrid phenolic aerogel (BSiTa-PA) with exceptional thermal stability, extensive mechanical strength, low thermal conductivity (49.6 mW m-1 K-1), and heightened ablative resistance is prepared by an expeditious method. After extremely thermal erosion, the obtained carbon aerogel demonstrates noteworthy electromagnetic interference (EMI) shielding performance with an efficiency of 31.6 dB, accompanied by notable loading property with specific modulus of 272.8 kN·m kg-1. This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...