Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.462
Filter
2.
Front Ophthalmol (Lausanne) ; 4: 1349234, 2024.
Article in English | MEDLINE | ID: mdl-38984112

ABSTRACT

Purpose: To determine the structure of the cone photoreceptor mosaic in the macula in eyes with retinitis pigmentosa related to Usher syndrome using adaptive optics fundus (AO) imaging and to correlate these findings with those of the standard clinical diagnostics. Methods: Ten patients with a genetically confirmed retinitis pigmentosa in Usher syndrome due to biallelic variants in MYO7A or USH2A were enrolled in the study. All patients underwent a complete ophthalmological examination including best corrected visual acuity (BCVA), spectral-domain optical coherence tomography (SD-OCT) with fundus autofluorescence photography (FAF), full-field (ffERG) and multifocal electroretinography (mfERG) and Adaptive Optics Flood Illuminated Ophthalmoscopy (AO, rtx1™, Imagine Eyes, Orsay, France). The cone density was assessed centrally and at each 0.5 degree horizontally and vertically from 1-4 degree of eccentricity. Results: In the AO images, photoreceptor cell death was visualized as a disruption of the cone mosaic and low cone density. In the early stage of the disease, cones were still visible in the fovea, whereas outside the fovea a loss of cones was recognizable by blurry, dark patches. The blurry patches corresponded to the parafoveal hypofluorescent ring in the FAF images and the beginning loss of the IS/OS line and external limiting membrane in the SD-OCT images. FfERGs were non-recordable in 7 patients and reduced in 3. The mfERG was reduced in all patients and correlated significantly (p <0.001) with the cone density. The kinetic visual field area, measured with III4e and I4e, did not correlate with the cone density. Conclusion: The structure of the photoreceptors in Usher syndrome patients were detectable by AO fundus imaging. The approach of using high-resolution technique to assess the photoreceptor structure complements the established clinical examinations and allows a more sensitive monitoring of early stages of retinitis pigmentosa in Usher syndrome.

4.
5.
Small ; : e2401655, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966887

ABSTRACT

Despite the advantages of high tissue penetration depth, selectivity, and non-invasiveness of photothermal therapy for cancer treatment, developing NIR-II photothermal agents with desirable photothermal performance and advanced theranostics ability remains a key challenge. Herein, a universal surface modification strategy is proposed to effectively improve the photothermal performance of vanadium carbide MXene nanosheets (L-V2C) with the removal of surface impurity ions and generation of mesopores. Subsequently, MnOx coating capable of T1-weighted magnetic resonance imaging can be in situ formed through surface redox reaction on L-V2C, and then, stable nanoplatforms (LVM-PEG) under physiological conditions can be obtained after further PEGylation. In the tumor microenvironment irradiated by NIR-II laser, multivalent Mn ions released from LVM-PEG, as a reversible electronic station, can consume the overexpression of glutathione and catalyze a Fenton-like reaction to produce ·OH, resulting in synchronous cellular oxidative damage. Efficient synergistic therapy promotes immunogenic cell death, improving tumor-related immune microenvironment and immunomodulation, and thus, LVM-PEG can demonstrate high accuracy and excellent anticancer efficiency guided by multimodal imaging. As a result, this study provides a new approach for the customization of 2D surface strategies and the study of synergistic therapy mechanisms, highlighting the application of MXene-based materials in the biomedical field.

6.
Adv Ophthalmol Optom ; 9(1): 345-357, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38983943
7.
Endosc Ultrasound ; 13(2): 107-114, 2024.
Article in English | MEDLINE | ID: mdl-38947743

ABSTRACT

Background and Objectives: Endobronchial ultrasound (EBUS) imaging is a valuable tool for predicting lymph node (LN) metastasis in lung cancer patients. This study aimed to develop a risk-scoring model based on EBUS multimodal imaging (grayscale, Doppler mode, elastography) to predict LN metastasis in lung cancer patients. Patients and Methods: This retrospective study analyzed 350 metastatic LNs in 314 patients with lung cancer and 124 reactive LNs in 96 patients with nonspecific inflammation. The sonographic findings were compared with the final pathology results and clinical follow-up. Univariate and multivariate logistic regression analyses were performed to evaluate the independent risk factors of metastatic LNs. According to the ß coefficients of corresponding indicators in logistic regression analysis, a risk-scoring model was established. Receiver operating characteristic curve was applied to evaluate the predictive capability of model. Results: Multivariate analysis showed that short axis >10 mm, distinct margin, absence of central hilar structure, presence of necrosis, nonhilar vascularity, and elastography score 4 to 5 were independent predictors of metastatic LNs. Both short axis and margin were scored 1 point, and the rest of independent predictors were scored 2 points. The combination of 3 EBUS modes had the highest area under the receiver operating characteristic and accuracy of 0.884 (95% confidence interval, 0.846-0.922) and 87.55%, respectively. The risk stratification was as follows: 0 to 2 points, malignancy rate of 11.11%, low suspicion; 3 to 10 points, malignancy rate of 86.77%, high suspicion. Conclusions: The risk-scoring model based on EBUS multimodal imaging can effectively evaluate metastatic LNs in lung cancer patients to support clinical decision making.

8.
Int J Nanomedicine ; 19: 6377-6397, 2024.
Article in English | MEDLINE | ID: mdl-38952677

ABSTRACT

Background: How to ingeniously design multi-effect photosensitizers (PSs), including multimodal imaging and multi-channel therapy, is of great significance for highly spatiotemporal controllable precise phototherapy of malignant tumors. Methods: Herein, a novel multifunctional zinc(II) phthalocyanine-based planar micromolecule amphiphile (ZnPc 1) was successfully designed and synthesized, in which N atom with photoinduced electron transfer effect was introduced to enhance the near-infrared absorbance and nonradiative heat generation. After simple self-assembling into nanoparticles (NPs), ZnPc 1 NPs would exhibit enhanced multimodal imaging properties including fluorescence (FL) imaging (FLI) /photoacoustic (PA) imaging (PAI) /infrared (IR) thermal imaging, which was further used to guide the combined photodynamic therapy (PDT) and photothermal therapy (PTT). Results: It was that under the self-guidance of the multimodal imaging, ZnPc 1 NPs could precisely pinpoint the tumor from the vertical and horizontal boundaries achieving highly efficient and accurate treatment of cancer. Conclusion: Accordingly, the integration of FL/PA/IR multimodal imaging and PDT/PTT synergistic therapy pathway into one ZnPc 1 could provide a blueprint for the next generation of phototherapy, which offered a new paradigm for the integration of diagnosis and treatment in tumor and a promising prospect for precise cancer therapy.


Subject(s)
Indoles , Isoindoles , Multimodal Imaging , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Multimodal Imaging/methods , Animals , Humans , Indoles/chemistry , Indoles/pharmacology , Photochemotherapy/methods , Nanoparticles/chemistry , Mice , Zinc Compounds/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Cell Line, Tumor , Photoacoustic Techniques/methods , Photothermal Therapy/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/drug therapy , Mice, Inbred BALB C , Phototherapy/methods , Female
9.
Ophthalmol Ther ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970762

ABSTRACT

This commentary article delves into the transformative role of optical coherence tomography angiography (OCTA) in diagnosing and managing a wide array of eye conditions, including diabetic retinopathy, age-related macular degeneration, retinal vein occlusions, and white dot syndromes. Developed in 2005, OCTA has emerged as a non-invasive, high-resolution imaging technique that offers advantages over traditional fluorescein angiography (FA), providing quicker and safer monitoring of ocular conditions with similar diagnostic accuracy. In diabetic retinopathy, OCTA has been instrumental in early identification of retinal changes, offering quantifiable metrics including perfused capillary density (PCD) for assessing vascular alterations. For age-related macular degeneration (AMD), OCTA has deepened our understanding of non-exudative neovascular AMD, allowing for more effective monitoring and potential earlier initiation of treatment. In cases of retinal vein occlusions, OCTA can reveal specific microvascular features and allow for depth-resolved measurements of the foveal avascular zone, providing significant prognostic implications. OCTA has also been invaluable in studying rare white dot syndromes, enabling nuanced differentiation between conditions that often present similarly. Emerging research also suggests that OCTA can have potential utility in neurodegenerative diseases like Alzheimer's, where retinal vascular patterns could offer diagnostic insights. While OCTA is revolutionizing ophthalmic care, further clinical trials and standardization are needed for its broader adoption into clinical practice.

10.
Cureus ; 16(5): e60755, 2024 May.
Article in English | MEDLINE | ID: mdl-38903341

ABSTRACT

Congenital simple hamartoma of the retinal pigment epithelium (CSHRPE) is a rare benign tumor often detected incidentally during routine eye exams. We present a case of multifocal CSHRPE in a 32-year-old Hispanic woman, emphasizing the diagnostic challenges posed by its presentation and the pivotal role of multimodal imaging in accurate diagnosis. Despite initial difficulties due to a history of trauma and pigmented fundus, advanced imaging techniques, including optical coherence tomography (OCT), OCT angiography (OCTA), fluorescein angiography (FA), and indocyanine green angiography (ICGA), facilitated a precise diagnosis. Notably, OCTA revealed high signal intensity and flow at the largest nodule site while FA and ICGA exhibited characteristic blockage patterns. Moreover, smaller nodules exhibited OCT findings supporting the theory of islands of retinal pigment epithelium (RPE) cells proliferating ectopically within the retina. Our case underscores the importance of comprehensive imaging assessment in distinguishing CSHRPE from other lesions, contributing to a deeper understanding of this rare ocular condition.

11.
Int Med Case Rep J ; 17: 597-602, 2024.
Article in English | MEDLINE | ID: mdl-38895178

ABSTRACT

Introduction: This study presents a rare case of multiple evanescent white dot syndrome (MEWDS) with atypical electrooculogram (EOG) findings, as well as abnormal en-face images of minimum intensity projection (Min-IP) and the en-face inner segment/outer segment-ellipsoid complex. Methods: A 25-year-old female patient presented with painless visual impairment and photopsia in her right eye for a duration of two days. Multimodal imaging was employed including color fundus photography (CFP), fundus autofluorescence (FAF), spectral-domain optical coherence tomography (SD-OCT), and optical coherence tomography angiography (OCTA), and en-face images of Min-IP and the en-face inner segment/outer segment-ellipsoid complex were performed. Results: In the right eye, multifocal small white spots were observed surrounding the posterior pole and optic disc of retina with the granular appearance of the fovea. FAF displayed of hyperfluorescence. SD-OCT appearance of MEWDS demonstrated primarily disrupted ellipsoid zone (EZ), photoreceptor outer segments, and interdigitation zone (IZ) complex within the fovea. The en-face images of the inner segment/outer segment-ellipsoid complex and Min-IP exhibited hyperreflective spots in the right eye. In the left eye, interestingly, hyperreflective spots were also observed on the en-face image of the inner segment/outer segment-ellipsoid complex. EOG revealed an Arden ratio of 2.5 for the right eye, while the left eye exhibited an Arden ratio of 1.7. Conclusion: The en-face image of the inner segment/outer segment-ellipsoid complex in MEWDS exhibits aberrant features and it is noteworthy that a similar alteration may occur in the fellow eye. Further investigation is required to explore the relationship between MEWDS and EOG. The en-face images of the inner segment/outer segment-ellipsoid complex and Min-IP may help to elucidate the pathogenesis of MEWDS.

12.
World J Clin Cases ; 12(16): 2722-2728, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38899310

ABSTRACT

BACKGROUND: Giant cell tumor of bone is a locally aggressive and rarely metastasizing tumor, and also a potential malignant tumor that may develop into a primary malignant giant cell tumor. AIM: To evaluate the role of multimodal imaging in the diagnosis of giant cell tumors of bone. METHODS: The data of 32 patients with giant cell tumor of bone confirmed by core-needle biopsy or surgical pathology at our hospital between March 2018 and March 2023 were retrospectively selected. All the patients with giant cell tumors of the bone were examined by X-ray, computed tomography (CT) and magnetic resonance imaging (MRI), and 7 of them were examined by positron emission tomography (PET)-CT. RESULTS: X-ray imaging can provide overall information on giant cell tumor lesions. CT and MRI can reveal the characteristics of the internal structure of the tumor as well as the adjacent relationships of the tumor, and these methods have unique advantages for diagnosing tumors and determining the scope of surgery. PET-CT can detect small lesions and is highly valuable for identifying benign and malignant tumors to aid in the early diagnosis of metastasis. CONCLUSION: Multimodal imaging plays an important role in the diagnosis of giant cell tumor of bone and can provide a reference for the treatment of giant cell tumors.

13.
Int J Pharm ; 660: 124335, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897488

ABSTRACT

Nanoparticle-mediated thermotherapeutic research strives innovative, multifunctional, efficient, and safe treatments. Our study introduces a novel nanoplatform: the hollow magnetic vortex nanorings within a polydopamine layer (HMVNp), which exhibit dual functionality as magnetic and photothermal agents. Utilizing a "Dual-mode" approach, combining an alternating magnetic field (AMF) with near-infrared (NIR) laser irradiation, HMVNp demonstrated a significant enhancement in heating efficacy (58 ± 8 %, SAR = 1441 vs 1032 W/g) over traditional solid magnetite nanoparticles coated with polydopamine (SMNp). The unique geometry larger surface area to volume ratio facilitates efficient magnetic vortex dynamics and enhanced heat transfer. Addressing the challenge of heat resistant heat shock protein (Hsp) expression, encapsulated quercetin (Q) within HMVNp leverages tumor acidity and dual-mode thermal therapy to enhance release, showing a 28.8 ± 6.81 % increase in Q loading capacity compared to traditional SMNp. Moreover, HMVNp significantly improves contrast for both magnetic resonance imaging (MRI) and photoacoustic imaging (PAI), with an approximately 62 % transverse relaxation (R2 = 81.5 vs 31.6 mM-1s-1 [Fe]). In vivo studies showed that while single treatments slowed tumor growth, dual-mode therapy with quercetin significantly reduced tumors and effectively prevented metastases. Our study highlights the potential of HMVNp/Q as a versatile agent in thermotherapeutic interventions, offering improved diagnostic imaging capabilities.

14.
Front Oncol ; 14: 1346407, 2024.
Article in English | MEDLINE | ID: mdl-38841160

ABSTRACT

Hepatocellular Carcinoma (HCC) is one of the most common malignant neoplasms. With the advancement of technology, the precision of radiotherapy (RT) for HCC has considerably increased, and it is an indispensable modality in the comprehensive management of HCC. Some RT techniques increase the radiation dose to HCC, which decreases the radiation dose delivered to the surrounding normal liver tissue. This approach significantly improves the efficacy of HCC treatment and reduces the incidence of Radiation-induced Liver Disease (RILD). Clear imaging and precise determination of the Gross Target Volume (GTV) are prerequisites of precise RT of HCC. The main hindrances in determining the HCC GTV include indistinct tumor boundaries on imaging and the impact on respiratory motion. The integration of multimodal imaging, four-dimensional imaging, and artificial intelligence (AI) techniques can help overcome challenges for HCC GTV. In this article, the advancements in medical imaging and precise determination for HCC GTV have been reviewed, providing a framework for the precise RT of HCC.

15.
Cureus ; 16(5): e59791, 2024 May.
Article in English | MEDLINE | ID: mdl-38846191

ABSTRACT

We report four cases of syphilitic uveitis with diverse clinical presentations. All patients were men who have sex with women, and were aged 19-68 years, and none were HIV-positive. All cases were bilateral. One case presented with anterior uveitis, while three exhibited panuveitis. One patient had acute syphilitic posterior placoid chorioretinitis and two had retinal vasculitis resulting in damage to the outer retinal and retinal pigment epithelium. The rapid plasma reagin (RPR) test and Treponema pallidum (TP) hemagglutination test were both positive in all cases. Six of eight eyes had improved vision and best-corrected visual acuity better than 20/20 after antibiotic treatment. Serological testing is mandatory for the diagnosis of syphilitic uveitis. Additionally, multimodal imaging, including optical coherence tomography (OCT), fundus autofluorescence (FAF), and fluorescein angiography (FA), can provide useful adjunctive information for early diagnosis and assessment of treatment response.

16.
Exp Neurol ; 378: 114843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823675

ABSTRACT

Poststroke neuroinflammation exacerbates disease progression. [11C]PK11195-positron emission tomography (PET) imaging has been used to visualize neuroinflammation; however, its short half-life of 20 min limits its clinical use. [123I]CLINDE has a longer half-life (13h); therefore, [123I]CLINDE-single-photon emission computed tomography (SPECT) imaging is potentially more practical than [11C]PK11195-PET imaging in clinical settings. The objectives of this study were to 1) validate neuroinflammation imaging using [123I]CLINDE and 2) investigate the mechanisms underlying stroke in association with neuroinflammation using multimodal techniques, including magnetic resonance imaging (MRI), gas-PET, and histological analysis, in a rat model of ischemic stroke, that is, permanent middle cerebral artery occlusion (pMCAo). At 6 days post-pMCAo, [123I]CLINDE-SPECT considerably corresponded to the immunohistochemical images stained with the CD68 antibody (a marker for microglia/microphages), comparable to the level observed in [11C]PK11195-PET images. In addition, the [123I]CLINDE-SPECT images corresponded well with autoradiography images. Rats with severe infarcts, as defined by MRI, exhibited marked neuroinflammation in the peri-infarct area and less neuroinflammation in the ischemic core, accompanied by a substantial reduction in the cerebral metabolic rate of oxygen (CMRO2) in 15O-gas-PET. Rats with moderate-to-mild infarcts exhibited neuroinflammation in the ischemic core, where CMRO2 levels were mildly reduced. This study demonstrates that [123I]CLINDE-SPECT imaging is suitable for neuroinflammation imaging and that the distribution of neuroinflammation varies depending on the severity of infarction.


Subject(s)
Disease Models, Animal , Tomography, Emission-Computed, Single-Photon , Animals , Rats , Tomography, Emission-Computed, Single-Photon/methods , Male , Rats, Sprague-Dawley , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Stroke/pathology , Stroke/metabolism , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology
17.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865273

ABSTRACT

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Subject(s)
Dendrimers , Fluorine , Theranostic Nanomedicine , Dendrimers/chemistry , Animals , Theranostic Nanomedicine/methods , Humans , Mice , Fluorine/chemistry , Paclitaxel/chemistry , Paclitaxel/therapeutic use , Magnetic Resonance Imaging/methods , Cell Line, Tumor , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Fluorine-19 Magnetic Resonance Imaging/methods , Mice, Nude , Contrast Media/chemistry
18.
Sci Rep ; 14(1): 14369, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909148

ABSTRACT

To define the characteristics of fundus manifestations in patients after SARS-CoV-2 infection with multimodal imaging techniques. This is a retrospective multicenter and multimodal imaging study including 90 patients. All patients with a visual complaint occurring immediately after SARS-CoV-2 infection were referred to six clinics between December 2022 and February 2023. Demographic information and the temporal relationship between SARS-CoV-2 infection and visual symptoms were documented. The characteristics of the fundus lesions were evaluated using multimodal imaging. Ninety patients from six hospitals were included in this study, including 24 males (26.67%) and 66 (73.33%) females. Seventy-eight patients (86.66%) (146 eyes) were diagnosed with Acute Macular Neuroretinopathy (AMN). The AMN patients were primarily young women (67.95%). Sixty-eight patients (87.18%) had AMN in both eyes. Thirty-eight eyes (24.36%) included Purtscher or Purtscher-like lesions. optical coherence tomography and infrared retinal photographs can show AMN lesions well. Eleven cases were diagnosed with simple Purtscher or Purtscher-like retinopathy (2 cases, 2.22%), Vogt‒Koyanagi‒Harada (VKH) syndrome or VKH-like uveitis (3 cases, 3.33%), multiple evanescent white-dot syndrome (MEWDS) (2 cases, 2.22%), and rhino-orbital-cerebral mucormycosis (ROCM) (5 cases, 5.56%). After SARS-CoV-2 infection, diversified fundus lesions were evident in patients with visual complaints. In this report, AMN was the dominant manifestation, followed by Purtscher or Purtscher-like retinopathy, MEWDS, VKH-like uveitis, and ROCM.


Subject(s)
COVID-19 , Fundus Oculi , Multimodal Imaging , SARS-CoV-2 , Tomography, Optical Coherence , Humans , COVID-19/diagnostic imaging , COVID-19/complications , Male , Female , Adult , Multimodal Imaging/methods , Retrospective Studies , Middle Aged , Tomography, Optical Coherence/methods , SARS-CoV-2/isolation & purification , Young Adult , Adolescent , Aged , Retinal Diseases/diagnostic imaging , Retinal Diseases/etiology , Child
20.
Diagnostics (Basel) ; 14(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928685

ABSTRACT

As an integral part of the mitral valve apparatus, the left ventricle papillary muscle (PM) controls mitral valve closure during systole and participates in the ejection process during left ventricular systole. Mitral regurgitation (MR) is the most immediate and predominant result when the PM is structurally or functionally abnormal. However, dysfunction of the PM is easily underestimated or overlooked in clinical interventions for MR-related diseases. Therefore, adequate recognition of PM dysfunction and PM-derived MR is critical. In this review, we systematically describe the normal anatomical variations in the PM and the pathophysiology of PM dysfunction-related diseases and summarize the commonly used parameters and the advantages and disadvantages of various noninvasive imaging modalities for the structural and functional assessment of the PM.

SELECTION OF CITATIONS
SEARCH DETAIL
...