Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.525
Filter
1.
Clin Case Rep ; 12(7): e9142, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38962459

ABSTRACT

Key Clinical Message: This case report highlights the challenges of diagnosing MSA-C in resource-limited settings. MRI findings like the "hot cross bun" sign can be supportive, but the unavailability of advanced tools like seed amplification assay may delay diagnosis. Early diagnosis is crucial for proper symptom management. Abstract: Multiple system atrophy is a rare neurodegenerative disorder affecting the pyramidal, autonomic, nigrostriatal, and cerebellar tracts. Multisystem atrophy should be considered in adults with progressive motor or autonomic dysfunctions. Clinical manifestations vary depending on the system, including bradykinesia, tremor, rigidity, cerebellar ataxia, and autonomic failure. Depending on the initial predominant manifestation, multisystem atrophy is classified as Parkinsonian (MSA-P) and cerebellar (MSA-C). Our patient presented with progressive loss of balance, rigidity, slurred speech, choking episodes, and loss of morning tumescence for 4 years, suggesting autonomic and cerebellar involvement. He was diagnosed with MSA after 4 years of initial presentation with combinations of magnetic resonant imaging findings and clinical manifestations. Diagnosing multiple system atrophy in such resource-limited areas is challenging. The unavailability of seed application tests and biomarkers significantly affected the delayed diagnosis.

3.
J Mov Disord ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977325

ABSTRACT

Vestibular-evoked myogenic potentials (VEMPs) can help assess otolithic neural pathway in the brainstem that may also participate in cardiovascular autonomic function. Parkinson's disease (PD) is associated with altered VEMP responses; however, the association between VEMP abnormalities and multiple system atrophy (MSA) remains unknown. Therefore, we compared the extent of otolith dysfunction using ocular (oVEMP) and cervical VEMP (cVEMP) between MSA and PD. We analyzed the clinical features and VEMP and head-up tilt table test (HUT) findings using the Finometer in 24 patients with MSA and 52 with de-novo PD, who had undergone neurotologic evaluation in a referral-based university hospital in South Korea from January 2021 to March 2023. MSA was associated with bilateral oVEMP abnormality (odds ratio [95% confidence interval] = 9.19 [1.77-47.76], p=0.008). n1-p1 amplitude was negatively correlated with Unified Multiple System Atrophy Rating Scale I-II scores in patients with MSA (r=-0.571, p=0.033), whereas it did not correlate with Movement Disorder Society-Unified Parkinson's Disease Rating Scale-III scores in patients with PD (r=-0.051, p=0.687). n1 latency was negatively correlated with maximum changes in systolic blood pressure within 15 s during HUT in patients with PD (r=-0.335, p=0.040) but not in those with MSA (r=0.277, p=0.299). In conclusion, bilaterally abnormal oVEMP responses may indicate the extent of brainstem dysfunction in MSA. oVEMP reflects the integrity of otolith-autonomic interplay, reliably assists in differentiating between MSA and PD, and helps infer clinical decline.

4.
Asian J Neurosurg ; 19(2): 277-279, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974422

ABSTRACT

Herein, we present the case of a 57-year-old male patient who was admitted to our center due to progressive writing difficulty and slowness of his right hand over the last 3 years. In conclusion of the clinical and laboratory workup, a diagnosis of multiple system atrophy (MSA) was established. Our report on progressive micrographia (PM) constitutes a crucial sample remarking on this intriguing manifestation in another disease subtype of MSA, which differs from Parkinson's disease in terms of the clinical and pathophysiological processes. We think that further studies are warranted to clarify the significance of this entity in movement disorder in clinical practice and to reveal the underlying neural mechanisms.

5.
J Neurol Sci ; 463: 123116, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38981418

ABSTRACT

OBJECTIVE: Dysphagia in multiple system atrophy (MSA) is life-threatening and is caused by parkinsonism with cerebellar ataxia as a contributing factor. The present study investigated the relationship between dysphagia severity in MSA and the specific binding ratio (SBR) on dopamine transporter (DaT) SPECT using the Hyodo score, a qualitative scale for use with fiberoptic endoscopic evaluation of swallowing (FEES). METHODS: Hyodo score's ability to predict aspiration during a FEES examination of 88 patients with MSA was first tested. Then the clinical characteristics, Hyodo score, and SBR of patients with either predominant parkinsonism (MSA-P; n = 11) or cerebellar ataxia (MSA-C; n = 25) who underwent FEES and DaT SPECT simultaneously were compared. RESULTS: Logistic regression demonstrated that the Hyodo score was a significant predictive factor of aspiration (p = 0.003). The MSA-P group had a significantly higher Hyodo score (p = 0.026) and lower SBR (p = 0.011) than the MSA-C group while neither group demonstrated any significant difference in disease duration at the FEES examination. Linear regression demonstrated a significant, inverse correlation between the Hyodo score and SBR in the MSA-P (p = 0.044; r = -0.616) and MSA-C (p = 0.044; r = -0.406) groups. When the effect of SBR was removed by analysis of covariance, no significant difference in the Hyodo score remained between the groups. CONCLUSIONS: Our results suggested an association between presynaptic changes in nigrostriatal dopaminergic neurons and dysphagia severity in MSA which largely contributes to the difference in dysphagia severity between MSA-P and MSA-C.

6.
Brain Behav Immun ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986725

ABSTRACT

Multiple system atrophy (MSA) is a severe α-synucleinopathy facilitated by glial reactions; the cerebellar variant (MSA-C) preferentially involves olivopontocerebellar fibres with conspicuous demyelination. A lack of aggressive models that preferentially involve olivopontocerebellar tracts in adulthood has hindered our understanding of the mechanisms of demyelination and neuroaxonal loss, and thus the development of effective treatments for MSA. We therefore aimed to develop a rapidly progressive mouse model that recaptures MSA-C pathology. We crossed Plp1-tTA and tetO-SNCA*A53T mice to generate Plp1-tTA::tetO-SNCA*A53T bi-transgenic mice, in which human A53T α-synuclein-a mutant protein with enhanced aggregability-was specifically produced in the oligodendrocytes of adult mice using Tet-Off regulation. These bi-transgenic mice expressed mutant α-synuclein from 8 weeks of age, when doxycycline was removed from the diet. All bi-transgenic mice presented rapidly progressive motor deterioration, with wide-based ataxic gait around 22 weeks of age and death around 30 weeks of age. They also had prominent demyelination in the brainstem/cerebellum. Double immunostaining demonstrated that myelin basic protein was markedly decreased in areas in which SM132, an axonal marker, was relatively preserved. Demyelinating lesions exhibited marked ionised calcium-binding adaptor molecule 1-, arginase-1-, and toll-like receptor 2-positive microglial reactivity and glial fibrillary acidic protein-positive astrocytic reactivity. Microarray analysis revealed a strong inflammatory response and cytokine/chemokine production in bi-transgenic mice. Neuronal nuclei-positive neuronal loss and patchy microtubule-associated protein 2-positive dendritic loss became prominent at 30 weeks of age. However, a perceived decrease in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta in bi-transgenic mice compared with wild-type mice was not significant, even at 30 weeks of age. Wild-type, Plp1-tTA, and tetO-SNCA*A53T mice developed neither motor deficits nor demyelination. In bi-transgenic mice, double immunostaining revealed human α-synuclein accumulation in neurite outgrowth inhibitor A (Nogo-A)-positive oligodendrocytes beginning at 9 weeks of age; its expression was further increased at 10 to 12 weeks, and these increased levels were maintained at 12, 24, and 30 weeks. In an α-synuclein-proximity ligation assay, α-synuclein oligomers first appeared in brainstem oligodendrocytes as early as 9 weeks of age; they then spread to astrocytes, neuropil, and neurons at 12 and 16 weeks of age. α-Synuclein oligomers in the brainstem neuropil were most abundant at 16 weeks of age and decreased thereafter; however, those in Purkinje cells successively increased until 30 weeks of age. Double immunostaining revealed the presence of phosphorylated α-synuclein in Nogo-A-positive oligodendrocytes in the brainstem/cerebellum as early as 9 weeks of age. In quantitative assessments, phosphorylated α-synuclein gradually and successively accumulated at 12, 24, and 30 weeks in bi-transgenic mice. By contrast, no phosphorylated α-synuclein was detected in wild-type, tetO-SNCA*A53T, or Plp1-tTA mice at any age examined. Pronounced demyelination and tubulin polymerisation, promoting protein-positive oligodendrocytic loss, was closely associated with phosphorylated α-synuclein aggregates at 24 and 30 weeks of age. Early inhibition of mutant α-synuclein expression by doxycycline diet at 23 weeks led to fully recovered demyelination; inhibition at 27 weeks led to persistent demyelination with glial reactions, despite resolving phosphorylated α-synuclein aggregates. In conclusion, our bi-transgenic mice exhibited progressively increasing demyelination and neuroaxonal loss in the brainstem/cerebellum, with rapidly progressive motor deterioration in adulthood. These mice showed marked microglial and astrocytic reactions with inflammation that was closely associated with phosphorylated α-synuclein aggregates. These features closely mimic human MSA-C pathology. Notably, our model is the first to suggest that α-synuclein oligomers may spread from oligodendrocytes to neurons in transgenic mice with human α-synuclein expression in oligodendrocytes. This model of MSA is therefore particularly useful for elucidating the in vivo mechanisms of α-synuclein spreading from glia to neurons, and for developing therapies that target glial reactions and/or α-synuclein oligomer spreading and aggregate formation in MSA.

7.
Front Psychiatry ; 15: 1398777, 2024.
Article in English | MEDLINE | ID: mdl-38988738

ABSTRACT

This case presents the situation of a 66-year-old woman diagnosed with Multiple System Atrophy Parkinsonian Type who underwent deep brain stimulation (DBS) therapy and subsequently made two suicide attempts. Despite receiving treatment and extensive psychotherapy, her condition did not improve, leading to suicidal behavior over the course of a year. Notably, she held unrealistic beliefs about the effectiveness of DBS therapy, expressing dissatisfaction with its outcomes. Family dynamics were complex, with the patient concealing her psychological distress while coping with her worsening health condition. This severe distress culminated in two suicide attempts within a relatively short timeframe. Our psychiatric team promptly intervened, implementing a suicidality protocol and adjusting her medication regimen. Despite a documented prevalence of suicidal ideation and attempts post-DBS in the literature, the exact causes remain uncertain, with the suggested involvement of neuroimmune or neurological pathways. This case contributes to scientific understanding by shedding light on suicide attempts following ineffective DBS interventions, emphasizing the patient's right to be informed about potential suicide risks and the possibility of assisted suicide through a neuroethical analysis. Therefore, our case underlines the importance of psychiatric evaluation and intervention in DBS patients to prevent further suicidality, focusing on a multidisciplinary approach tailored to the patient's autonomy and neuroethical principles.

8.
Radiol Case Rep ; 19(9): 3724-3728, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38983301

ABSTRACT

Multiple system atrophy is a form of synucleinopathy with an unknown etiology that causes progressive neurodegeneration. It may affect the cerebellum, autonomic nerves, and pyramidal and extrapyramidal systems. We present the case of a 51-year-old man who was hospitalized for recurrent balance problems and dizziness. Cranial magnetic resonance imaging showed the "hot cross bun" sign of the pons with major atrophy of the cerebellum. The cerebellar form of probable multiple system atrophy was the final diagnosis.

9.
Neuroimage ; 297: 120701, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38914210

ABSTRACT

Due to a high degree of symptom overlap in the early stages, with movement disorders predominating, Parkinson's disease (PD) and multiple system atrophy (MSA) may exhibit a similar decline in motor areas, yet they differ in their spread throughout the brain, ultimately resulting in two distinct diseases. Drawing upon neuroimaging analyses and altered motor cortex excitability, potential diffusion mechanisms were delved into, and comparisons of correlations across distinct disease groups were conducted in a bid to uncover significant pathological disparities. We recruited thirty-five PD, thirty-seven MSA, and twenty-eight matched controls to conduct clinical assessments, electromyographic recording, and magnetic resonance imaging scanning during the "on medication" state. Patients with neurodegeneration displayed a widespread decrease in electrophysiology in bilateral M1. Brain function in early PD was still in the self-compensatory phase and there was no significant change. MSA patients demonstrated an increase in intra-hemispheric function coupled with a decrease in diffusivity, indicating a reduction in the spread of neural signals. The level of resting motor threshold in healthy aged showed broad correlations with both clinical manifestations and brain circuits related to left M1, which was absent in disease states. Besides, ICF exhibited distinct correlations with functional connections between right M1 and left middle temporal gyrus in all groups. The present study identified subtle differences in the functioning of PD and MSA related to bilateral M1. By combining clinical information, cortical excitability, and neuroimaging intuitively, we attempt to bring light on the potential mechanisms that may underlie the development of neurodegenerative disease.

10.
Neurobiol Dis ; 198: 106551, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38839023

ABSTRACT

Multiple system atrophy (MSA) is characterized by glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-syn) in oligodendrocytes. The origin of α-syn accumulation in GCIs is unclear, in particular whether abnormal α-syn aggregates result from the abnormal elevation of endogenous α-syn expression in MSA or ingested from the neuronal source. Tubulin polymerization promoting protein (TPPP) has been reported to play a crucial role in developing GCI pathology. Here, the total cell body, nucleus, and cytoplasmic area density of SNCA and TPPP transcripts in neurons and oligodendrocytes with and without various α-syn pathologies in the pontine base in autopsy cases of MSA (n = 4) and controls (n = 2) were evaluated using RNAscope with immunofluorescence. Single-nucleus RNA-sequencing data for TPPP was evaluated using control frontal cortex (n = 3). SNCA and TPPP transcripts were present in the nucleus and cytoplasm of oligodendrocytes in both controls and diseased, with higher area density in GCIs and glial nuclear inclusions in MSA. Area densities of SNCA and TPPP transcripts were lower in neurons showing cytoplasmic inclusions in MSA. Indeed, TPPP transcripts were unexpectedly found in neurons, while the anti-TPPP antibody failed to detect immunoreactivity. Single-nucleus RNA-sequencing revealed significant TPPP transcript expression predominantly in oligodendrocytes, but also in excitatory and inhibitory neurons. This study addressed the unclear origin of accumulated α-syn in GCIs, proposing that the elevation of SNCA transcripts may supply templates for misfolded α-syn. In addition, the parallel behavior of TPPP and SNCA transcripts in GCI development highlights their potential synergistic contribution to inclusion formation. In conclusion, this study advances our understanding of MSA pathogenesis, offers insights into the dynamics of SNCA and TPPP transcripts in inclusion formation, and proposes regulating their transcripts for future molecular therapy to MSA.


Subject(s)
Inclusion Bodies , Multiple System Atrophy , Nerve Tissue Proteins , Oligodendroglia , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , Multiple System Atrophy/metabolism , Humans , Oligodendroglia/metabolism , Oligodendroglia/pathology , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Inclusion Bodies/genetics , Aged , Female , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Aged, 80 and over
12.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895456

ABSTRACT

Multiple system atrophy (MSA) is rare, fast progressing, and fatal synucleinopathy with alpha-synuclein (α-syn) inclusions located within oligodendroglia called glial cytoplasmic inclusions (GCI). Along with GCI pathology there is severe demyelination, neurodegeneration, and neuroinflammation. In post-mortem tissue, there is significant infiltration of CD8+ T cells into the brain parenchyma, however their role in disease progression is unknown. To determine the role of CD8+ T cells, a modified AAV, Olig001-SYN, was used to selectively overexpress α-syn in oligodendrocytes modeling MSA in mice. Four weeks post transduction, we observed significant CD8+ T cell infiltration into the striatum of Olig001-SYN transduced mice recapitulating the CD8+ T cell infiltration observed in post-mortem tissue. To understand the role of CD8+ T cells, a CD8 knockout mice were transduced with Olig001-SYN. Six months post transduction into a mouse lacking CD8+ T cells, demyelination and neurodegeneration were unchanged. Four weeks post transduction, neuroinflammation and demyelination were enhanced in CD8 knockout mice compared to wild type controls. Applying unbiased spectral flow cytometry, CD103+, CD69+, CD44+, CXCR6+, CD8+ T cells were identified when α-syn was present in oligodendrocytes, suggesting the presence of tissue resident memory CD8+ T (Trm) cells during MSA disease progression. This study indicates that CD8+ T cells are not critical in driving MSA pathology but are needed to modulate the neuroinflammation and demyelination response.

13.
Parkinsonism Relat Disord ; 125: 107043, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38896976

ABSTRACT

INTRODUCTION: The substantia nigra pars compacta (SNc) is the key pathologic locus in neurodegenerative parkinsonian disorders. Recently, in vivo susceptibility MRI metrics were associated with postmortem glial cell density and tau burden in the SNc of parkinsonism subjects. This study investigated the red nucleus (RN), another iron-rich region adjacent to the SNc and a potential site of higher functionality in parkinsonisms. METHODS: In vivo MRI and postmortem data were obtained from 34 parkinsonism subjects and 3 controls. Neuron density, glial cell density, and percentages of area occupied by α-synuclein and tau were quantified using digitized midbrain slides. R2* and quantitative susceptibility mapping (QSM) metrics in the RN and SNc were derived from multi-gradient echo images. Histopathology data were compared between the RN and SNc using paired t-tests. MRI-histology associations were analyzed using partial Pearson correlations. RESULTS: The RN had greater neuron (t23 = 3.169, P = 0.004) and glial cell densities (t23 = 2.407, P = 0.025) than the SNc, whereas the SNc had greater α-synuclein (t28 = 4.614, P < 0.0001) and tau burden (t24 = 4.513, P = 0.0001). In both the RN (R2*: r = 0.47, P = 0.043; QSM: r = 0.52, P = 0.024) and SNc (R2*: r = 0.57, P = 0.01; QSM: r = 0.58, P = 0.009), MRI values were associated with glial cell density but not neuron density or α-synuclein (Ps > 0.092). QSM associated with tau burden (r = 0.49, P = 0.038) in the SNc, but not the RN. CONCLUSIONS: The RN is resilient to parkinsonian-related pathological processes compared to the SNc, and susceptibility MRI captured glial cell density in both regions. These findings help to further our understanding of the underlying pathophysiological processes in parkinsonisms.

14.
Neuron ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38843838

ABSTRACT

Deposition of α-synuclein fibrils is implicated in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), while in vivo detection of α-synuclein pathologies in these illnesses has been challenging. Here, we have developed a small-molecule ligand, C05-05, for visualizing α-synuclein deposits in the brains of living subjects. In vivo optical and positron emission tomography (PET) imaging of mouse and marmoset models demonstrated that C05-05 captured a dynamic propagation of fibrillogenesis along neural pathways, followed by disruptions of these structures. High-affinity binding of 18F-C05-05 to α-synuclein aggregates in human brain tissues was also proven by in vitro assays. Notably, PET-detectable 18F-C05-05 signals were intensified in the midbrains of PD and DLB patients as compared with healthy controls, providing the first demonstration of visualizing α-synuclein pathologies in these illnesses. Collectively, we propose a new imaging technology offering neuropathology-based translational assessments of PD and allied disorders toward diagnostic and therapeutic research and development.

15.
Mov Disord ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847384

ABSTRACT

BACKGROUND: Multiple system atrophy is a neurodegenerative disease with α-synuclein aggregation in glial cytoplasmic inclusions, leading to dysautonomia, parkinsonism, and cerebellar ataxia. OBJECTIVE: The aim of this study was to validate the accuracy of the International Parkinson and Movement Disorder Society Multiple System Atrophy clinical diagnostic criteria, particularly considering the impact of the newly introduced brain magnetic resonance imaging (MRI) markers. METHODS: Diagnostic accuracy of the clinical diagnostic criteria for multiple system atrophy was estimated retrospectively in autopsy-confirmed patients with multiple system atrophy, Parkinson's disease, progressive supranuclear palsy, and corticobasal degeneration. RESULTS: We identified a total of 240 patients. Sensitivity of the clinically probable criteria was moderate at symptom onset but improved with disease duration (year 1: 9%, year 3: 39%, final ante mortem record: 77%), whereas their specificity remained consistently high (99%-100% throughout). Sensitivity of the clinically established criteria was low during the first 3 years (1%-9%), with mild improvement at the final ante mortem record (22%), whereas specificity remained high (99%-100% throughout). When MRI features were excluded from the clinically established criteria, their sensitivity increased considerably (year 1: 3%, year 3: 22%, final ante mortem record: 48%), and their specificity was not compromised (99%-100% throughout). CONCLUSIONS: The International Parkinson and Movement Disorder Society multiple system atrophy diagnostic criteria showed consistently high specificity and low to moderate sensitivity throughout the disease course. The MRI markers for the clinically established criteria reduced their sensitivity without improving specificity. Combining clinically probable and clinically established criteria, but disregarding MRI features, yielded the best sensitivity with excellent specificity and may be most appropriate to select patients for therapeutic trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

16.
Acta Neuropathol Commun ; 12(1): 91, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858742

ABSTRACT

Synucleinopathies are a group of neurodegenerative disorders characterized by the presence of misfolded α-Synuclein (αSyn) in the brain. These conditions manifest with diverse clinical and pathophysiological characteristics. This disease diversity is hypothesized to be driven by αSyn strains with differing biophysical properties, potentially influencing prion-type propagation and consequentially the progression of illness. Previously, we investigated this hypothesis by injecting brain lysate (seeds) from deceased individuals with various synucleinopathies or human recombinant αSyn preformed fibrils (PFFs) into transgenic mice overexpressing either wild type or A53T human αSyn. In the studies herein, we expanded on these experiments, utilizing a panel of antibodies specific for the major carboxyl-terminally truncated forms of αSyn (αSynΔC). These modified forms of αSyn are found enriched in human disease brains to inform on potential strain-specific proteolytic patterns. With monoclonal antibodies specific for human αSyn cleaved at residues 103, 114, 122, 125, and 129, we demonstrate that multiple system atrophy (MSA) seeds and PFFs induce differing neuroanatomical spread of αSyn pathology associated with host specific profiles. Overall, αSyn cleaved at residue 103 was most widely present in the induced pathological inclusions. Furthermore, αSynΔC-positive inclusions were present in astrocytes, but more frequently in activated microglia, with patterns dependent on host and inoculum. These findings support the hypothesis that synucleinopathy heterogeneity might stem from αSyn strains with unique biochemical properties that include proteolytic processing, which could result in dominant strain properties.


Subject(s)
Brain , Disease Models, Animal , Mice, Transgenic , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/immunology , Animals , Humans , Mice , Brain/pathology , Brain/metabolism , Synucleinopathies/pathology , Synucleinopathies/metabolism , Synucleinopathies/immunology , Antibodies, Monoclonal , Multiple System Atrophy/pathology , Multiple System Atrophy/immunology , Multiple System Atrophy/metabolism , Prions/immunology , Prions/metabolism , Female
17.
Neurobiol Dis ; 198: 106549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830476

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) and Parkinson's disease (PD) are neurodegenerative disorders characterized by α-synuclein pathology, disrupted iron homeostasis and impaired neurochemical transmission. Considering the critical role of iron in neurotransmitter synthesis and transport, our study aims to identify distinct patterns of whole-brain iron accumulation in MSA and PD, and to elucidate the corresponding neurochemical substrates. METHODS: A total of 122 PD patients, 58 MSA patients and 78 age-, sex-matched health controls underwent multi-echo gradient echo sequences and neurological evaluations. We conducted voxel-wise and regional analyses using quantitative susceptibility mapping to explore MSA or PD-specific alterations in cortical and subcortical iron concentrations. Spatial correlation approaches were employed to examine the topographical alignment of cortical iron accumulation patterns with normative atlases of neurotransmitter receptor and transporter densities. Furthermore, we assessed the associations between the colocalization strength of neurochemical systems and disease severity. RESULTS: MSA patients exhibited increased susceptibility in the striatal, midbrain, cerebellar nuclei, as well as the frontal, temporal, occipital lobes, and anterior cingulate gyrus. In contrast, PD patients displayed elevated iron levels in the left inferior occipital gyrus, precentral gyrus, and substantia nigra. The excessive iron accumulation in MSA or PD correlated with the spatial distribution of cholinergic, noradrenaline, glutamate, serotonin, cannabinoids, and opioid neurotransmitters, and the degree of this alignment was related to motor deficits. CONCLUSIONS: Our findings provide evidence of the interaction between iron accumulation and non-dopamine neurotransmitters in the pathogenesis of MSA and PD, which inspires research on potential targets for pharmacotherapy.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Humans , Multiple System Atrophy/metabolism , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Parkinson Disease/metabolism , Parkinson Disease/diagnostic imaging , Parkinson Disease/pathology , Male , Female , Middle Aged , Aged , Brain/metabolism , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Iron/metabolism , Neurotransmitter Agents/metabolism , Brain Mapping/methods
18.
Mod Pathol ; 37(8): 100533, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852813

ABSTRACT

Multiple system atrophy (MSA) is a neurodegenerative disorder with variable disease course and distinct constellations of clinical (cerebellar [MSA-C] or parkinsonism [MSA-P]) and pathological phenotypes, suggestive of distinct α-synuclein (αSyn) strains. Neuropathologically, MSA is characterized by the accumulation of αSyn in oligodendrocytic glial cytoplasmic inclusions (GCI). Using a novel computer-based method, this study quantified the size of GCIs, density of all αSyn pathology, density of only the GCIs, and number of GCIs in MSA cases (n = 20). The putamen and cerebellar white matter were immunostained with the disease-associated 5G4 anti-αSyn antibody. Following digital scanning and image processing, total 5G4-immunoreactive pathology (ie, neuronal, neuritic, and glial) and GCIs were optically dissected for inclusion size and density measurement and then evaluated applying a novel computer-based method using ImageJ. GCI size varied between cases and brain regions (P < .0001), and heterogeneity in the density of all αSyn pathology including the density and number of GCIs were observed between regions and across cases, where MSA-C cases had a significantly higher density of all αSyn pathology in the cerebellar white matter (P = .049). Some region-specific morphologic variables inversely correlated with the age of onset and death, suggestive of an underlying aging-related cellular mechanism. Unsupervised K-means cluster analysis classified MSA cases into 3 distinct groups based on region-specific morphologic variables. In conclusion, we developed a novel computer-based method that is easily accessible, providing a first step to developing artificial intelligence-based evaluation strategies for large scale comparative studies. Our observations on the variability of morphologic variables between brain regions and cases highlight (1) the importance of computer-based approaches to detect features not considered in the routine diagnostic practice, and (2) novel aspects for the identification of previously unrecognized MSA subtypes that do not necessarily reflect the current clinical classification of MSA-C or MSA-P.

19.
Article in English | MEDLINE | ID: mdl-38923361

ABSTRACT

BACKGROUND: White matter (WM) abnormalities have been implicated in clinically relevant functional decline in multiple system atrophy (MSA). OBJECTIVE: To identify the WM and gray matter (GM) abnormalities in MSA and assess the utility of longitudinal structural and diffusion changes as surrogate markers for tracking disease progression in MSA. METHODS: Twenty-seven participants with early MSA [15 with clinically predominant cerebellar (MSA-C) and 12 with clinically predominant parkinsonian features (MSA-P)] and 14 controls were enrolled as a part of our prospective, longitudinal study of synucleinopathies. Using structural magnetic resonance imaging (MRI) and diffusion MRI (diffusion tensor and neurite orientation and dispersion density imaging), we analyzed whole and regional brain changes in these participants. We also evaluated temporal imaging trajectories based on up to three annual follow-up scans and assessed the impact of baseline diagnosis on these imaging biomarkers using mixed-effect models. RESULTS: MSA patients exhibited more widespread WM changes than GM, particularly in the cerebellum and brainstem, with greater severity in MSA-C. Structural and diffusion measures in the cerebellum WM and brainstem deteriorated with disease progression. Rates of progression of these abnormalities were similar in both MSA subtypes, reflecting increasing overlap of clinical features over time. CONCLUSION: WM abnormalities are core features of MSA disease progression and advance at similar rates in clinical MSA subtypes. Multimodal MRI imaging reveals novel insights into the distribution and pattern of brain abnormalities and their progression in MSA. Selected structural and diffusion measures may be useful for tracking disease progression in MSA clinical trials.

20.
Brain Behav ; 14(5): e3510, 2024 May.
Article in English | MEDLINE | ID: mdl-38715394

ABSTRACT

BACKGROUND: Multiple system atrophy (MSA) is a neurodegenerative disease that progresses rapidly and has a poor prognosis. This study aimed to assess the value of video oculomotor evaluation (VOE) in the differential diagnosis of MSA and Parkinson's disease (PD). METHODS: In total, 28 patients with MSA, 31 patients with PD, and 30 age- and sex-matched healthy controls (HC) were screened and included in this study. The evaluation consisted of a gaze-holding test, smooth pursuit eye movement (SPEM), random saccade, and optokinetic nystagmus (OKN). RESULTS: The MSA and PD groups had more abnormalities and decreased SPEM gain than the HC group (64.29%, 35.48%, 10%, p < .001). The SPEM gain in the MSA group was significantly lower than that in the PD group at specific frequencies. Patients with MSA and PD showed prolonged latencies in all saccade directions compared with those with HC. However, the two diseases had no significant differences in the saccade parameters. The OKN gain gradually decreased from the HC to the PD and the MSA groups (p < .05). Compared with the PD group, the gain in the MSA group was further decreased in the OKN test at 30°/s (Left, p = .010; Right p = .016). Receiver operating characteristic curves showed that the combination of oculomotor parameters with age and course of disease could aid in the differential diagnosis of patients with MSA and PD, with a sensitivity of 89.29% and a specificity of 70.97%. CONCLUSIONS: The combination of oculomotor parameters and clinical data may aid in the differential diagnosis of MSA and PD. Furthermore, VOE is vital in the identification of neurodegenerative diseases.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Saccades , Humans , Multiple System Atrophy/diagnosis , Multiple System Atrophy/physiopathology , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Male , Diagnosis, Differential , Female , Middle Aged , Aged , Saccades/physiology , Video Recording , Nystagmus, Optokinetic/physiology , Pursuit, Smooth/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...