Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 223
Filter
1.
Rev Argent Microbiol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38845247

ABSTRACT

Multidrug-resistant Shigella sonnei ST152, global lineage III, is a high-risk clone, whose dissemination has limited therapeutic options for shigellosis. This study aimed to characterize two isolates of S. sonnei, which were recovered in Lima, Peru, during November 2019, exhibiting resistance to extended-spectrum cephalosporins and quinolones, and concurrently harboring blaCTX-M-15 and qnrS1 genes, in addition to mutations in gyrA-S83L. These isolates were resistant to ceftriaxone, ciprofloxacin and trimethoprim/sulfamethoxazole. The molecular analysis showed that both isolates belonged to lineage III, sublineages IIIa and IIIb. The blaCTX-M-15 gene was located in the same genetic platform as qnrS1, flanked upstream by ISKpn19, on a conjugative plasmid belonging to the IncI-γ group. To the best of our knowledge, this would be the first report on S. sonnei isolates carrying the blaCTX-M-15 gene in Peru. The global dissemination of S. sonnei ST152, co-resistant to ß-lactams and quinolones, could lead to a worrisome scenario in the event of potential acquisition of genetic resistance mechanisms to azithromycin.

2.
Pathogens ; 13(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38668260

ABSTRACT

Escherichia coli, a commensal microorganism found in the gastrointestinal tract of human and animal hosts, plays a central role in agriculture and public health. Global demand for animal products has promoted increased pig farming, leading to growing concerns about the prevalence of antibiotic-resistant E. coli strains in swine populations. It should be noted that a significant portion of antibiotics deployed in swine management belong to the critically important antibiotics (CIA) class, which should be reserved for human therapeutic applications. This study aimed to characterize the prevalence of antibiotic resistance, genetic diversity, virulence characteristics, and biofilm formation of E. coli strains in healthy pigs from various farms across central Portugal. Our study revealed high levels of antibiotic resistance, with resistance to tetracycline, ampicillin, tobramycin, and trimethoprim-sulfamethoxazole. Multidrug resistance is widespread, with some strains resistant to seven different antibiotics. The ampC gene, responsible for broad-spectrum resistance to cephalosporins and ampicillin, was widespread, as were genes associated with resistance to sulfonamide and beta-lactam antibiotics. The presence of high-risk clones, such as ST10, ST101, and ST48, are a concern due to their increased virulence and multidrug resistance profiles. Regarding biofilm formation, it was observed that biofilm-forming capacity varied significantly across different compartments within pig farming environments. In conclusion, our study highlights the urgent need for surveillance and implementation of antibiotic management measures in the swine sector. These measures are essential to protect public health, ensure animal welfare, and support the swine industry in the face of the growing global demand for animal products.

3.
Microorganisms ; 12(4)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38674589

ABSTRACT

In recent years, humanity has begun to face a growing challenge posed by a rise in the prevalence of antibiotic-resistant bacteria. This has resulted in an alarming surge in fatalities and the emergence of increasingly hard-to-manage diseases. Acinetobacter baumannii can be seen as one of these resilient pathogens due to its increasing prevalence in hospitals, its resistance to treatment, and its association with elevated mortality rates. Despite its clinical significance, the scientific understanding of this pathogen in non-hospital settings remains limited. Knowledge of its virulence factors is also lacking. Therefore, in this review, we seek to shed light on the latest research regarding the ecological niches, microbiological traits, and antibiotic resistance profiles of Acinetobacter baumannii. Recent studies have revealed the presence of this bacterium in a growing range of environmental niches, including rivers, treatment plants, and soils. It has also been discovered in diverse food sources such as meat and vegetables, as well as in farm animals and household pets such as dogs and cats. This broader presence of Acinetobacter baumannii, i.e., outside of hospital environments, indicates a significant risk of environmental contamination. As a result, greater levels of awareness and new preventive measures should be promoted to address this potential threat to public health.

4.
Curr Microbiol ; 81(5): 136, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598029

ABSTRACT

Copper resistance in phytopathogens is a major challenge to crop production globally and is known to be driven by excessive use of copper-based pesticides. However, recent studies have shown co-selection of multiple heavy metal and antibiotic resistance genes in bacteria exposed to heavy metal and xenobiotics, which may impact the epidemiology of plant, animal, and human diseases. In this study, multi-resistance to heavy metals and antibiotics were evaluated in local Xanthomonas campestris pv. campestris (Xcc) and co-isolated Xanthomonas melonis (Xmel) strains from infected crucifer plants in Trinidad. Resistance to cobalt, cadmium, zinc, copper, and arsenic (V) was observed in both Xanthomonas species up to 25 mM. Heavy metal resistance (HMR) genes were found on a small plasmid-derived locus with ~ 90% similarity to a Stenotrophomonas spp. chromosomal locus and a X. perforans pLH3.1 plasmid. The co-occurrence of mobile elements in these regions implies their organization on a composite transposon-like structure. HMR genes in Xcc strains showed the lowest similarity to references, and the cus and ars operons appear to be unique among Xanthomonads. Overall, the similarity of HMR genes to Stenotrophomonas sp. chromosomal genomes suggest their origin in this genus or a related organism and subsequent spread through lateral gene transfer events. Further resistome characterization revealed the presence of small multidrug resistance (SMR), multidrug resistance (MDR) efflux pumps, and bla (Xcc) genes for broad biocide resistance in both species. Concurrently, resistance to antibiotics (streptomycin, kanamycin, tetracycline, chloramphenicol, and ampicillin) up to 1000 µg/mL was confirmed.


Subject(s)
Anti-Bacterial Agents , Metals, Heavy , Animals , Humans , Anti-Bacterial Agents/pharmacology , Copper , Metals, Heavy/toxicity , Ampicillin , Chloramphenicol
5.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38503568

ABSTRACT

AIMS: The purpose was to evaluate the antimicrobial activity of highly soluble polypyrrole (Hs-PPy), alone or combined with oxacillin, as well as its antibiofilm potential against methicillin-resistant Staphylococcus aureus strains. Furthermore, the in silico inhibitory mechanism in efflux pumps was also investigated. METHODS AND RESULTS: Ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and two reference strains were used. Antimicrobial activity was determined by broth microdilution, and the combination effect with oxacillin was evaluated by the checkerboard assay. The biofilm formation capacity of MRSA and the interference of Hs-PPy were evaluated. The inhibitory action of Hs-PPy on the efflux pump was evaluated in silico through molecular docking. Hs-PPy showed activity against the isolates, with inhibitory action between 62.5 and 125 µg ml-1 and bactericidal action at 62.5 µg ml-1, as well as synergism in association with oxacillin. The isolates ranged from moderate to strong biofilm producers, and Hs-PPy interfered with the formation of this structure, but not with mature biofilm. There was no in silico interaction with the efflux protein EmrD, the closest homolog to NorA. CONCLUSIONS: Hs-PPy interferes with biofilm formation by MRSA, has synergistic potential, and is an efflux pump inhibitor.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Polymers/pharmacology , Pyrroles/pharmacology , Molecular Docking Simulation , Oxacillin/pharmacology , Anti-Infective Agents/pharmacology , Biofilms , Microbial Sensitivity Tests
6.
C R Biol ; 346(S1): 17-21, 2024 03 29.
Article in French | MEDLINE | ID: mdl-37655946

ABSTRACT

Melioidosis is an infectious, tropical and emerging disease, due to a bacterium of the hydrotelluric environment, Burkholderia pseudomallei, which is considered as a potential biological weapon because of its exceptional resistance and virulence capacities. Its worldwide spread, outside the original endemic foci of Southeast Asia and Australia, is favoured by global warming and the diabetes mellitus pandemic, which is the main predisposing factor.In humans, melioidosis is an opportunistic infection, following professional (rice farmers, soldiers) or accidental contamination, by inhalation or inoculation. B. pseudomallei is a facultative intracellular bacterium that can overcome host immune defences, induce acute, subacute, or chronic invasive infection, or remain latent for years. The acute infection is polymorphic, bacteraemic in more than 50% of cases, frequently complicated by shock, and revealed by visceral abscesses, most often pulmonary. It is fatal in 20 to 50% of cases, the prognosis depending on the delay before the establishment of effective first-line antibiotic therapy, using ceftazidime or carbapenems, and therefore on the speed of bacteriological diagnosis.B. pseudomallei is a saprophytic bacterium, resident of the rhizosphere where it has developed and accumulated capacities to overcome environmental stresses and competition with organisms living in such ecosystem. These adaptation mechanisms are also the virulence factors that make melioidosis serious, in particular the efflux pumps that are the main support for its multi-resistance to antibiotics.


La mélioïdose est une maladie infectieuse, tropicale et émergente, due à une bactérie de l'environnement hydrotellurique, Burkholderia pseudomallei, qui est considérée comme arme biologique potentielle en raison de ses exceptionnelles capacités de résistance et de virulence. Son extension mondiale, en dehors des foyers endémiques originels d'Asie du Sud-Est et d'Australie, est favorisée par le réchauffement climatique et par la pandémie de diabète de type 2 qui en est le principal facteur prédisposant.Chez l'Homme, la mélioïdose est une infection opportuniste, consécutive à une contamination professionnelle (riziculteurs, militaires) ou accidentelle, par inhalation ou par inoculation. B. pseudomallei est une bactérie intracellulaire facultative qui peut déjouer les défenses immunitaires de l'hôte, induire une infection invasive, aiguë, subaiguë ou chronique, ou rester latente pendant des années. L'infection aiguë est polymorphe, bactériémique dans plus de 50 % des cas, fréquemment compliquée de choc, et révélée par des abcès viscéraux le plus souvent pulmonaires. Elle est mortelle dans 20 à 50 % des cas, le pronostic dépendant du délai avant la mise en place d'une antibiothérapie efficace, utilisant la ceftazidime ou les carbapénèmes, donc de la rapidité du diagnostic bactériologique.B. pseudomallei est une bactérie saprophyte, résidente de la rhizosphère où elle a développé et accumulé des capacités pour supporter les stress environnementaux et la compétition avec les organismes vivant dans cet écosystème. Ces mécanismes d'adaptation sont aussi les facteurs de virulence qui font toute la gravité de la mélioïdose, en particulier les pompes d'efflux qui sont le support principal de sa multirésistance aux antibiotiques.


Subject(s)
Burkholderia pseudomallei , Melioidosis , Humans , Melioidosis/drug therapy , Melioidosis/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ecosystem , Ceftazidime
7.
APMIS ; 132(2): 100-111, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37971152

ABSTRACT

The objectives of this study were to perform a systematic review of publications between 2010 and 2021 on the antibiotic resistance of Pseudomonas aeruginosa and Acinetobacter baumannii from urinary tract infections and to analyze changes over time in hospital urine cultures from 2016 through 2021. The literature was searched, and a retrospective cross-sectional descriptive study was performed in the hospital. Out of 21 838 positive urine cultures, 3.86% were due to P. aeruginosa and 0.44% were due to A. baumannii. For P. aeruginosa, lower resistance rates were observed to virtually all tested antibiotics than were obtained in the systematic review, and the present series of hospital samples showed an in vitro resistance rate <10% to ceftazidime, cefepime, meropenem, piperacillin-tazobactam, amikacin, tobramycin, and colistin. For A. baumannii, the resistance rates to almost all antibiotics were higher in the present series than in the systematic review, being lowest to colistin (10%). Both microorganisms show reduced in vitro susceptibility to some antibiotics during the years of the COVID-19 pandemic in comparison to previous years. In our setting, both piperacillin-tazobactam and meropenem can be recommended for the empirical treatment of UTIs by P. aeruginosa, whereas only colistin can be recommended for UTIs by A. baumannii.


Subject(s)
Acinetobacter baumannii , Pseudomonas Infections , Urinary Tract Infections , Humans , Pseudomonas aeruginosa , Meropenem , Spain , Colistin , Cross-Sectional Studies , Retrospective Studies , Pandemics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Piperacillin, Tazobactam Drug Combination , Urinary Tract Infections/drug therapy , Drug Resistance, Multiple, Bacterial , Hospitals , Microbial Sensitivity Tests
8.
Pestic Biochem Physiol ; 196: 105591, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945242

ABSTRACT

The two-spotted spider mite Tetranychus urticae is a polyphagous pest with an extraordinary ability to develop acaricide resistance. Here, we characterize the resistance mechanisms in a T. urticae population (VR-BE) collected from a Belgian tomato greenhouse, where the grower was unsuccessful in chemically controlling the mite population resulting in crop loss. Upon arrival in the laboratory, the VR-BE population was established both on bean and tomato plants as hosts. Toxicity bioassays on both populations confirmed that the population was highly multi-resistant, recording resistance to 12 out of 13 compounds tested from various mode of action groups. DNA sequencing revealed the presence of multiple target-site resistance mutations, but these could not explain resistance to all compounds. In addition, striking differences in toxicity for six acaricides were observed between the populations on bean and tomato. The highest difference was recorded for the complex II inhibitors cyenopyrafen and cyflumetofen, which were 4.4 and 3.3-fold less toxic for VR-BE mites on tomato versus bean. PBO synergism bioassays suggested increased P450 based detoxification contribute to the host-dependent toxicity. Given the involvement of increased detoxification, we subsequently determined genome-wide gene expression levels of VR-BE on both hosts, in comparison to a reference susceptible population, revealing overexpression of a large set of detoxification genes in VR-BE on both hosts compared to the reference. In addition, a number of mainly detoxification genes with higher expression in VR-BE on tomato compared to bean was identified, including several cytochrome P450s. Together, our work suggests that multi-resistant field populations can accumulate a striking number of target-site resistance mutations. We also show that the host plant can have a profound effect on the P450-associated resistance levels to cyenopyrafen and cyflumetofen.


Subject(s)
Acaricides , Tetranychidae , Animals , Acaricides/pharmacology , Tetranychidae/genetics , Pyrazoles/pharmacology
9.
Antibiotics (Basel) ; 12(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37887187

ABSTRACT

Our study describes the prevalence and spectrum of enterococci isolated from one-day-old chickens in the Czech Republic, their level of antimicrobial resistance, and the occurrence of multiresistance. Over a 24-month period from 1 August 2021 to 31 July 2023, a total of 464 mixed samples of one-day-old chicken organs were examined during routine inspections at 12 randomly selected poultry farms in the Czech Republic. The samples were processed via cultivation methods and suspected strains were confirmed using the MALDI-TOF Mass Spectrometry method. Antimicrobial susceptibility was determined using the MIC method for eight antimicrobials. A total of 128 isolates (prevalence of 27.6%) representing 4 species of enterococci were isolated, including Enterococcus faecalis, Enterococcus faecium, Enterococcus gallinarum, and Enterococcus hirae, with prevalence rates of 23.3%, 1.5%, 2.2%, and 0.6%, respectively. Susceptibility tests showed a high percentage of susceptible strains among E. faecalis, E. faecium, and E. gallinarum for penicillin-based antibiotics, sulfamethoxazole with trimethoprim, and florfenicol (80-100% susceptible strains). E. hirae was an exception, displaying complete resistance to enrofloxacin (0% susceptible strains) and a high degree of resistance to other tested antimicrobials (33.3% susceptible strains). Among the isolated strains, a total of 16 isolates (12.5%) showed resistance to 3 or more antimicrobials. Complete resistance to all eight antimicrobials simultaneously was observed in four isolates (3.1%). This research shows the possible sources of pathogenic enterococci and their virulence and resistance genes. The findings hold relevance for both veterinary and human medicine, contributing to a better understanding of enterococcal circulation in the human ecosystem and food chain, as well as the development of their resistance and multiresistance.

10.
Antibiotics (Basel) ; 12(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37887221

ABSTRACT

Plasmids carrying high-risk resistance mechanisms in pathogenic E. coli have gained particular attention in veterinary medicine, especially since the discovery of the colistin resistance gene, mcr-1. Here, we provide the first evidence of its emergence and describe the complete mcr-1 plasmid sequence of a multi-resistant avian pathogenic E. coli (APEC) strain from waterfowl in Hungary. Whole-genome sequencing analysis and core-genome MLST were performed to characterize the genome structure of the mcr-1 plasmid and to reveal the phylogenetic relation between the Hungarian duck strain Ec45-2020 and the internationally circulating mcr-1-positive E. coli strains from poultry and humans. Results showed that plasmid pEc45-2020-33kb displayed a high level of genome identity with mcr-1 plasmids of IncX4 type widespread among human, animal and food reservoirs of enteric bacteria of public health. The mcr-1-positive E. coli strain Ec45-2020 belongs to the ST162 genotype, considered as one of the globally disseminated zoonotic genotypes of MDR E. coli. In accordance with international findings, our results underline the importance of continuous surveillance of enteric bacteria with high-risk antimicrobial resistance genotypes, including neglected animals, such as waterfowls, as possible reservoirs for the colistin resistance gene mcr-1.

11.
Plants (Basel) ; 12(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836180

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) infections are still a major problem in hospitals. The excellent safety profile, accessibility and anti-infective activity of tea extracts make them promising agents for the treatment of infected wounds. To investigate the possibility of sterilising MRSA-infected surfaces, including skin with tea extracts, we determined the MICs for different extracts from green and black tea (Camellia sinensis), including epigallocatechin gallate (EGCG), on a large number of clinical isolates of MRSA, selected to represent a high genetic diversity. The extracts were prepared to achieve the maximal extraction of EGCG from tea and were used as stable lyophilisate with a defined EGCG content. All extracts showed a complete inhibition of cell growth at a concentration of approx. 80 µg/mL of EGCG after a contact time of 24 h. Time-kill plots were recorded for the extract with the highest amount of EGCG. The reduction factor (RF) was 5 after a contact time of 240 min. EGCG and tea extracts showed an RF of 2 in methicillin-sensitive S. aureus. Extracts from green and black tea showed lower MICs than an aqueous solution with the same concentration of pure EGCG. To the best of our knowledge, we are the first to show a reduction of 99.999% of clinically isolated MRSA by green tea extract within 4 h.

12.
J Ophthalmic Inflamm Infect ; 13(1): 40, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715845

ABSTRACT

BACKGROUND: This case report describes the course and therapeutic management of a fast-spreading bacterial keratitis caused by multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa). CASE PRESENTATION: A 27-year-old male contact lens wearer presented with a multi-resistant, fast spreading P. aeruginosa keratitis. After initial resistance to various antibiotic therapies, testing revealed a MDR P. aeruginosa. The keratitis was treated successfully with specially prepared 50 mg/ml off-label meropenem eye drops for 18 days as well as systemic meropenem for seven days with rapid improvement of the corneal infiltrate. CONCLUSION: This case report demonstrates the combination of topical and systemic meropenem as a useful treatment option for corneal ulcers caused by MDR P. aeruginosa.

13.
J Glob Antimicrob Resist ; 35: 101-103, 2023 12.
Article in English | MEDLINE | ID: mdl-37709136

ABSTRACT

OBJECTIVES: The aim of this study was to characterise the whole genome sequence of multidrug-resistant Streptococcus pluranimalium strain SP21-2 of swine origin in China. METHODS: Illumina Miseq (200X coverage) and Nanopore PromethION platform (100X coverage) were used for genome sequencing. Rapid Annotation using Subsystem Technology (RAST) was used to annotate the genome of SP21-2. The antimicrobial resistance genes (ARGs) were identified using ResFinder-4.1. RESULTS: The assembled circular genome of S. pluranimalium SP21-2 was 1,987,058 bp in length with a GC content of 39.54%, and no plasmid sequence was detected. A total of 2086 coding sequences were predicted by RAST. Oxazolidinone-phenicol resistance gene, optrA, and pleuromutilin-lincosamide-streptogramin A resistance gene, lsa(E), are both located on chromosomes, associated with IS1216 and ISS1S, respectively. In addition, SP21-2 harbours lnu(B) (lincosamide), ant (6)-Ia and aac(6')-aph(2") (aminoglycoside), erm(B) (macrolide), and tet(O) (tetracycline). CONCLUSION: We firstly report the oxazolidinone-phenicol gene, optrA, and pleuromutilin-lincosamide-streptogramin A resistance gene, lsa(E), in S. pluranimalium. In this strain, we firstly identified ISS1S and IS1216 carrying ARGs in S. pluranimalium, which will provide a valuable reference to understanding potential transfer mechanisms of ARGs in S. pluranimalium.


Subject(s)
Anti-Infective Agents , Oxazolidinones , Animals , Swine , Streptogramin A , Anti-Bacterial Agents/pharmacology , Lincosamides , Chromosomes , Pleuromutilins
14.
Antibiotics (Basel) ; 12(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37760652

ABSTRACT

Nosocomial infections caused by Escherichia coli pose significant therapeutic challenges due to the high expression of genes encoding antimicrobial drug resistance. In this study, we investigated the conformation of the beta-lactam resistome responsible for the specific pattern of resistance against beta-lactam antibiotics. A total of 218 Escherichia coli strains were isolated from in-hospital patients diagnosed with nosocomial infections, obtained from various sources such as urine (n = 49, 22.48%), vaginal discharge (n = 46, 21.10%), catheter tips (n = 14, 6.42%), blood (n = 13, 5.96%), feces (n = 12, 5.50%), sputum (n = 11, 5.05%), biopsies (n = 8, 3.67%), cerebrospinal fluid (n = 2, 0.92%) and other unspecified discharges (n = 63, 28.90%). To characterize the beta-lactam resistome, all strains were subjected to antibiotic dilution tests and grown in beta-lactam antibiotics supplemented with Luria culture medium. Subsequently, multiplex PCR and next-generation sequencing were conducted. The results show a multi-drug-resistance phenotype, particularly against beta-lactam drugs. The primary determinant of this resistance was the expression of the blaTEM gene family, with 209 positive strains (95.87%) expressing it as a single gene (n = 47, 21.6%) or in combination with other genes. Common combinations included blaTEM + blaCTX (n = 42, 19.3%), blaTEM + blaCTX + blaSHV (n = 13, 6%) and blaTEM + blaCTX + blaBIL (n = 12, 5.5%), among others. The beta-lactam resistome of nosocomial Escherichia coli strains isolated from inpatients at the "October first" Regional Hospital of ISSSTE was predominantly composed of members of the blaTEM gene family, expressed in various configurations along with different members of other beta-lactamase gene families.

15.
Virologie (Montrouge) ; 27(4): 219-224, 2023 08 01.
Article in French | MEDLINE | ID: mdl-37565677

ABSTRACT

As part of the 25th edition of the Francophone Virology Days, Pr. Frédéric Laurent held the conference "Phages and phage therapy: from Félix d'Hérelle to 2.0 phages". Frédéric Laurent detailed the history of phages: from their discovery and their first use in early 1920s, through their abandonment in Western world in the 1940s in favor of antibiotics, then their reappearance in recent years within the context of the emergence of multi-resistant bacterial strains. Throughout this presentation, Pr. Laurent also detailed general functioning of phages, their chain of bioproduction and quality control, the progress to be made in the compassionate treatment of patients in therapeutic failures.


Subject(s)
Bacteriophages , Phage Therapy , Humans , Bacteria , Anti-Bacterial Agents , Compassionate Use Trials
16.
Viruses ; 15(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37515172

ABSTRACT

Colibacillosis is a disease caused by Escherichia coli and remains a major concern in poultry production, as it leads to significant economic losses due to carcass condemnation and clinical symptoms. The development of antimicrobial resistance is a growing problem of worldwide concern. Lysogenic bacteriophages are effective vectors for acquiring and disseminating antibiotic resistance genes (ARGs). The aim of this study was to investigate the complete genome of Escherichia coli isolates from the femurs of Brazilian broiler chickens in order to investigate the presence of antimicrobial resistance genes associated with bacteriophages. Samples were collected between August and November 2021 from broiler batches from six Brazilian states. Through whole genome sequencing (WGS), data obtained were analyzed for the presence of antimicrobial resistance genes. Antimicrobial resistance genes against the aminoglycosides class were detected in 79.36% of the isolates; 74.6% had predicted sulfonamides resistance genes, 63.49% had predicted resistance genes against ß-lactams, and 49.2% of the isolates had at least one of the tetracycline resistance genes. Among the detected genes, 27 have been described in previous studies and associated with bacteriophages. The findings of this study highlight the role of bacteriophages in the dissemination of ARGs in the poultry industry.


Subject(s)
Bacteriophages , Poultry Diseases , Animals , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Poultry , Bacteriophages/genetics , Brazil , Chickens , Drug Resistance, Bacterial
17.
Sci Total Environ ; 894: 164949, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37331393

ABSTRACT

The increasing occurrence of antibiotic resistant bacteria poses a threat to global public health. Clinically relevant resistances also spread through the environment. Aquatic ecosystems in particular represent important dispersal pathways. In the past, pristine water resources have not been a study focus, although ingestion of resistant bacteria through water consumption constitutes a potentially important transmission route. This study assessed antibiotic resistances in Escherichia coli populations in two large well-protected and well-managed Austrian karstic spring catchments representing essential groundwater resources for water supply. E. coli were detected seasonally only during the summer period. By screening a representative number of 551 E. coli isolates from 13 sites in two catchments, it could be shown that the prevalence of antibiotic resistance in this study area is low. 3.4 % of the isolates showed resistances to one or two antibiotic classes, 0.5 % were resistant to three antibiotic classes. No resistances to critical and last-line antibiotics were detected. By integrating fecal pollution assessment and microbial source tracking, we could infer that ruminants were the main hosts for antibiotic resistant bacteria in the studied catchment areas. A comparison with other studies on antibiotic resistances in karstic or mountainous springs highlighted the low contamination status of the model catchments studied here, most likely due to the high protection and careful management while other, less pristine catchments showed much higher antibiotic resistances. We demonstrate that studying easily accessible karstic springs allows a holistic view on large catchments concerning the extent and origin of fecal pollution as well as antibiotic resistance. This representative monitoring approach is also in line with the proposed update of the EU Groundwater Directive (GWD).


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Animals , Anti-Bacterial Agents/pharmacology , Austria , Ecosystem , Drug Resistance, Bacterial , Ruminants
18.
CienciaUAT ; 17(2): 146-164, ene.-jun. 2023. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1447826

ABSTRACT

RESUMEN Las plantas purificadoras de agua que carecen de un adecuado sistema de control de calidad pueden generar problemas de salud pública. El objetivo de este estudio fue examinar la calidad microbiológica del agua proveniente de pequeñas plantas purificadoras de la ciudad de Puebla, así como, determinar la existencia de bacterias Aeromonas sp y Pseudomonas sp, y caracterizar si presentan un fenotipo patógeno oportunista. Se recolectaron 70 muestras de garrafones de agua de 25 establecimientos. La cuantificación bacteriana se realizó mediante el método de goteo en placa. Se comprobaron los géneros microbianos mediante análisis bioquímico. En las cepas que mostraron discrepancia se utilizó la identificación molecular con base a secuencias parciales del gen 16S rRNA para confirmar su especie y se les evaluaron sus características de patogenicidad: multirresistencia a antibióticos, producción de biopelícula y actividad hemolítica. El 40 % de las plantas purificadoras no cumplieron con la calidad microbiológica del agua para consumo humano. El 41.4 % de los garrafones de agua muestreados incumplió la normativa, presentando coliformes totales 35.7 %, Pseudomonas 30 %, Enterococcus faecalis 8.6 % y bacterias coliformes fecales el 5.7 %. Se obtuvieron 56 aislados, provenientes de los 29 garrafones contaminados; 10 de ellos se caracterizaron molecularmente, resultando 7 aislados relacionados con especies diferentes de P. aeruginosa y 3 con especies de Aeromonas. De los aislados de Pseudomonas, 5 presentaron resistencia a 2 familias de antibióticos y 2 mostraron multirresistencia. El 36 % de los 10 aislados produjeron hemólisis y biopelícula. Dos cepas de Aeromonas mostraron resistencia a Cefalosporina 3a generación pero no produjeron hemólisis. Los 10 aislados analizados fueron clasificados como no patógenos. Es necesario un seguimiento sanitario más estricto para lograr el cumplimiento de las normas nacionales e internacionales relacionadas con el consumo de agua purificada, para evitar dañar la salud de los consumidores.


ABSTRACT Water purification establishments that lack an adequate quality control system can cause public health problems. The objective of this study was to examine the microbiological quality of water from small purification establishments in the city of Puebla, as well as to determine the existence of Aeromonas sp and Pseudomonas sp bacteria, and to characterize whether they present an opportunistic pathogenic phenotype. 70 water jug samples were collected from 25 establishments. Bacterial quantification was performed using the drop plate method. Microbial genera were determined by biochemical analysis using the standard methodology. In the strains that showed discrepancy, molecular identification based on partial sequences of the 16S rRNA gene was used to confirm their species, and their pathogenic characteristics were evaluated: multiresistance to antibiotics, biofilm production, and hemolytic activity. The results showed that 40 % of the purification establishments did not comply with the microbiological quality of water for human consumption. Similarly, 41.4 % of the jugs of water sampled failed to comply with the regulations, presenting total coliforms 35.7 %, Pseudomonas 30 %, Enterococcus faecalis 8.6 % and fecal coliform bacteria 5.7 %. Likewise, 56 isolates were obtained from the 29 contaminated jugs, of which 10 were molecularly characterized, resulting in 4 different species for P. aeruginosa and 3 for Aeromonas. Of the 7 Pseudomonas isolates, 5 presented resistance to 2 families of antibiotics and 2 showed multiresistance. In total, 36 % of the 10 isolates produced hemolysis and biofilm. Two Aeromonas strains showed resistance to 3rd generation Cephalosporin but did not produce hemolysis. The 10 isolates analyzed were classified as non-pathogenic. A stricter sanitary monitoring is necessary to achieve compliance with national and international standards related to the consumption of purified water, to avoid harming the health of consumers.

19.
Microbiol Spectr ; 11(3): e0419022, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37133395

ABSTRACT

The choice of the best probabilistic postoperative antibiotics in bone and joint infections (BJIs) is still challenging. Since the implementation of protocolized postoperative linezolid in six French referral centers, linezolid-resistant multidrug-resistant Staphylococcus epidermidis (LR-MDRSE) strains were isolated in patients with BJI. We aimed here to describe clinical, microbiological, and molecular patterns associated with these strains. All patients with at least one intraoperative specimen positive for LR-MDRSE between 2015 and 2020 were included in this retrospective multicenter study. Clinical presentation, management, and outcome were described. LR-MDRSE strains were investigated by MIC determination for linezolid and other anti-MRSA antibiotics, characterization of genetic determinants of resistance, and phylogenetic analysis. Forty-six patients (colonization n = 10, infection n = 36) were included in five centers, 45 had prior exposure to linezolid, 33 had foreign devices. Clinical success was achieved for 26/36 patients. Incidence of LR-MDRSE increased over the study period. One hundred percent of the strains were resistant to oxazolidinones, gentamicin, clindamycin, ofloxacin, rifampicin, ceftaroline, and ceftobiprole, and susceptible to cyclins, daptomycin, and dalbavancin. Susceptibility to delafloxacin was bimodal. Molecular analysis was performed for 44 strains, and the main mutation conferring linezolid resistance was the 23S rRNA G2576T mutation. All strains belonged to the sequence type ST2 or its clonal complex, and phylogenetic analysis showed emergence of five populations corresponding geographically to the centers. We showed the emergence of new clonal populations of highly linezolid-resistant S. epidermidis in BJIs. Identifying patients at risk for LR-MDRSE acquisition and proposing alternatives to systematic postoperative linezolid use are essential. IMPORTANCE The manuscript describes the emergence of clonal linezolid-resistant strains of Staphylococcus epidermidis (LR-MDRSE) isolated from patients presenting with bone and joint infections. Incidence of LR-MDRSE increased over the study period. All strains were highly resistant to oxazolidinones, gentamicin, clindamycin, ofloxacin, rifampicin, ceftaroline, and ceftobiprole, but were susceptible to cyclins, daptomycin, and dalbavancin. Susceptibility to delafloxacin was bimodal. The main mutation conferring linezolid resistance was the 23S rRNA G2576T mutation. All strains belonged to the sequence type ST2 or its clonal complex, and phylogenetic analysis showed emergence of five populations corresponding geographically to the centers. LR-MDRSE bone and joint infections seem to be accompanied by an overall poor prognosis related to comorbidities and therapeutic issues. Identifying patients at risk for LR-MDRSE acquisition and proposing alternatives to systematic postoperative linezolid use become essential, with a preference for parenteral drugs such as lipopeptids or lipoglycopeptids.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Oxazolidinones , Staphylococcal Infections , Humans , Linezolid/pharmacology , Linezolid/therapeutic use , Staphylococcus epidermidis/genetics , Rifampin/therapeutic use , Clindamycin/therapeutic use , RNA, Ribosomal, 23S/genetics , Phylogeny , Interleukin-1 Receptor-Like 1 Protein/genetics , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gentamicins/therapeutic use , Ofloxacin , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Ceftaroline
20.
PeerJ ; 11: e15268, 2023.
Article in English | MEDLINE | ID: mdl-37214095

ABSTRACT

Background: The prevalence of Helicobacter pylori (H. pylori) keeps rising while the eradication rate continues to decline due to the increasing antibiotic resistance. Regional variations of antimicrobial resistance to H. pylori have been recommended by guidelines in recent years. This study aims to investigate the antibiotic resistance rate of H. pylori and its association with infected subjects' characteristics in Liaoning Province, an area in north China. Methods: Gastric tissues from 178 H. pylori positive participants without previous antibiotic use within four weeks were collected for H. pylori culture. Antibiotic susceptibility to furazolidone (AOZ), tetracycline (TC), levofloxacin (LFX), metronidazole (MET), clarithromycin (CLA), and amoxicillin (AMX) were examined with the agar dilution method. Associations between H. pylori resistance and patient characteristics were further analysed. Results: No resistance was observed in AOZ or TC. For LFX, MET, CLA, and AMX, the overall resistance rates were 41.10%, 79.14%, 71.78%, and 22.09% respectively. There were significant differences between resistance to CLA and MALToma (P = 0.021), and between resistance to MET and age (P < 0.001). Conclusions: The primary resistant rates of LEX, MET, CLA, and AMX were relatively high in Liaoning. Treatment effectiveness improvement could be achieved by prior antimicrobial susceptibility tests before antibiotic prescription.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/drug therapy , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Clarithromycin/pharmacology , Metronidazole , Amoxicillin , Levofloxacin/pharmacology , Tetracycline/pharmacology , China/epidemiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...