Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 891, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110355

ABSTRACT

BACKGROUND: Peptide transporter 1 (PepT1) transports bacterial oligopeptide products and induces inflammation of the bowel. Nutritional peptides compete for the binding of intestinal bacterial products to PepT1. We investigated the mechanism of short-peptide-based enteral nutrition (SPEN) on the damage to the gut caused by the bacterial oligopeptide product muramyl dipeptide (MDP), which is transported by PepT1. The gut-lung axis is a shared mucosal immune system, and immune responses and disorders can affect the gut-respiratory relationship. METHODS AND RESULTS: Sprague-Dawley rats were gavaged with solutions containing MDP, MDP + SPEN, MDP + intact-protein-based enteral nutrition (IPEN), glucose as a control, or glucose with GSK669 (a NOD2 antagonist). Inflammation, mitochondrial damage, autophagy, and apoptosis were explored to determine the role of the PepT1-nucleotide-binding oligomerization domain-containing protein 2 (NOD2)-beclin-1 signaling pathway in the small intestinal mucosa. MDP and proinflammatory factors of lung tissue were explored to determine that MDP can migrate to lung tissue and cause inflammation. Induction of proinflammatory cell accumulation and intestinal damage in MDP gavage rats was associated with increased NOD2 and Beclin-1 mRNA expression. IL-6 and TNF-α expression and apoptosis were increased, and mitochondrial damage was severe, as indicated by increased mtDNA in the MDP group compared with controls. MDP levels and expression of proinflammatory factors in lung tissue increased in the MDP group compared with the control group. SPEN, but not IPEN, eliminated these impacts. CONCLUSIONS: Gavage of MDP to rats resulted in damage to the gut-lung axis. SPEN reverses the adverse effects of MDP. The PepT1-NOD2-beclin-1 pathway plays a role in small intestinal inflammation, mitochondrial damage, autophagy, and apoptosis.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine , Beclin-1 , Enteral Nutrition , Lung Injury , Nod2 Signaling Adaptor Protein , Peptide Transporter 1 , Rats, Sprague-Dawley , Signal Transduction , Animals , Peptide Transporter 1/metabolism , Peptide Transporter 1/genetics , Rats , Beclin-1/metabolism , Beclin-1/genetics , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Signal Transduction/drug effects , Lung Injury/metabolism , Male , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Enteral Nutrition/methods , Apoptosis/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Autophagy/drug effects , Lung/metabolism , Lung/pathology , Lung/drug effects , Inflammation/metabolism
2.
Protein Sci ; 30(4): 804-817, 2021 04.
Article in English | MEDLINE | ID: mdl-33512005

ABSTRACT

Designed protein receptors hold diagnostic and therapeutic promise. We now report the design of five consensus leucine-rich repeat proteins (CLRR4-8) based on the LRR domain of nucleotide-binding oligomerization domain (NOD)-like receptors involved in the innate immune system. The CLRRs bind muramyl dipeptide (MDP), a bacterial cell wall component, with micromolar affinity. The overall Kd app values ranged from 1.0 to 57 µM as measured by fluorescence quenching experiments. Biphasic fluorescence quenching curves were observed in all CLRRs, with higher affinity Kd1 values ranging from 0.04 to 4.5 µM, and lower affinity Kd2 values ranging from 3.1 to 227 µM. These biphasic binding curves, along with the docking studies of MDP binding to CLRR4, suggest that at least two MDPs bind to each protein. Previously, only single MDP binding was reported. This high-capacity binding of MDP promises small, soluble, stable CLRR scaffolds as candidates for the future design of pathogen biosensors.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Proteins/chemistry , Humans , Leucine-Rich Repeat Proteins , Protein Binding , Proteins/chemical synthesis
3.
Chem Asian J ; 15(22): 3836-3844, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-32975372

ABSTRACT

A series of muramyl dipeptide (MDP) analogues with structural modifications at the C4 position of MurNAc and on the d-iso-glutamine (isoGln) residue of the peptide part were synthesized. The C4-diversification of MurNAc was conveniently achieved by using CuAAC click strategy to conjugate an azido muramyl dipeptide precursor with structurally diverse alkynes. d-Glutamic acid (Glu), replaced with isoGln, was applied for the structural diversity through esterification or amidation of the carboxylic acid. In total, 26 MDP analogues were synthesized and bio-evaluated for the study of human NOD2 stimulation activity in the innate immune response. Interestingly, MDP derivatives with an ester moiety are found to be more potent than reference compound MDP itself or MDP analogues containing an amide moiety. Among the varied lengths of the alkyl chain in ester derivatives, the MDP analogue bearing the d-glutamate dodecyl (C12) ester moiety showed the best NOD2 stimulation potency.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Nod2 Signaling Adaptor Protein/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/analogs & derivatives , Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Cell Line , Humans , Models, Molecular , Molecular Conformation
4.
Ann Transl Med ; 7(18): 473, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31700909

ABSTRACT

BACKGROUND: The transcellular transport of muramyl dipeptide (MDP) mediated by peptide transporter (PepT1) involves the translocation into intestinal epithelial cell (IEC) stage and the transport out of IEC stage. However, its mechanism has not been fully understood. This study aimed to investigate the pathways and mechanisms of MDP transcellular transport in enterogenous infection. METHODS: Firstly, experimental rats were randomly divided into three groups: sham-operation (sham group), MDP perfusion (MDP group), and PepT1 competitive inhibition (MDP + Gly-Gly group). Then, the overall survival (OS) and intestinal weight were measured in MDP and MDP + Gly-Gly group. HE staining was performed to observe the pathological changes of the small intestine. The levels of IL-6, IL-1b, IL-8, IL-10, TNF-α, and nitric oxide (NO) in rat serum and small intestine were determined by ELISA. To further verify the pathways and mechanisms of MDP transcellular transport from IEC in intestinal inflammatory damage, the NFκB inhibitor, PDTC, was used to treated lamina propria macrophages in small intestinal mucosa in sham, MDP, and MDP + Gly-Gly groups. Finally, the expression of CD80/86 and the antigen presentation of dendritic cells (DCs) were measured by flow cytometry. RESULTS: MDP infusion was able to induce death, weight loss, and intestinal pathological injury in rats. Competitive binding of Gly-Gly to PepT1 effectively inhibited these effects induced by MDP. As well, competitive of PepT1 by Gly-Gly inhibited inflammation-related cytokines induced by MDP in rat serum and small intestine. Furthermore, we also found that MDP transported by PepT1 contributes to activation of macrophages and antigen presentation of DCs. CONCLUSIONS: PepT1-NFκB signal is pivotal for activation of intestinal inflammatory response and MDP transcellular transport.

5.
Chembiochem ; 20(11): 1369-1375, 2019 06 03.
Article in English | MEDLINE | ID: mdl-30672111

ABSTRACT

The innate immune system's interaction with bacterial cells plays a pivotal role in a variety of human diseases. Carbohydrate units derived from a component of bacterial cell wall, peptidoglycan (PG), are known to stimulate an immune response. Nonetheless, access to modified late-stage peptidoglycan intermediates is limited due to their synthetic complexity. A method to rapidly functionalize PG fragments is needed to better understand the natural host-PG interactions. Here methyl N,O-hydroxylamine linkers are incorporated onto a synthetic PG derivative, muramyl dipeptide (MDP). The modification of MDP maintained the ability to stimulate a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) immune response dependent on the expression of nucleotide-binding oligomerization domain-containing protein 2 (Nod2). Intrigued by this modification's maintenance of biological activity, several applications were explored. Methyl N,O-hydroxylamine MDP was amendable to N-hydroxylsuccinimide (NHS) chemistry for bioconjugation to fluorophores as well as a self-assembled monolayer for Nod2 surface plasmon resonance analysis. Finally, linker incorporation was applicable to larger PG fragments, both enzymatically generated from Escherichia coli or chemically synthesized. This methodology provides rapid access to PG probes in one step and allows for the installation of a variety of chemical handles to advance the molecular understanding of PG and the innate immune system.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Acetylmuramyl-Alanyl-Isoglutamine/analogs & derivatives , Escherichia coli/metabolism , Humans , NF-kappa B/chemistry , Nod2 Signaling Adaptor Protein/chemistry , Surface Plasmon Resonance/methods
6.
Biomed Pharmacother ; 106: 724-732, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29990864

ABSTRACT

NOD like receptors (NLR) are essential pathogen associated molecular pattern receptors of cytoplasmic origin. During several intracellular parasitic infections NLR played vital role for host protective immune response against the pathogen. Amongst various classes of NLR, NOD1 and NOD2 had been extensively studied and were found to be the most active member of the NLR family. Therefore, we wanted to study the role of NOD1/NOD2 during Leishmania donovani infection and the mechanism behind the utilization of this pathway as a therapeutic approach. Using the infected model of macrophage and BALB/c mice the expression of NOD1 and NOD2 were analysed. Our study showed that NOD2 but not NOD1 has been exploited during experimental VL, leading to the imbalance between Th-1/Th-2 cytokines profile. Over-expression of NOD2 and stimulation with its ligand muramyl dipeptide leads to successful clearance of parasite. During in vivo experiments we found that arabinosylated lipoarabinomannan helps in the restoration of NOD2 and with MDP in combination leads to effective clearance of parasite which rescued host protective immunity and comparatively more effective than Mw and MDP combination resulting in increase T cell response. Consequently, our study highlighted the significance of NOD2 during infection the immune-modulations of which can be used as a therapeutic target.


Subject(s)
Immunity, Innate/drug effects , Immunologic Factors/pharmacology , Inflammation Mediators/metabolism , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Lipopolysaccharides/pharmacology , Nod2 Signaling Adaptor Protein/metabolism , T-Lymphocyte Subsets/drug effects , Trypanocidal Agents/pharmacology , Animals , Cytokines/metabolism , Disease Models, Animal , Host-Pathogen Interactions , Leishmania donovani/immunology , Leishmania donovani/pathogenicity , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/parasitology , Mice, Inbred BALB C , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Parasite Load , Signal Transduction/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/parasitology , Th1-Th2 Balance/drug effects
7.
Brain Res ; 1642: 1-9, 2016 07 01.
Article in English | MEDLINE | ID: mdl-26972532

ABSTRACT

Moyamoya disease (MMD) is a chronic, occlusive cerebrovascular disease with an unknown etiology and is characterized by an abnormal vascular network at the base of the brain. Recent studies identified the RNF213 gene (RNF213) as an important susceptibility gene for MMD; however, the mechanisms underlying the RNF213 abnormality related to MMD have not yet been elucidated. We previously reported that Rnf213-deficient mice and Rnf213 p. R4828K knock-in mice did not spontaneously develop MMD, indicating the importance of secondary insults in addition to genetic factors in the pathogenesis of MMD. The most influential secondary insult is considered to be an immunological reaction because RNF213 is predominantly expressed in immunological tissues. Therefore, we herein attempted to evaluate the role of an immunological stimulation as a supplementary insult to the target disruption of RNF213 in the pathophysiology of MMD. Rnf213-deficient mice were treated with strong immunological adjuvants including muramyl dipeptide (MDP)-Lys (L18), and then underwent time-sequential magnetic resonance angiography (MRA) up to 40 weeks of age. The results obtained did not reveal any characteristic finding of MMD, and no significant difference was observed in MRA findings or the anatomy of the circle of Willis between Rnf213-deficient mice and wild-type mice after the administration of MDP-Lys (L18). The ratio of regulatory T cells after the administration of MDP-Lys (L18) was significantly decreased in Rnf213-deficient mice (p<0.01), suggesting the potential role of the RNF213 abnormality in the differentiation of regulatory T cells. Although the mechanisms underlying the development of MMD currently remain unclear, the RNF213 abnormality may compromise immunological self-tolerance, thereby contributing to the development of MMD.


Subject(s)
Adenosine Triphosphatases/genetics , Moyamoya Disease/genetics , Moyamoya Disease/immunology , Moyamoya Disease/pathology , T-Lymphocytes, Regulatory/immunology , Ubiquitin-Protein Ligases/genetics , Adjuvants, Immunologic/administration & dosage , Animals , Cell Count , Circle of Willis/immunology , Circle of Willis/pathology , Female , Genetic Predisposition to Disease , Magnetic Resonance Angiography , Male , Mice , Mice, Inbred C57BL , Self Tolerance , T-Lymphocytes, Regulatory/metabolism
8.
Dig Dis Sci ; 60(11): 3264-70, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26138652

ABSTRACT

BACKGROUND AND AIMS: PepT1 can transport bacterial oligopeptide products and induce intestinal inflammation. Our aim was to investigate the mechanism of the small intestine injury induced by bacterial oligopeptide product muramyl dipeptide (MDP) which is transported by PepT1. METHODS: We perfused the jejunum with a solution with or without MDP, or with a solution of MDP + Gly-Gly and explored the degree of inflammation to determine the role of PepT1-Nod2 signaling pathway in small intestine mucosa. RESULTS: MDP perfusion induced inflammatory cell accumulation and intestinal damage, accompanied by an increase in mucosal Nod2 and Rip2 transcript expression. NFκB activity and inflammatory cytokine expression, including serum levels of TNF-α, IL-1ß, and IL-6, increased in the MDP group compared to the controls; these effects were reversed by perfusion of the nutritional dipeptide Gly-Gly. CONCLUSION: MDP can be transported through PepT1, causing inflammatory damage in the rat small intestine. Nod2-Rip2-NFκB signaling involved in the small intestinal inflammatory injury caused by MDP which is transported through PepT1.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/toxicity , Enteritis/chemically induced , Intestinal Mucosa/drug effects , Jejunum/drug effects , Nod2 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Symporters/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Animals , Cytokines/metabolism , Enteritis/enzymology , Enteritis/pathology , Glycylglycine/pharmacology , Inflammation Mediators/metabolism , Intestinal Mucosa/enzymology , Intestinal Mucosa/pathology , Jejunum/enzymology , Jejunum/pathology , Male , NF-kappa B/metabolism , Peptide Transporter 1 , Rats, Sprague-Dawley , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL