Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Article in English | MEDLINE | ID: mdl-38982918

ABSTRACT

Liver disease, responsible for two million annual deaths, causes Chronic Liver Disease (CLD) and cirrhosis, causing roughly a million deaths yearly. Treatment options for liver injury induced by hepatotoxicity vary, including medication (N-acetylcysteine, corticosteroids, and ursodeoxycholic acid), lifestyle changes, and sometimes liver transplant. However, effectiveness varies, and some treatments carry risks and side effects, highlighting the need for improved therapeutic approaches. Murraya koenigii (MK) is known for its hepatoprotective, antioxidant, anti-inflammatory, anti-microbial, nephroprotective, hepatoprotective, gastroprotective, cardioprotective, neuroprotective, wound-healing, anti-cancerous and immunomodulatory effects, etc. This review highlights the effectiveness of MK against liver damage induced by heavy metals, drug abuse, xenobiotics, etc. A comprehensive search across multiple databases like PubMed, Google Scholar, and others for articles on various hepatotoxicants and hepatoprotective activity of MK was conducted. The researchers applied specific search terms and limits, resulting in 149 eligible articles for final analysis, meeting predetermined inclusion criteria and excluding irrelevant studies. According to the available literature, the phytochemical components of MK, such as flavonoids, tannins, and alkaloids present in various extracts, play a crucial role in reversing the hepatotoxic effects by modifying oxidative and ER stresses, re-establishing the hepatic biochemical markers and enzymes involved in metabolism denoting ameliorative activity, and controlling the expression of pro-inflammatory cytokines. To conclude, this review highlights that MK has great potential as a natural hepatoprotective agent, providing a versatile defense against a range of injuries caused by heavy metals, xenobiotics, and common hepatotoxic agents.

2.
Cardiovasc Hematol Agents Med Chem ; 22(2): 230-239, 2024.
Article in English | MEDLINE | ID: mdl-38975619

ABSTRACT

BACKGROUND: Plants have been used for ages in traditional medicine, and it is exciting to perceive how recent research has recognized the bioactive compounds liable for their beneficial effects. Green synthesis of metal nanoparticles is a hastily emergent research area in nanotechnology. This study describes the synthesis of silver nanoparticles (AgNPs) using Coriandrum sativum and Murraya koenigii leaf extract and its thrombolytic activity. OBJECTIVE: The aim of the study was to determine the clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles. METHODS: Leaves of Coriandrum sativum and Murraya koenigii were collected. Methanolic extraction of the plant sample was done through a Soxhlet extractor. The methanolic extract obtained from both the leaves was subjected to GC-MS analysis. The synthesized NPs from leaf extracts were monitored for analysis, where the typical X-ray diffraction pattern and its diffraction peaks were identified. 3D image of the NPs was analysed by Atomic Force Microscopy. The surface charge of nanoparticles was identified by Zeta potential. The Clot lysis activity of Coriandrum sativum and Murraya koenigii synthesized silver nanoparticles were analysed by the modified Holmstorm method. RESULTS: The thrombolytic property of the methanolic extract of plants Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 45.99% activity, and Murraya koenigii extract with 66.56% activity. The nanoparticles (Nps) from Coriandrum sativum showed clot lysis activity at 2.5 mg/mL with 58.29% activity, and NPs from Murraya koenigii with 54.04% activity. Coriandrum sativum in GC-MS exhibited 3 peaks, whereas Murraya koenigii extract showed five peaks with notable bioactive compounds. CONCLUSION: These NPs were further used for biomedical applications after being fixed by an organic encapsulation agent. The present research reveals the usefulness of Coriandrum sativum and Murraya koenigii for the environmentally friendly manufacture of silver nanoparticles.


Subject(s)
Coriandrum , Fibrinolytic Agents , Green Chemistry Technology , Metal Nanoparticles , Murraya , Plant Extracts , Plant Leaves , Silver , Metal Nanoparticles/chemistry , Murraya/chemistry , Silver/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Coriandrum/chemistry , Plant Leaves/chemistry , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology
3.
Sci Rep ; 14(1): 15565, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971851

ABSTRACT

Lactic acid bacteria (LAB) isolated from medicinal herb Murraya koenigii, commonly known as curry leaf, which promotes the growth and maintenance of gut microbiota, were studied for their probiotic potential. The key objective of this research was to isolate and evaluate probiotic characteristics, test adherence capabilities, and confirm their safety. Lactococcus lactis (MKL8), isolated from Murraya koenigii, was subjected to in vitro analysis to assess its resistance to the gastric environment, ability to adhere Caco-2 cells, anti-microbial activity, hydrophobicity, auto-aggregation, and safety profiling through MTT assay and hemolytic. MKL8 exhibited growth at 0.5% phenol concentrations (> 80%) and was able to survive in conditions with high bile concentrations (> 79%) and a relatively low pH (72%-91%). It shows high tolerance to high osmotic conditions (> 73%) and simulated gastric juice (> 72%). Additionally, MKL8 demonstrated strong hydrophobicity (85%), auto-aggregation (87.3%-91.7%), and adherence to Caco-2 cells. Moreover, it had an inhibitory effect against pathogens too. By performing the hemolytic and MTT assays, the non-toxicity of MKL8 isolate was examined, and it exhibited no harmful characteristics. Considering MKL8's resistance to gastrointestinal tract conditions, high surface hydrophobicity, non-toxicity, and ability to inhibit the tested pathogens, it can be concluded that MKL8 demonstrated promising probiotic properties and has potential for use in the food industry.


Subject(s)
Bacterial Adhesion , Lactococcus lactis , Murraya , Probiotics , Humans , Caco-2 Cells , Lactococcus lactis/isolation & purification , Bacterial Adhesion/drug effects , Murraya/chemistry , Hydrophobic and Hydrophilic Interactions , Anti-Bacterial Agents/pharmacology
4.
J Ethnopharmacol ; 333: 118423, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38878841

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Murraya koenigii commonly known as curry leaf, is traditionally used in India to manage various ailments including diabetes mellitus. Curry leaves are well documented in Indian Ayurvedic system of medicine for beneficial effects in skin eruptions, dysentery, emesis, poisonous bites and bruises. The anti-hyperglycemic and anti-hyperlipidemic effects of curry leaf extracts have been demonstrated through several in vitro and in vivo experiments previously. AIM OF THE STUDY: To prepare an alkaloid enriched fraction (AEF) from M. koenigii and its evaluation on i) in vitro adipogenesis process and ii) in vivo high fat diet-induced obesity in C57BL/6J mice. MATERIALS AND METHODS: MKME and AEF were prepared from M. koenigii leaves. The four carbazole alkaloids (bioactive markers) isolated from AEF were quantitatively determined in the leaves by RP-HPLC method. MKME and AEF were studied for anti-obesogenic activity in adipocytes in vitro and in HFD-induced C57BL/6J obese mice in vivo. At the termination of the in vivo study, lipid profile, hepatic and renal injury and glucose levels were analyzed in the blood samples. Animal tissues were examined histopathologically to determine any signs of damage. Repeated dose oral toxicity study for 28 days on Sprague-Dawley rats was also performed to determine the safety profile of AEF. RESULTS: Both MKME and AEF displayed anti-obesogenic activity at 25 µg/ml concentration in vitro and showed 54.06 ± 3.86% and 37.46 ± 3.17% lipid accumulation, respectively compared to control. Further, supplementation of AEF and MKME in HFD-fed C57BL/6J mice helped in controlling weight gain, improved dyslipidemia and glucose intolerance significantly. AEF showed better anti-obesity activity than MKME both in vitro and in vivo study. Repeated administration of AEF up to 1 g/kg dose for 28 days showed no pathological tissue damage. Both MKME and AEF were standardized using a simple and validated RP-HPLC method. CONCLUSION: Present study was aimed at preparation of a novel alkaloid-enriched fraction from methanolic extract of M. koenigii leaf and its evaluation for anti-diabesity effect. Our results demonstrated AEF to be a promising plant-based therapy for ameliorating obesity and related metabolic complications in HFD-fed C57BL/6J mice.


Subject(s)
3T3-L1 Cells , Alkaloids , Diet, High-Fat , Mice, Inbred C57BL , Murraya , Obesity , Plant Extracts , Plant Leaves , Animals , Murraya/chemistry , Alkaloids/pharmacology , Plant Leaves/chemistry , Obesity/drug therapy , Diet, High-Fat/adverse effects , Plant Extracts/pharmacology , Mice , Male , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/isolation & purification , Adipogenesis/drug effects , Adipocytes/drug effects
5.
J Pharm Bioallied Sci ; 16(Suppl 2): S1263-S1269, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882802

ABSTRACT

Background: Nonessential heavy metals pose a significant threat to human health due to their toxicity. Mercury, in particular, is identified as a hazardous metal. The study aims to detect mercury using colorimetric analysis with Murraya koenigii, emphasizing the eco-friendliness of the method. Aims and Objectives: The primary objective is to detect mercury using a colorimetric analysis method employing Murraya koenigii. Additionally, the study aims to investigate the eco-friendliness of this detection method. Materials and Methods: Colorimetric analysis was conducted using Murraya koenigii to detect mercury. Ultraviolet-visible (UV-vis) spectroscopy was employed to detect the formation of silver nanoparticles (AgNPs), with a characteristic surface plasmon resonance (SPR) band observed. X-ray diffraction (XRD) data analysis was performed to determine the crystalline nature and size of AgNPs. Scanning electron microscopy (SEM) was utilized to visualize the morphology of AgNPs. Fourier transform infrared (FTIR) spectroscopy was employed to identify functional groups involved in reducing silver ions. Antibacterial properties of synthesized AgNPs were tested against various microorganisms, including Escherichia coli, Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis. Results: Mercury was successfully detected using colorimetric analysis with Murraya koenigii. Formation of AgNPs was confirmed by UV-vis spectroscopy, with a characteristic SPR band at 418 nm. AgNPs were found to be crystalline with an average size of 5.20 nm, as determined by XRD analysis. SEM images revealed spherical and polycrystalline AgNPs. FTIR spectra indicated the involvement of the -OH group of compounds in the extract in reducing silver ions. Synthesized AgNPs exhibited antibacterial properties against various microorganisms. Conclusion: A sustainable and eco-friendly method for synthesizing AgNPs using Murraya koenigii extract was successfully developed. This method not only detected mercury but also demonstrated antibacterial properties against various microorganisms. The study underscores the health implications of nonessential heavy metals, emphasizing the importance of eco-friendly detection and mitigation methods.

6.
Cureus ; 16(2): e53679, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38455815

ABSTRACT

Background The curry leaf tree, Murraya koenigii, is a tropical to subtropical tree in the family Rutaceae that is native to Asia. The plant parts are shown to have potential antimicrobial, antioxidant, antifungal, antidiarrheal, antidiabetic, anticancer, and anti-inflammatory properties. Streptococcus mutans is a facultative anaerobic, Gram-positive cocci, a common inhabitant of the human oral cavity that forms biofilms, contributing to dental caries. Aim The study aimed to analyze the inhibitory potential of phytocompounds in M. koenigii against the oral pathogen S. mutans. Materials and methods The protein and ligand were prepared, and molecular docking was carried out using the Hex protein docking server. The PyMOL program was used to view, analyze, and annotate the docked complex. The interaction of the drug, including the mechanism of action, and predicted adverse effects were predicted using the Way2Drug PASS Online server. The absorption, distribution, metabolism, excretion, and toxicity properties of the drug candidates were analyzed using the SwissADME online server. Results The study identified O-methyl murrayamine, koenigine, koenigicine, and murrayone as having inhibitory potential against the glycosyltransferase protein of S. mutans. Among the four compounds analyzed for docking, koenigicine had the lowest E-score, indicating a strong interaction with the receptor. Among the four compounds analyzed, murrayone had a high topological polar surface area score, while all four compounds had similar bioavailability scores. Conclusion This study concluded that O-methyl murrayamine, koenigine, koenigicine, and murrayone exhibit potent inhibitory potential against S. mutans. M. koenigiileaf extract can be used in toothpaste as an antibacterial agent to protect teeth against dental caries. These findings are important for the potential use of the above compound to act as an anticariogenic agent in oral health applications.

7.
Nanotechnology ; 35(26)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38513271

ABSTRACT

The removal of pollutants from water bodies is crucial for the well-being of humanity and is a topic of global research. Researchers have turned their attention to green synthesized nanoparticles for wastewater treatment due to their eco-friendly nature, biocompatibility, and cost-effectiveness. This work demonstrates the efficient removal of organic dye and both gram-positive and gram-negative bacteria from water bodies using copper-doped cerium oxide nanoparticles synthesized withMurraya Koenigiiextract. Characterized via various methods, the 15% copper doped cerium oxide nanoparticles (Cu 15% NPs) exhibited maximum Congo red dye adsorption (98% degradation in 35 min). Kinetic analysis favoured a pseudo-second-order model, indicating the chemical nature of adsorption. Equilibrium adsorption isotherms aligned with the Langmuir model, indicating homogenous monolayer dye adsorption on the doped adsorbent. The maximum uptake of adsorbate,Qmobtained from Langmuir model for Cu 15% NPs was 193 mg g-1. The study also showed enhanced antibacterial activity againstBacillus subtilis, Staphylococcus aureus, Escherichia coliandPseudomonas aeruginosafor Cu-doped ceria, attributed to generation of reactive oxygen species (ROS) induced by the redox cycling between Ce3+and Ce4+. This substantiated that the green synthesized copper doped cerium oxide nanoparticles are potential candidates for adsorptive removal of Congo red dye and as antibacterial agents.


Subject(s)
Cerium , Metal Nanoparticles , Water Pollutants, Chemical , Congo Red , Copper/chemistry , Adsorption , Kinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Metal Nanoparticles/chemistry , Water/chemistry , Hydrogen-Ion Concentration
8.
Insects ; 15(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38392503

ABSTRACT

The reproductive success of flowering plants relates to flower-visitor communities and plant-pollinator interactions. These traits are species- and region-specific and vary across regions, pollinator groups, and plant species. However, little literature exists on the spatiotemporal variation in visitor activity, especially in India. Here, we aimed to depict the spatial and temporal variation in visitor activity on the curry plants (Bergera koenigii). Data were collected at different daytime slots from three vegetation zones (confirmed by field surveys and normalized difference vegetation index values in remote sensing)-dense, medium-density, and low-density vegetation in West Bengal, India. The visitors' richness, diversity, and abundance were higher in the area with dense vegetation. Considering daytime patterns, higher values for these parameters were obtained during 10.00-14.00 h. For most visitors, the flower handling time was shorter, and the visitation rate was higher in dense vegetation areas (at 10.00-14.00 h) than in medium- and low-density vegetation areas. The proportions of different foraging categories varied over time. Vital pollinators were Apis cerana, Apis dorsata, Appias libythea, Halictus acrocephalus, Nomia iridescens, and Tetragonula iridipennis. However, the effectiveness of pollinators remained region-specific. Therefore, it can be concluded that floral visitors' richness, diversity, abundance, and plant-visitor interactions varied spatially with their surrounding vegetation types and also changed daytime-wise.

9.
J Cosmet Dermatol ; 23(3): 1036-1044, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37997524

ABSTRACT

BACKGROUND: The process by which functional elastic fibers are produced, namely elastogenesis, is complex and difficult to assess in vitro. Identifying efficient elasticity-boosting ingredients thus represents a challenge. AIMS: The elasticity-boosting properties of a novel extract of Murraya koenigii leafy stems were assessed in vitro in 3D culture models before being evaluated in human female volunteers. METHODS: Synthesis of elastic fiber related proteins was evaluated in a skin-equivalent model. Using multiphoton microscopy, the structural organization of elastin deposits was studied within a scaffold-free dermal microtissue. Biomechanical properties of the 3D microtissue were also measured by atomic force microscopy. In vivo, fringe-projection and image analysis were used to evaluate nasogenian fold severity in a panel of Caucasian female volunteers. The impact of gravity on visible signs of facial aging was assessed by clinical scoring carried out alternatively in the supine and sitting positions. RESULTS: We showed the Murraya koenigii extract increased protein expressions of elastin and fibrillin-1 in a 3D skin equivalent model. Using scaffold-free dermal microtissue, we confirmed that Murraya koenigii extract allowed a proper and ordered network of elastin deposits and consequently improved tissue elasticity. Clinical data showed that a twice-daily application for 98 days of the extract formulated at 1% allowed to visibly reduce nasogenian fold severity, jowl severity and to mitigate the impact of gravity on the facial signs of aging. CONCLUSION: The newly discovered extract of Murraya koenigii leafy stems represents an innovative antiaging ingredient suited for elasticity-boosting and antisagging claims.


Subject(s)
Murraya , Plant Extracts , Humans , Female , Plant Extracts/pharmacology , Murraya/chemistry , Skin , Elastin
10.
Heliyon ; 9(7): e17832, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449114

ABSTRACT

The germplasms of the Murraya koenigii were collected from Rajahmundry, Annur, Kollihills, Suvashini, Bhavanisagar, Karamadai (KMM5, KMM6, KMM7, KMM8 and KMM14) and the Kerala Agricultural University (KAU). The fresh leaves were analyzed for its volatile organic compounds by Thermal Desorption Gas chromatography-Mass Spectroscopy (TD-GC-MS) to obtain germplasm specific volatile fingerprinting. The correlation between genotypes based on volatile profiles has been analyzed using principal component analysis (PCA) and hierarchical cluster analysis (HCA). A wide variety of volatile compounds identified in the eleven M. koenigii genotypes belongs to terpenoids, monoterpenes, sesquiterpenes, aldehyde, ketones, benzenes, azulenes and other minor compounds. The α-pinene and ß-pinene content is high in Suvashini and Bhavanisagar (BSR) genotypes respectively. The monoterpenes such as γ-terpinene, α-myrcene and terpinolene are high in Karamadai variety (KMMK8), whereas caryophyllene content is high in the Rajahmundry. The results of PCA revealed that significant variances with 45.47% (PC 1) and 21.40% (PC 2). In AHC, the α-pinene and chloral hydrate forms the one major cluster. Additionally, α-fenchene and α-caryophyllene has observed forming second major cluster with significant magnitude. The cluster formed by sesquiterpenes are observed high in Annur (65.34%), followed by KMMK8 (48.01%), Kollihills (39.89%) and Rajahmundry (39.27%). The PCA and AHC combined with the fingerprint of TD-GC-MS have discriminated qualitative volatile profile and indicated that major changes VOCs emitted are highly attributed to the genetic factors.

11.
Nat Prod Res ; : 1-5, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37516925

ABSTRACT

GC/MS analysis of Murraya koenigii (L.) Spreng. and Murraya paniculata (L.) Jacq. leaves revealed the identification of 73 components, with an evident greater contribution of monoterpenes hydrocarbons to their total volatiles. α-Pinene (37.5%) and ß-caryophyllene (27.4%) were the most abundant compounds in M. koenigii leaves and ß-phellandrene (40.7%) in M. paniculata leaves, using headspace. ß-Phellandrene (33.7%) was the major constituent by M. koenigii leaves where germacrene D (23.8%), and δ-elemene (22.0%) were predominant in M. paniculata leaves, using steam distillation. M. koenigii leaves oil showed quite remarkable cholinesterase inhibitory activity, where oil of M. paniculata leaves showed strong inhibitory activity against AChE (IC50=13.2 ± 0.9 µg/mL) and BChE (IC50=5.1 ± 0.3 µg/mL). Germacrene D, α-zingiberene, and δ-elemene showed higher affinity to BChE than AChE as revealed from docking scores (S = -5.65 to -6.03 Kcal/mol) for BChE and (S = -5.56 to -6.25 Kcal/mol) for AChE.

12.
J Pharm Sci ; 112(9): 2538-2551, 2023 09.
Article in English | MEDLINE | ID: mdl-37399889

ABSTRACT

Encapsulation of polyphenol-rich herbal extracts into nanoliposomes is a promising strategy for the development of novel therapeutic agents against type 2 diabetes mellitus. An attempt was made to encapsulate aqueous, ethanol, and aqueous ethanol (70% v/v) extracts of Senna auriculata (L.) Roxb., Murraya koenigii (L.) Spreng,. and Coccinia grandis (L.) Voigt into nanoliposomes and to screen acute bioactivities in vitro and in vivo. A wide spectrum of bioactivity was observed of which aqueous extracts encapsulated nanoliposomes of all three plants showed high bioactivity in terms of in vivo glucose-lowering activity in high-fat diet-fed streptozotocin induced Wistar rats, compared to respective free extracts. The particle size, polydispersity index, and zeta potential of the aforementioned nanoliposomes ranged from 179-494 nm, 0.362-0.483, and (-22) to (-17) mV, respectively. The atomic force microscopy (AFM) imaging reflected that the nanoparticles have desired morphological characteristics and Fourier-transform infrared (FTIR) spectroscopy analysis revealed successful encapsulation of plant extracts into nanoparticles. However, only the S. auriculata aqueous extract encapsulated nanoliposome, despite the slow release (9% by 30 hours), showed significant (p < 0.05) in vitro α-glucosidase inhibitory activity and in vivo glucose-lowering activity compared to free extract, proving worthy for future investigations.


Subject(s)
Diabetes Mellitus, Type 2 , Plant Extracts , Rats , Animals , Rats, Wistar , Plant Extracts/pharmacology , Glucose , Diabetes Mellitus, Type 2/drug therapy , Plant Leaves/chemistry , Ethanol
13.
Nat Prod Res ; : 1-9, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37322993

ABSTRACT

Murraya koenigii leaves are widely used as a spice and also have several biological activities. The major active constituents are carbazole alkaloids. Quantitation by HPLC or HPTLC requires pure marker compounds, whereas nuclear magnetic resonance spectroscopy can be used as a quantitative technique without the requirement of a pure marker compound. An alkaloid-rich fraction was prepared from the leaves and a validated qNMR method was developed for the quantitation of nine carbazole alkaloids, namely mahanimbine, girinimbine, koenimbine, koenine, kurrayam, mukonicine, isomahanimbine, euchristine B and bismahanine. One of the major compounds, koenimbine, was isolated and quantified by HPTLC to compare the results. The results obtained by qNMR were compared with the reported yields of these compounds.

14.
Chem Biodivers ; 20(7): e202300483, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37269458

ABSTRACT

The medicinal aspects of Murraya koenigii (L.) Spreng. It also provides the latest updated information on pharmacological and plant patents on phytoconstituents. The information was collected from various sources, including literature surveys, textbooks, databases, and internet sources like Scopus, Science Direct, Pubmed, Springer, Google Scholar, Taylor and Francis. The plant, Murraya koenigii (L.) Spreng is an extensive valuable, and important medicinal plant in the Indian System of Medicine. The plant proved to show various ethnomedicinal uses mentioned in the literature and even possessed various pharmacological activities. Different bioactive metabolites exhibit several biological activities. However, the biological efficacies of various other chemical constituents are yet to be clarified and proved concerning the molecular mechanisms.


Subject(s)
Murraya , Plants, Medicinal , Murraya/chemistry , India , Plant Extracts/chemistry
15.
J Med Life ; 16(2): 307-316, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36937470

ABSTRACT

Food supplements are used to improve cognitive functions in age-related dementia. This study was designed to determine the Murraya koenigii leaves' effect on Alloxan-induced cognitive impairment in diabetic rats and the contents of oxidative stress biomarkers, catalase, reduced glutathione, and glutathione reductase in brain tissue homogenates. Wistar rats were divided into seven groups (six rats per group). Group I received saline water (1 ml, p.o.), Diabetes was induced in Groups II-VII with Alloxan (120 mg/kg/p.o). Group III was provided with Donepezil HCl (2.5 mg/kg/p.o.), Group IV, V, VI, and VII with Murraya koenigii ethanol extract (200 and 400 mg/kg/p.o.) and aqueous extract (200 and 400 mg/kg/p.o.), respectively, for 30 days. Behavior, acetylcholinesterase (AChE) activity, oxidative stress status, and histopathological features were determined in the hippocampus and cerebral cortex. Administration of Murraya koenigii ethanolic and aqueous extracts significantly (P<0.05, P<0.001) increased the number of holes crossed by rats from one chamber to another. There was an increase in the (1) latency to reach the solid platform, (2) number of squares traveled by rats on the 30th day, and (3) percentage of spontaneous alternation behavior compared to the control group. Administration for successive days markedly decreased AChE activity (P<0.05), decreased TBARS level, and increased catalase, GSH, and GR levels. Murayya koenigii could be a promising food supplement for people with dementia. However, more research into sub-chronic toxicity and pharmacokinetic and pharmacodynamics interactions is essential.


Subject(s)
Diabetes Mellitus, Experimental , Murraya , Rats , Animals , Rats, Wistar , Catalase , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Acetylcholinesterase , Alloxan , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Aging
16.
Luminescence ; 38(7): 1139-1148, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35362206

ABSTRACT

Nanotechnology is an emerging field with tremendous potential and usage of medicinal plants and green preparation of nanoparticles (NPs) is one of the widely explored areas. These have been shown to be effective against different biological activities such as diabetes mellitus, cancer, antioxidant, antimicrobial, etc. The current studies focus on the green synthesis of zinc NPs (ZnO NPs) from aqueous leaf extract of Murraya koenigii (MK). The synthesized Murraya koeingii zinc oxide NPs (MK ZnO NPs) were characterized using UV-visible spectroscopy, dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive spectrum (EDS) and cyclic voltammetry (CV). The synthesized MK ZnO NPs were evaluated for their in vitro antidiabetic, antioxidant, antimicrobial, and cytotoxic activity. They demonstrated significant antidiabetic and cytotoxic activity, as well as moderate free-radical scavenging and antibacterial activity.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Murraya , Nanoparticles , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Antioxidants/pharmacology , Hypoglycemic Agents/pharmacology , Metal Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Plant Extracts/pharmacology , Plant Extracts/chemistry , Microbial Sensitivity Tests
17.
Appl Biochem Biotechnol ; 195(1): 573-596, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36107386

ABSTRACT

Despite COVID-19 vaccination, immune escape of new SARS-CoV-2 variants has created an urgent priority to identify additional antiviral drugs. Targeting main protease (Mpro) expressed by SARS-CoV-2 is a therapeutic strategy for drug development due to its prominent role in viral replication cycle. Leaves of Murraya koenigii are used in various traditional medicinal applications and this plant is known as a rich source of carbazole alkaloids. Thus, this computational study was designed to investigate the inhibitory potential of carbazole alkaloids from Murraya koenigii against Mpro. Molecular docking was initially used to determine the binding affinity and molecular interactions of carbazole alkaloids and the reference inhibitor (3WL) in the active site of SARS-CoV-2 Mpro (PDB ID: 6M2N).The top scoring compounds were further assessed for protein structure flexibility, physicochemical properties and drug-likeness, pharmacokinetic and toxicity (ADME/T) properties, antiviral activity, and pharmacophore modeling. Five carbazole alkaloids (koenigicine, mukonicine, o-methylmurrayamine A, koenine, and girinimbine) displayed a unique binding mechanism that shielded the catalytic dyad of Mpro with stronger binding affinities and molecular interactions than 3WL. Furthermore, the compounds with high affinity displayed favorable physicochemical and ADME/T properties that satisfied the criteria for oral bioavailability and druggability. The pharmacophore modeling study shows shared pharmacophoric features of those compounds for their biological interaction with Mpro. During the molecular dynamics simulation, the top docking complexes demonstrated precise stability except koenigicine. Therefore, mukonicine, o-methylmurrayamine A, koenine, and girinimbine may have the potential to restrict SARS-CoV-2 replication by inactivating the Mpro catalytic activity.


Subject(s)
Alkaloids , COVID-19 , Murraya , Humans , SARS-CoV-2 , Murraya/chemistry , Molecular Docking Simulation , COVID-19 Vaccines , Alkaloids/pharmacology , Alkaloids/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Molecular Dynamics Simulation , Carbazoles/pharmacology , Carbazoles/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry
18.
Drug Dev Ind Pharm ; 48(10): 566-574, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36282122

ABSTRACT

Murraya koenigii (Mk) is an old plant with a significant therapeutic value throughout Africa, Asia, and Latin America. The excessive use of cisplatin (Cis> 50 mg/m2) is associated with nephrotoxicity, ototoxicity, gastrotoxicity, myelosuppression, and allergic reactions. Remedial measures are needed for the protection of nephrotoxicity against cisplatin. Thus, we have investigated Mk leaf extract's nephroprotective effects to prevent cisplatin-induced nephrotoxicity in Wistar albino rats. The presence of polyphenols, phenolic compounds, tannins, and saponins was revealed during phytochemical investigation, and antioxidant activity was recorded. There were no toxicological symptoms in the treated rats, and no anatomical, physiological, or histological abnormalities were found compared to the control rats. The results of correcting cisplatin-induced nephrotoxicity revealed that the extract has a significant ability to treat kidney damage, with most parameters returning to normal after only three weeks of therapy. It was concluded that co-administered cisplatin with Mk leaves extract showed exceptional nephroprotective effects at a 400 mg/kg dose ratein Cis-induced nephrotoxicity.


Subject(s)
Murraya , Animals , Rats , Murraya/chemistry , Antioxidants/pharmacology , Cisplatin/adverse effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats, Wistar , Plant Leaves
19.
Front Plant Sci ; 13: 963150, 2022.
Article in English | MEDLINE | ID: mdl-36092393

ABSTRACT

The study was undertaken to characterize the total phenolics, flavonoids, essential oils, quinones, tannins and antioxidant activity of 15 samples of wild Murraya koenigii (L.) Spreng. (MK) leaves obtained from different locations of Himachal Pradesh at various growth stages. The results indicated a significant variation in total phenolic content which ranged from [(170.09 ± 4.59 to 303.57 ± 7.94) in pre-flowering, (266.48 ± 7.49 to 450.01 ± 11.78) in the flowering stage, and (212.72 ± 5.37 to 363.85 ± 9.79) in fruiting stage], expressed as mg tannic acid equivalents (TAE)/g. The total flavonoid content ranged from [(15.17 ± 0.36 to 33.40 ± 0.81) in pre-flowering, (25.16 ± 0.67 to 58.17 ± 1.52) in flowering stage, and (17.54 ± 0.42 to 37.34 ± 0.97) in fruiting stage], expressed as mg catechin equivalent (CE)/g. Total tannin content ranged from [(75.75 ± 1.69 to 143 ± 3.74) in pre-flowering, (116 ± 3.26 to 207 ± 5.42) in the flowering stage, and (47 ± 1.18 to 156 ± 4.05) in fruiting stage], expressed as mg TAE/g. The essential oil content ranged from (0.64 ± 0.01 to 0.89 ± 0.02%) in pre-flowering, (0.85 ± 0.02 to 1 ± 0.02%) in flowering stage, and (0.54 ± 0.01 to 0.7 ± 0.01%) in fruiting stage. Quinones ranged from [(2.05 ± 0.05 to 2.97 ± 0.07) in pre-flowering, (3.07 ± 0.07 to 4.95 ± 0.13) in flowering stage, and (1.02 ± 0.02 to 1.96 ± 0.04) in fruiting stage], expressed as mM/min/g tissue. Antioxidant activity ranged from [(4.01 ± 0.09 to 7.42 ± 0.17) in pre-flowering, (8.08 ± 0.19 to 13.60 ± 0.35) in flowering stage, and (3.11 ± 0.06 to 6.37 ± 0.15) in fruiting stage], expressed as µg/ml. Data was subjected to multivariate analysis using principal component analysis (PCA), hierarchical clustering analysis (HCA). This was used for elucidating the intricate relationships between the phytochemical properties. All evaluated phytochemical parameters significantly increased during the growth transition from pre-flowering to the flowering stage, followed by their gradual decrease during the fruiting stage. The present study can serve as rationale for commercializing MK for aromatic and phytopharmaceutical industries.

20.
Front Plant Sci ; 13: 899624, 2022.
Article in English | MEDLINE | ID: mdl-35685021

ABSTRACT

The curry leaf tree, Bergera koenigii, is highly attractive to the Asian citrus psyllid, Diaphorina citri, which vectors the bacterial causative agent of citrus greening or huanglongbing disease. This disease has decimated citrus production in Florida and in other citrus-producing countries. As D. citri exhibits high affinity for feeding on young leaves of B. koenigii, transgenic B. koenigii expressing bacteria-derived pesticidal proteins such as Cry1Ba1 have potential for D. citri management when planted in or adjacent to citrus groves. Importantly, the plant pathogenic bacterium that causes citrus greening does not replicate in B. koenigii. Transgenic plants of B. koenigii were produced by insertion of the gene encoding the active core of the pesticidal protein Cry1Ba1 derived from Bacillus thuringiensis. The transformation success rate was low relative to that of other citrus, at 0.89%. T-DNA integration into the genome and cry1ba1 transcription in transgenic plants were confirmed. Transgenic plants expressing Cry1Ba1 differed from wild-type plants, differed in photosynthesis parameters and hormone levels in some instances, and a marked delay in wilting of detached leaves. The gut epithelium of D. citri fed on transgenic plants was severely damaged, consistent with Cry1Ba1-mediated pore formation, confirming expression of the pesticidal protein by transgenic B. koenigii. These results demonstrate that transgenic B. koenigii expressing bacteria-derived pesticidal proteins can be produced for potential use as trap plants for suppression of D. citri populations toward protection of citrus groves from citrus greening.

SELECTION OF CITATIONS
SEARCH DETAIL
...