Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Cell Biochem ; : e30614, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884354

ABSTRACT

Currently, the clinical outcomes of peripheral nerve injuries are suboptimal, highlighting the urgent need to understand the mechanisms of nerve injury to enhance treatment strategies. Muscle-derived stem cells (MDSCs) are a diverse group of multipotent cells that hold promise for peripheral nerve regeneration due to their strong antioxidant and regenerative properties. Our research has revealed that severe ferroptosis occurs in the sciatic nerve and ipsilateral dorsal root ganglion following sciatic nerve injury. Interestingly, we have observed that MDSC-derived exosomes effectively suppress cell ferroptosis and enhance cell viability in Schwann cells and dorsal root ganglion cells. Treatment with exosomes led to increased expression of BDNF and P62 in Schwann cells, decreased expression of Keap1, Nrf2, and HO-1 in Schwann cells, and upregulated dorsal root ganglion cells. Rats treated with exosomes exhibited improvements in sciatic nerve function, sensitivity to stimuli, and reduced muscle atrophy, indicating a positive impact on post-injury recovery. In conclusion, our findings demonstrate the occurrence of ferroptosis in the sciatic nerve and dorsal root ganglion post-injury, with MDSC exosomes offering a potential therapeutic strategy by inhibiting ferroptosis, activating the Keap1-Nrf2-HO-1 pathway, and optimizing the post-injury repair environment.

2.
Life (Basel) ; 14(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38541613

ABSTRACT

Segmental bone defects that are caused by trauma, infection, tumor resection, or osteoporotic fractures present significant surgical treatment challenges. Host bone autograft is considered the gold standard for restoring function but comes with the cost of harvest site comorbidity. Allograft bone is a secondary option but has its own limitations in the incorporation with the host bone as well as its cost. Therefore, developing new bone tissue engineering strategies to treat bone defects is critically needed. In the past three decades, the use of stem cells that are delivered with different scaffolds or growth factors for bone tissue engineering has made tremendous progress. Many varieties of stem cells have been isolated from different tissues for use in bone tissue engineering. This review summarizes the progress in using different postnatal stem cells, including bone marrow mesenchymal stem cells, muscle-derived stem cells, adipose-derived stem cells, dental pulp stem cells/periodontal ligament stem cells, periosteum stem cells, umbilical cord-derived stem cells, peripheral blood stem cells, urine-derived stem cells, stem cells from apical papilla, and induced pluripotent stem cells, for bone tissue engineering and repair. This review also summarizes the progress using exosomes or extracellular vesicles that are delivered with various scaffolds for bone repair. The advantages and disadvantages of each type of stem cell are also discussed and explained in detail. It is hoped that in the future, these preclinical results will translate into new regenerative therapies for bone defect repair.

3.
Adv Healthc Mater ; 13(5): e2300612, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37931903

ABSTRACT

As a common cause of shoulder pain, rotator cuff tears (RCTs) are difficult to treat clinically because of their unsatisfactory prognosis due to the fatty infiltration caused by muscle-derived stem cells (MDSCs). Previous studies have found that rapamycin (RAPA) can inhibit fatty infiltration. However, systemic administration of RAPA may cause complications such as infection and nausea, while local administration of RAPA may lead to the cytotoxicity of tendon cells, affecting the healing of rotator cuffs. In this study, biocompatible and clinically approved polycaprolactone-polyethylene glycol (PCL-PEG) is formulated into an injectable nanoparticle for the sustained release of RAPA. The results indicate that the RAPA/PCL-PEG nanoparticles (NPs) can efficiently prolong the release of RAPA and significantly reduce the cytotoxicity of tendon cells caused by RAPA. The study of the fatty infiltration model in rats with delayed rotator cuff repair shows that weekly intraarticular injection of RAPA/PCL-PEG NPs can more effectively reduce the fatty infiltration and muscle atrophy of rat rotator cuffs and leads to better mechanical properties and gait improvements than a daily intraarticular injection of RAPA. These findings imply that local injection of RAPA/PCL-PEG NPs in the shoulder joints can be a potential clinical option for RCTs patients with fatty infiltration.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Rotator Cuff Injuries , Humans , Rats , Animals , Rotator Cuff Injuries/drug therapy , Rotator Cuff Injuries/complications , Rotator Cuff Injuries/pathology , Rotator Cuff/pathology , Tendons , Muscular Atrophy/complications , Muscular Atrophy/pathology , Drug-Related Side Effects and Adverse Reactions/complications , Drug-Related Side Effects and Adverse Reactions/pathology , Magnetic Resonance Imaging
4.
Cells Dev ; 173: 203826, 2023 03.
Article in English | MEDLINE | ID: mdl-36739913

ABSTRACT

Decellularized skeletal muscle is a promising biomaterial for muscle regeneration due to the mimicking of the natural microenvironment. Previously, it has been reported that 5-Azacytidine (5-Aza), a DNA methyltransferase inhibitor, induces myogenesis in different types of stem cells. In the current study, we investigated the effect of 5-Aza incorporated muscle-derived hydrogel on the viability and proliferation of muscle-derived stem cells (MDSCs) in vitro and muscle regeneration in vivo. Wistar rat skeletal muscles were decellularized using a physico-chemical protocol. The decellularized tissue was analyzed using SEM, histological staining and evaluation of DNA content. Then, muscle-derived hydrogel was made from Pepsin-digested decellularized muscle tissues. 5-Aza was physically adsorbed in prepared hydrogels. Then, MDSCs were cultured on hydrogels with/without 5-Aza, and their proliferation and cell viability were determined using LIVE/DEAD and DAPI staining. Moreover, myectomy lesions were done in rat femoris muscles, muscle-derived hydroges with/without 5-Aza were injected to the myectomy sites, and histological evaluation was performed after three weeks. The analysis of decellularized muscle tissues showed that they maintained extracellular matrix components of native muscles, while they lacked DNA. LIVE/DEAD and DAPI staining showed that the hydrogel containing 5-Aza supported MDSCs viability. Histological analysis of myectomy sites showed an improvement in muscle regeneration after administration of 5-Aza incorporated hydrogel. These findings suggest that the combination of 5-Aza with skeletal muscle hydrogel may serve as an alternative treatment option to improve the regeneration of injured muscle tissue.


Subject(s)
Azacitidine , Hydrogels , Rats , Animals , Hydrogels/pharmacology , Hydrogels/analysis , Hydrogels/chemistry , Azacitidine/pharmacology , Extracellular Matrix/chemistry , Rats, Wistar , Muscle, Skeletal/physiology , DNA
5.
Transpl Immunol ; 77: 101796, 2023 04.
Article in English | MEDLINE | ID: mdl-36764333

ABSTRACT

BACKGROUND: Muscle-derived stem cells (MDSCs) contribute to the repair of injured muscles. However, the myogenicity of MDSCs generated from patients with Duchenne muscular dystrophy (DMD) relative to healthy individuals remains unclear. METHODS: A human DMD model was established using the stem cells prepared from muscle derived from patients with DMD (DMD-hMDSCs). The expression of myogenic lineage-specific markers in MDSCs was examined with immunofluorescence, real-time polymerase chain reaction, and western blotting. RESULTS: It was demonstrated that, compared with cells from healthy subjects, DMD-hMDSCs are primed to self-differentiate in growth-inducing medium (GM) and robustly differentiate into myotubes in differentiation-inducing medium(DM). This feature was termed "myogenesis activation," and it was speculated that it contributes to the depletion of myogenic progenitors. Furthermore, MDSCs consistently express pax7, but the time-course of this expression does not correlate with the expression of the myogenic lineage-specific markers. CONCLUSIONS: The myogenesis activation in DMD-hMDSCs demonstrated in this study may provide novel mechanistic insights into DMD pathogenesis and potential therapies.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/therapy , Stem Cells , Cell Differentiation , Muscles/metabolism , Muscles/pathology , Muscle Development
6.
Curr Stem Cell Res Ther ; 18(1): 17-26, 2023.
Article in English | MEDLINE | ID: mdl-35249506

ABSTRACT

Stress urinary incontinence (SUI) is a common urinary system disease worldwide. Nowadays, medical therapy and surgery can control the symptoms and improve the life quality of patients. However, they might also bring about complications as the standard therapy fails to address the underlying problem of urethral sphincter dysfunction. Recent advances in cell technology have aroused interest in the use of autologous stem cell therapy to restore the ability of urinary control. The present study reviewed several types of stem cells for the treatment of SUI in the experimental and clinical stages.


Subject(s)
Urinary Incontinence, Stress , Humans , Urinary Incontinence, Stress/therapy , Quality of Life , Stem Cells , Urethra
7.
Stem Cell Res Ther ; 13(1): 385, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35907860

ABSTRACT

BACKGROUND: Bone morphogenetic protein 4 (BMP4) promotes the osteogenic differentiation and the bone regenerative potential of muscle-derived stem cells (MDSCs). BMP4 also promotes the self-renewal of both embryonic and somatic stem cells; however, BMP4 signaling activity significantly decreases with age. Cyclin-dependent kinase inhibitors P16INK4A (P16) and P18INK4C (P18) induce early G1-phase cell cycle blockade by targeting cyclin-dependent kinase 4/6. It is still unclear if BMP4 affects the bone regenerative potential of old MDSCs through regulation of P16 and P18 expression. METHODS: Young and old MDSCs were isolated from 3 week (young) and 2-year-old (old) mice. In vitro cell proliferation and multipotent differentiation were performed for young and old MDSCs both before and after BMP4/GFP transduction. Cell cycle genes were analyzed using Q-PCR. The bone regenerative potential of young and old MDSCs transduced with BMP4/GFP were compared using Micro-CT and histological analysis. The bone regenerative potential of young and old MDSCs was also compared between single and double transduction (higher BMP4 levels expression). The cell proliferation, mitochondrial function and osteogenic differentiation was also compared in vitro between cells that have been transduced with BMP4GFP (single and double transduction). The correlation of bone regeneration capacity of young and old MDSCs with P16 and P18 expression was further evaluated at 10 days after cell transplantation using histology and western blot analysis. RESULTS: Old murine MDSCs (MDSCs) exhibit reduced proliferation and multi-lineage differentiation potential with or without BMP4 stimulation, when compared to young murine MDSCs. Old MDSCs express significantly higher P16 and lower P18, with more cells in the G0/1 phase and fewer cells in the G2/M phase, compared to young MDSCs. Old MDSCs retrovirally transduced to express BMP4 regenerated less bone in a critical size skull defect in CD-1 nude mice when compared to young retrovirally transduced MDSCs expressing similar BMP4 levels and contribute less to the new regenerated new bone. Importantly, both young and old MDSCs can regenerate more bone when BMP4 expression levels are increased by double-transduction with the retroviral-BMP4/GFP. However, the bone regeneration enhancement with elevated BMP4 was more profound in old MDSCs (400% at 2 weeks) compared to young MDSCs (200%). Accordingly, P18 is upregulated while P16 is downregulated after BMP4 transduction. Double transduction did not further increase cell proliferation nor mitochondrial function but did significantly increase Osx expression in both young and old MDSCs. Old MDSCs had even significant higher Osx levels as compared to young MDSCs following double transduction, while a similar Alp expression was observed between young and old MDSCs after double transduction. In addition, at 10 days after cell transplantation, old MDSCs having undergone double transduction regenerated bone more rapidly as showed by Alcian blue and Von Kossa staining. Western blot assays demonstrated that old MDSCs after retro-BMP4/GFP double transduction have significantly lower P18 expression levels when compared to young BMP4-transduced MDSCs. In addition, P18 expression was slightly increased in old MDSCs after double transduction when compared to single transduction. P16 expression was not detectable for both young and two old BMP4/GFP transduced MDSCs groups. CONCLUSIONS: In summary, BMP4 can offset the adverse effect of aging on the osteogenic differentiation and the bone regenerative potential of old MDSCs via up-regulation of P18 and down-regulation P16 expression.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Bone Regeneration , Osteogenesis , Animals , Bone Morphogenetic Protein 4/genetics , Bone Regeneration/genetics , Cell Cycle , Cell Differentiation , Cell Division , Mice , Mice, Nude , Muscles , Myoblasts , Osteogenesis/genetics
8.
Stem Cell Res Ther ; 13(1): 28, 2022 01 24.
Article in English | MEDLINE | ID: mdl-35073997

ABSTRACT

Sarcopenia is a common age-related skeletal muscle disorder featuring the loss of muscle mass and function. In regard to tissue repair in the human body, scientists always consider the use of stem cells. In skeletal muscle, satellite cells (SCs) are adult stem cells that maintain tissue homeostasis and repair damaged regions after injury to preserve skeletal muscle integrity. Muscle-derived stem cells (MDSCs) and SCs are the two most commonly studied stem cell populations from skeletal muscle. To date, considerable progress has been achieved in understanding the complex associations between stem cells in muscle and the occurrence and treatment of sarcopenia. In this review, we first give brief introductions to sarcopenia, SCs and MDSCs. Then, we attempt to untangle the differences and connections between these two types of stem cells and further elaborate on the interactions between sarcopenia and stem cells. Finally, our perspectives on the possible application of stem cells for the treatment of sarcopenia in future are presented. Several studies emerging in recent years have shown that changes in the number and function of stem cells can trigger sarcopenia, which in turn leads to adverse influences on stem cells because of the altered internal environment in muscle. A better understanding of the role of stem cells in muscle, especially SCs and MDSCs, in sarcopenia will facilitate the realization of novel therapy approaches based on stem cells to combat sarcopenia.


Subject(s)
Sarcopenia , Satellite Cells, Skeletal Muscle , Aging/physiology , Humans , Muscle, Skeletal/metabolism , Sarcopenia/metabolism , Sarcopenia/pathology , Sarcopenia/therapy , Satellite Cells, Skeletal Muscle/metabolism , Stem Cells/metabolism
9.
J Stem Cells Regen Med ; 18(2): 43-51, 2022.
Article in English | MEDLINE | ID: mdl-36713798

ABSTRACT

Objective: In this study, we analyzed the therapeutic effect of periurethral injection of autologous muscle-derived stem cell versus mid-urethral sling surgery at a 1-year follow-up. Method: This randomized controlled clinical trial was conducted on 30 women with stress urinary incontinence (SUI) who had not responded to conservative treatments, after registering the participants and obtaining informed consent. Patients were divided into two groups of 15 each treated with periurethral injection of muscle-derived stem cells (MDSCs) and mid-urethral sling surgery, respectively. Follow-ups were done at 1, 3, 6, and 12 months after the treatment using the International Consultation on Incontinence Questionnaire-Urinary Incontinence Short Form (ICIQ-UISF) and Incontinence Quality of Life Questionnaire (I-QOL) questionnaires, clinical examination, cough test, and 1-hour pad test. The results were analyzed within the groups and then compared between the two groups. Moreover, both groups were compared in terms of postoperative complications. Results: At the 1-year follow-up, in the stem cell group, 10 patients (66.6%) experienced improvements after the periurethral injection of stem cells; half of these patients (33.3%) reported a full recovery. In the mid-urethral sling group, 13 patients (93.3%) experienced improvement, and 12 patients (80%) reported a full recovery. The analysis of ICIQ-UISF and I-QOL questionnaires indicated that the responses in both groups were significant, but the response in the stem cell group was significantly lower compared with the standard surgery group. No considerable complications were observed in the two groups. Conclusion: Although the periurethral injection of MDSCs considerably improves the symptoms with minimum complications in women with SUI, its therapeutic response is significantly lower compared with mid-urethral sling surgery.

10.
Biomedicines ; 9(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34440188

ABSTRACT

Background. Fibrin sealant has been used as a scaffold to deliver genetically modified human muscle-derived stem cells (hMDSCs) for bone regeneration. Alternatively, autologous blood clots are safe, economic scaffolds. This study compared autologous blood clot (BC) with fibrin sealant (FS) as a scaffold to deliver lenti-BMP2/GFP-transduced hMDSCs for bone regeneration. Methods. In vitro osteogenic differentiation was performed using 3D pellet culture and evaluated using microCT and Von Kossa staining. The lenti-GFP transduced cells were then mixed with human blood for evaluation of osteogenic differentiation. Furthermore, a murine critical- sized calvarial defect model was utilized to compare BC and FS scaffolds for lenti-BMP2/GFP-transduced hMDSCs mediated bone regeneration and evaluated with micro-CT and histology. Results. Lenti-BMP2/GFP transduced hMDSCs formed significantly larger mineralized pellets than non-transduced hMDSCs. hMDSCs within the human blood clot migrated out and differentiated into ALP+ osteoblasts. In vivo, BC resulted in significantly less new bone formation within a critical-sized calvarial bone defect than FS scaffold, despite no difference observed for GFP+ donor cells, osteoclasts, and osteoblasts in the newly formed bone. Conclusions. Human lenti-BMP2/GFP-transduced hMDSCs can efficiently undergo osteogenic differentiation in vitro. Unexpectedly, the newly regenerated bone in BC group was significantly less than the FS group. The autologous blood clot scaffold is less efficacious for delivering stem cells for bone regeneration than fibrin sealant.

11.
Antioxidants (Basel) ; 10(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203726

ABSTRACT

The aim of the study was to modify human skeletal muscle-derived stem/progenitor cells (SkMDS/PCs) and demonstrate the optimal cell preparation protocol for application in post-infarction hearts. We used conditioned SkMDS/PC culture medium with α-phenyl-N-tert-butyl nitrone (PBN). SkMDS/PCs were cultured under hypoxic conditions and the results were compared to the standard ones. We observed a significant increase of CD-56 positive phenotypic marker the ability to form functional myotubes, increase in the proportion of young cells in cell primary suspensions, and a decrease in the percentage of apoptotic cells among PBN-conditioned cells in normoxia an hypoxia. We also observed significantly higher levels of SOD3 expression; maintained expression of SOD1, SOD2, and CAT; a higher level of BCL2 gene expression; and a rather significant decrease in Hsp70 gene expression in PBN-conditioned SkMDS/PCs compared to the WT population under hypoxic conditions. In addition, significant increase of myogenic genes expression was observed after PBN addition to culture medium, compared to WT population under hypoxia. Interestingly, PBN addition significantly increased the lengths of telomeres under hypoxia. Based on the data obtained, we can postulate that PBN conditioning of human SkMDS/PCs could be a promising step in improving myogenic cell preparation protocol for pro-regenerative treatment of post-infarction hearts.

12.
Aging (Albany NY) ; 13(10): 14399-14415, 2021 05 23.
Article in English | MEDLINE | ID: mdl-34031263

ABSTRACT

BACKGROUND: Cavernosa injury is a common cause of organic erectile dysfunction (ED), which requires safe and effective treatments. In the present study, the therapeutic efficiency of muscle-derived stem cells (MDSCs) modified with microRNA-126 (miR-126) was determined in rats with cavernosa injury. METHODS: MDSCs were transfected with miR-126 and then were transplanted into rats with cavernosa injury. Erectile function, vascular function (western blot and immunofluorescence), extraction, and detection of exosomes were then undertaken. RESULTS: On the 28th day after transplantation, the highest value of intra-cavernous pressure (ICP)/mean arterial pressure (MAP) in rats of miRNA-126 group (0.84 ± 0.14) was observed (Control: 0.38 ± 0.07; MDSC: 0.54 ± 0.11, Vector: 0.60 ± 0.02; respectively). Treatment of miRNA-126-modified-MDSCs remarkably strengthened vascular structure, supported by hematoxylin-eosin staining. The expression of CD31, von Willebrand Factor and vascular endothelial factors were higher than those in other groups, indicating improved vascular function. In vitro mechanism studies showed that exosomes containing miR-126 isolated from MDSCs promoted angiogenesis and attenuated apoptosis of human umbilical venous endothelial cells. Finally, insulin receptor substrate 1 and Krüppel-like factor 10 were determined as the direct target genes of miR-126. CONCLUSIONS: MiR-126 engineered MDSCs notably repaired cavernosa injury in rats via vascular reconstruction by directly targeting IRS1 and KLF10, in which the exosomes secreted by MDSCs played a critical role.


Subject(s)
Cell Engineering , Erectile Dysfunction/etiology , Erectile Dysfunction/therapy , MicroRNAs/metabolism , Muscles/pathology , Penis/injuries , Stem Cell Transplantation , Stem Cells/metabolism , Animals , Apoptosis , Base Sequence , DNA-Binding Proteins/metabolism , Erectile Dysfunction/genetics , Exosomes/metabolism , Exosomes/ultrastructure , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Insulin Receptor Substrate Proteins/metabolism , Male , Neovascularization, Physiologic , Penis/blood supply , Rats, Sprague-Dawley , Transcription Factors/metabolism
13.
Nanomaterials (Basel) ; 10(9)2020 Aug 22.
Article in English | MEDLINE | ID: mdl-32842628

ABSTRACT

The aim of the present work was to evaluate the responses of rat muscle-derived stem cells (rMDSCs) to growth on silica nanostructured substrates (SN) with nanoscale topographic surfaces. SN of different sizes (SN-60, SN-150, SN-300, SN-500, and SN-700) were prepared using silica nanoparticles with sizes of 60-700 nm. The prepared SN showed roughness at the nanoscale level. The total number of adherent cells on SN increased with increasing nanoscale level and incubation time. The rMDSCs attached to SN-500 and SN-700 were extensively flattened, whereas those grown on SN-60, SN-150, and SN-300 were more rounded. The rank order of the cell length and height of attached rMDSCs at 5 d on different surfaces was SN-60 ≈ SN-150 >> SN-300 > SN-500 > SN-700 > glass. Compared with rMDSCs grown on SN-60, SN-150, or SN-300, those attached to SN-500 and SN-700 exhibited a distinct morphology with filopodial extensions and stronger expression of focal adhesion, integrin, and actin. An evaluation of the gene expression of adhered rMDSCs showed that rMDSCs grown on SN-300 exhibited a higher environmental stress response than those grown on glass or SN-700. Collectively, our data provide fundamental insight into the cellular response and gene expression of rMDSCs grown on nanostructured substrates.

14.
Mol Ther Methods Clin Dev ; 18: 446-463, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32695846

ABSTRACT

Myocardial infarction is one of the leading causes of mortality and morbidity worldwide. Whereas transplantation of several cell types into the infarcted heart has produced promising preclinical results, clinical studies using analogous human cells have shown limited structural and functional benefits. In dogs and humans, we have described a type of muscle-derived stem cells termed MuStem cells that efficiently promoted repair of injured skeletal muscle. Enhanced survival rate, long-term engraftment, and participation in muscle fiber formation were reported, leading to persistent tissue remodeling and clinical benefits. With the consideration of these features that are restricted or absent in cells tested so far for myocardial infarction, we wanted to investigate the capacity of human MuStem cells to repair infarcted hearts. Their local administration in immunodeficient rats 1 week after induced infarction resulted in reduced fibrosis and increased angiogenesis 3 weeks post-transplantation. Importantly, foci of human fibers were detected in the infarct site. Treated rats also showed attenuated left-ventricle dilation and preservation of contractile function. Interestingly, no spontaneous arrhythmias were observed. Our findings support the potential of MuStem cells, which have already been proposed as therapeutic candidates for dystrophic patients, to treat myocardial infarction and position them as an attractive tool for muscle-regenerative medicine.

15.
Int J Mol Sci ; 21(14)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32708907

ABSTRACT

Human stem cell therapy for type 2 diabetes/obesity (T2D/O) complications is performedwith stem cell autografts, exposed to the noxious T2D/O milieu, often with suboptimal results.We showed in the Obese Zucker (OZ) rat model of T2D/O that when their muscle-derived stemcells (MDSC) were from long-term T2D/O male rats, their repair ecacy for erectile dysfunctionwas impaired and were imprinted with abnormal gene- and miR-global transcriptional signatures(GTS). The damage was reproduced in vitro by short-term exposure of normal MDSC to dyslipidemicserum, causing altered miR-GTS, fat infiltration, apoptosis, impaired scratch healing, and myostatinoverexpression. Similar in vitro alterations occurred with their normal counterparts (ZF4-SC) fromthe T2D/O rat model for female stress urinary incontinence, and with ZL4-SC from non-T2D/O leanfemale rats. In the current work we studied the in vitro eects of cholesterol and Na palmitate aslipid factors on ZF4-SC and ZL4-SC. A damage partially resembling the one caused by the femaledyslipidemic serum was found, but diering between both lipid factors, so that each one appears tocontribute specifically to the stem cell damaging eects of dyslipidemic serum in vitro and T2D/Oin vivo, irrespective of gender. These results also confirm the miR-GTS biomarker value forMDSC damage.


Subject(s)
Cholesterol/metabolism , Diabetes Mellitus, Type 2/pathology , Obesity/pathology , Palmitic Acid/metabolism , Stem Cells/pathology , Urinary Incontinence, Stress/pathology , Animals , Apoptosis , Cells, Cultured , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Female , Obesity/metabolism , Rats , Rats, Zucker , Stem Cells/metabolism , Urinary Incontinence, Stress/metabolism
16.
Stem Cell Res Ther ; 11(1): 76, 2020 02 21.
Article in English | MEDLINE | ID: mdl-32085799

ABSTRACT

BACKGROUND: The unmet medical needs in repairing large muscle defects promote the development of tissue regeneration strategy. The use of bioactive molecules in combination with biomaterial scaffold has become an area of great interest. SW033291, a small-molecule inhibitor targeting 15-hydroxyprostaglandin dehydrogenase (15-PDGH) and subsequently elevating the production of prostaglandin E2 (PGE2), has been proved to accelerate the recovery and potentiate the regeneration of multiple tissues including the bone, liver, and colon. The limited understanding of the potential therapeutic effects on myogenesis motivated us to investigate the role of SW033291 in regulating muscle-derived stem cell (MDSC) myogenic differentiation and MDSC-mediated muscle regeneration. METHODS: The characteristics of rat MDSCs, including cell-specific markers and myogenic differentiation potential, were determined. MDSCs were incubated with SW033291 to evaluate PGE2 production and cytotoxicity. The effects of SW033291 on MDSC myogenic differentiation were assessed by quantitative real-time polymerase chain reaction (qPCR), western blot, and immunocytochemistry. The fibrin gel containing MDSCs and SW033291 was used for muscle regeneration in a tibialis anterior muscle defect model. RESULTS: Our data demonstrated that MDSCs were well-tolerated to SW033291 and treatment with SW033291 significantly promoted the production of PGE2 by MDSCs. In vitro analysis showed that SW033291 enhanced the myogenic differentiation and myotube formation by upregulating a series of myogenic markers. Additionally, the activation of PI3K/Akt pathway was involved in the mechanism underlying these promotive effects. Then, in situ casting of fibrin gel containing MDSCs and SW033291 was used to repair the tibialis anterior muscle defect; the addition of SW033291 significantly promoted myofiber formation within the defect region with mild immune response, less fibrosis, and sufficient vascularization. CONCLUSION: SW033291 acted as a positive regulator of MDSC myogenic differentiation, and incorporating the compound with MDSCs in fibrin gel could serve as an effective method to repair large skeletal muscle defects.


Subject(s)
Muscle Development/drug effects , Muscle, Skeletal/drug effects , Pyridines/therapeutic use , Stem Cells/drug effects , Thiophenes/therapeutic use , Animals , Cell Differentiation , Female , Humans , Pyridines/pharmacology , Rats , Thiophenes/pharmacology
17.
Stem Cells Dev ; 29(6): 353-363, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31969085

ABSTRACT

Mesenchymal stem cells (MSCs) are useful for various purposes, including tissue engineering, regeneration, and gene therapy. MSCs isolated from extraocular muscles (EOMs) can be easily expanded in vitro, and can undergo multilineage differentiations involving adipogenesis, chondrogenesis, osteogenesis, and even neuronal or myogenic differentiation. This study aimed to isolate, characterize, and compare extraocular muscle-derived muscle progenitor cells (EOM-MPCs) from normal subjects and patients with Graves' orbitopathy (GO). EOM was obtained during strabismus surgery. Flow cytometry was conducted to identify CD surface antigens such as CD34, CD45, CD44, CD59, CD73, and CD90. We quantitated various cytokines secreted from MSCs, including interleukin (IL)-1α, IL-2, IL-6, IL-8, IL-10, IL-12, IL17A, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, using a multi-analysis enzyme-linked immunosorbent assay array kit. We performed Oil Red O staining for adipogenesis, Alzarin Red staining for osteogenesis, Alcian blue staining for chondrogenesis, and polymerase chain reaction to measure messenger RNA expression during myogenesis. Our results show that EOM-MPCs from normal subjects and GO patients had similar levels of surface antigen expression and cytokine secretion. There was also no significant difference in the multilineage differentiation of adipocytes, chondrocytes, osteocytes, and myoblasts from EOM-MPCs taken from normal subjects and GO patients. However, hyaluronic acid synthetase 2 expression was higher after induction with tafluprost in EOM-MPCs from GO patients when compared with normal subjects. Together, these results show that EOM-MPCs derived from normal subjects are a good source for stem cell-based therapy for various disorders.


Subject(s)
Adipogenesis/genetics , Chondrogenesis/genetics , Graves Ophthalmopathy/genetics , Muscle Development/genetics , Myoblasts/metabolism , Oculomotor Muscles/metabolism , Osteogenesis/genetics , Adult , Cell Differentiation/genetics , Cells, Cultured , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Female , Gene Expression , Graves Ophthalmopathy/pathology , Humans , Male , Middle Aged , Myogenin/genetics , Oculomotor Muscles/pathology , Osteocalcin/genetics , PPAR gamma/genetics
18.
Stem Cell Res Ther ; 10(1): 346, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31771623

ABSTRACT

BACKGROUND: Osteoarthritis and cartilage injury treatment is an unmet clinical need. Therefore, development of new approaches to treat these diseases is critically needed. Previous work in our laboratory has shown that murine muscle-derived stem cells (MDSCs) can efficiently repair articular cartilage in an osteochondral and osteoarthritis model. However, the cartilage repair capacity of human muscle-derived stem cells has not been studied which prompt this study. METHOD: In this study, we tested the in vitro chondrogenesis ability of six populations of human muscle-derived stem cells (hMDSCs), before and after lenti-BMP2/GFP transduction using pellet culture and evaluated chondrogenic differentiation of via histology and Raman spectroscopy. We further compared the in vivo articular cartilage repair of hMDSCs stimulated with BMP2 delivered through coacervate sustain release technology and lenti-viral gene therapy-mediated gene delivery in a monoiodoacetate (MIA)-induced osteoarthritis (OA) model. We used microCT and histology to evaluate the cartilage repair. RESULTS: We observed that all hMDSCs were able to undergo chondrogenic differentiation in vitro. As expected, lenti-BMP2/GFP transduction further enhanced the chondrogenic differentiation capacities of hMDSCs, as confirmed by Alcian blue and Col2A1staining as well as Raman spectroscopy analysis. We observed through micro-CT scanning, Col2A1 staining, and histological analyses that delivery of BMP2 with coacervate could achieve a similar articular cartilage repair to that mediated by hMDSC-LBMP2/GFP. We also found that the addition of soluble fms-like tyrosine kinase-1 (sFLT-1) protein further improved the regenerative potential of hMDSCs/BMP2 delivered through the coacervate sustain release technology. Donor cells did not primarily contribute to the repaired articular cartilage since most of the repair cells are host derived as indicated by GFP staining. CONCLUSIONS: We conclude that the delivery of hMDSCs and BMP2 with the coacervate technology can achieve a similar cartilage repair relative to lenti-BMP2/GFP-mediated gene therapy. The use of coacervate technology to deliver BMP2/sFLT1 with hMDSCs for cartilage repair holds promise for possible clinical translation into an effective treatment modality for osteoarthritis and traumatic cartilage injury.


Subject(s)
Bone Morphogenetic Protein 2 , Cartilage, Articular , Cell Differentiation , Chondrogenesis , Genetic Therapy , Muscle Cells , Osteoarthritis , Stem Cells , Animals , Bone Morphogenetic Protein 2/biosynthesis , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/pharmacology , Cartilage, Articular/injuries , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Chondrogenesis/drug effects , Chondrogenesis/genetics , Humans , Lentivirus , Male , Muscle Cells/metabolism , Muscle Cells/pathology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/therapy , Rats , Rats, Nude , Stem Cells/metabolism , Stem Cells/pathology
19.
Am J Transl Res ; 11(8): 5150-5161, 2019.
Article in English | MEDLINE | ID: mdl-31497230

ABSTRACT

We investigated the molecular mechanisms involved in transforming growth factor beta 1 (TGF-ß1)-induced myogenic stem cell differentiation to smooth muscle cells. We isolated muscle-derived stem cells (MDSCs) from gastrocnemius muscles following their identification by immunohistochemistry analysis of desmin and flow cytometry analysis of SCA-1, CD34, and CD45. MDSCs at passage 3 (PP3) were cultured in vitro to examine the effects of MDSC induction. Gene ontology and KEGG pathway analyses were performed to analyze these differentially expressed genes. Reduced representation bisulfite sequencing was performed in TGF-ß1-treated and untreated cells to evaluate differences in the methylation status and analyze the chromosomal distribution of differentially methylated sites (DMSs). Significant morphological changes to cells were observed at PP3, and most PP3 cells were positive for desmin and SCA-1, and were confirmed to be MDSCs. Results of western blot and immunohistochemistry analyses suggested that expressions of a-SMA and CNN1 significantly increased after treatment with TGF-ß1. Global transcriptome analysis identified 1996 differentially expressed genes (MSC_TGFß1/MSC_NC). Results of methylome analysis indicated that there were more hypermethylation sites in the untreated group than in the TGF-ß1-treated group. Most DMSs were hypermethylated, whereas a small portion was hypomethylated. The chromosomal distribution of DMSs indicated that chromosome 1 had the highest proportion of DMSs, whereas the Y chromosome had the fewest DMSs. Sud2, Pcdh19, and Nat14 are potential core genes involved in cell differentiation. These results may explain the mechanisms of cell differentiation and provide useful information regarding diseases such as pelvic organ prolapse.

20.
Int J Mol Sci ; 20(16)2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31430893

ABSTRACT

Female stress urinary incontinence (FSUI) is prevalent in women with type 2 diabetes/obesity (T2D/O), and treatment is not optimal. Autograph stem cell therapy surprisingly has poor efficacy. In the male rat model of T2D/O, it was demonstrated that epigenetic changes, triggered by long-term exposure to the dyslipidemic milieu, led to abnormal global transcriptional signatures (GTS) of genes and microRNAs (miR), and impaired the repair capacity of muscle-derived stem cells (MDSC). This was mimicked in vitro by treatment of MDSC with dyslipidemic serum or lipid factors. The current study aimed to predict whether these changes also occur in stem cells from female 12 weeks old T2D/O rats, a model of FSUI. MDSCs from T2D/O (ZF4-SC) and normal female rats (ZL4-SC) were treated in vitro with either dyslipidemic serum (ZFS) from late T2D/O 24 weeks old female Zucker fatty (ZF) rats, or normal serum (ZLS) from 24 weeks old female Zucker lean (ZL) rats, for 4 days and subjected to assays for fat deposition, apoptosis, scratch closing, myostatin, interleukin-6, and miR-GTS. The dyslipidemic ZFS affected both female stem cells more severely than in the male MDSC, with some gender-specific differences in miR-GTS. The changes in miR-GTS and myostatin/interleukin-6 balance may predict in vivo noxious effects of the T2D/O milieu that might impair autograft stem cell (SC) therapy for FSUI, but this requires future studies.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Dyslipidemias/pathology , Stem Cells/pathology , Urinary Incontinence/pathology , Animals , Apoptosis , Cells, Cultured , Disease Models, Animal , Dyslipidemias/blood , Female , Male , Rats , Rats, Zucker , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...