Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39.049
Filter
1.
Lung Cancer ; 194: 107870, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38986212

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) exon 20 insertions account for up to 10% of all EGFR mutations. Clinical outcomes in patients receiving approved EGFR exon 20 insertion-specific inhibitors have been variable. Although osimertinib has demonstrated antitumor activity in clinical trials, its clinical efficacy and translational potential remain to be determined in non-small cell lung carcinoma (NSCLC) with EGFR exon 20 insertion. METHODS: In this multicenter phase II study, patients with advanced NSCLC harboring EGFR exon 20 insertions for whom the standard chemotherapy failed received 80 mg osimertinib once daily. The primary endpoint was the investigator-assessed objective response rate (ORR) as defined by Response Evaluation Criteria in Solid Tumors version 1.1. The secondary endpoints were progression-free survival (PFS), overall survival (OS), and safety profile. RESULTS: Among 15 patients enrolled at stage 1, the best response was most commonly disease stabilization (73.3 %), which did not meet the stage 1 threshold (objective response ≥ 2/15). As of data cutoff, two patients remained on the treatment. The median PFS and OS were 3.8 (95 % confidence interval [CI] = 1.7-5.5) months and 6.5 (95 % CI = 3.9-not reached) months, respectively. Adverse events (≥grade 3) were anemia, hypercalcemia, and pneumonia (13.3 % each), and asthenia, femur fracture, increased alkaline phosphate, hyperkalemia, bone pain, and azotemia (6.7 % each). Pre-existing EGFR C797S mutation detected in plasma limited the efficacy of osimertinib. CONCLUSION: Osimertinib at 80 mg once daily had limited efficacy and mostly showed disease stabilization with an acceptable safety profile in advanced NSCLC harboring EGFR exon 20 insertions. CLINICALTRIALS: govIdentifier: NCT03414814.

2.
Eur J Cancer ; 208: 114205, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986422

ABSTRACT

INTRODUCTION: Concurrent non-serous endometrial and ovarian tumours are often managed clinically as two separate primary tumours, but almost all exhibit evidence of a genomic relationship. METHODOLOGY: This study investigates the extent of relatedness using whole exome sequencing, which was performed on paired non-serous endometrial and ovarian carcinomas from 27 patients with concurrent tumours in a cohort with detailed clinicopathological annotation. Four whole exome sequencing-derived parameters (mutation, mutational burden, mutational signatures and mutant allele tumour heterogeneity scores) were used to develop a novel unsupervised model for the assessment of genomic similarity to infer genomic relatedness of paired tumours. RESULTS: This novel model demonstrated genomic relatedness across all four parameters in all tumour pairs. Mutations in PTEN, ARID1A, CTNNB1, KMT2D and PIK3CA occurred most frequently and 24 of 27 (89 %) tumour pairs shared identical mutations in at least one of these genes, with all pairs sharing mutations in a number of other genes. Ovarian endometriosis, CTNNB1 exon 3 mutation, and progression and death from disease were present across the similarity ranking. Mismatch repair deficiency was associated with less genomically similar pairs. DISCUSSION: Although there was diversity across the cohort, the presence of genomic similarity in all paired tumours supports the hypothesis that concurrent non-serous endometrial and ovarian carcinomas are genomically related and may have arisen from a common origin.

3.
Per Med ; 21(4): 205-209, 2024.
Article in English | MEDLINE | ID: mdl-38958204

ABSTRACT

We report the case of an 87-year-old female patient who was diagnosed with metastatic non-small-cell lung cancer harboring MET exon 14 skipping mutation (MET ex14) and PD-L1 expression of 60%. A first-line treatment with atezolizumab was started with primary resistance. Then, a second-line treatment with capmatinib, a selective type Ib MET tyrosine kinase inhibitor, was started, achieving a partial response. The patient is still alive and on treatment with capmatinib 300 mg twice daily after 20 months, with a good tolerability and no evidence of disease progression.In summary, our patient experienced a long-lasting response (>18 months) with capmatinib as second-line treatment. Further analyses evaluating the efficacy and tolerability of MET tyrosine kinase inhibitors are warranted, especially in the elderly, a non-small-cell lung cancer population whose tumors could more frequently harbor MET ex14 mutation.


[Box: see text].


Subject(s)
Carcinoma, Non-Small-Cell Lung , Exons , Lung Neoplasms , Mutation , Proto-Oncogene Proteins c-met , Humans , Female , Proto-Oncogene Proteins c-met/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Aged, 80 and over , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation/genetics , Exons/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/administration & dosage , Benzamides/therapeutic use , Benzamides/adverse effects , Treatment Outcome , Acrylamides/therapeutic use , Acrylamides/administration & dosage , Acrylamides/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/adverse effects , Imidazoles , Triazines
4.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000058

ABSTRACT

Despite the widespread application of next-generation sequencing (NGS) in advanced lung adenocarcinoma, its impact on survival and the optimal timing for the examination remain uncertain. This cohort study included advanced lung adenocarcinoma patients who underwent NGS testing. We categorized patients into four groups: Group 1: treatment-naïve, upfront NGS; Group 2: Treatment-naïve, exclusionary EGFR/ALK/ROS1; Group 3: post-treatment, no known EGFR/ALK/ROS1; Group 4: known driver mutation and post-TKI treatment. A total of 424 patients were included. There were 128, 126, 90, and 80 patients in Groups 1, 2, 3, and 4, respectively. In Groups 1, 2, 3, and 4, targetable mutations were identified in 76.6%, 49.2%, 41.1%, and 33.3% of the patients, respectively (p < 0.001). Mutation-targeted treatments were applied in 68.0%, 15.1%, 27.8%, and 22.5% of the patients, respectively (p < 0.001). In the overall population, patients receiving mutation-targeted treatments exhibited significantly longer overall survival (OS) (aHR 0.54 [95% CI 0.37-0.79], p = 0.001). The most profound benefit was seen in the Group 1 patients (not reached vs. 40.4 months, p = 0.028). The median OS of patients with mutation-targeted treatments was also significantly longer among Group 2 patients. The median post-NGS survival of patients receiving mutation-targeted treatments was numerically longer in Group 3 and Group 4 patients. In conclusion, mutation-targeted therapy is associated with a favorable outcome. However, the opportunities of NGS-directed treatment and the survival benefits of mutation-targeted treatment were various among different populations.


Subject(s)
Adenocarcinoma of Lung , High-Throughput Nucleotide Sequencing , Lung Neoplasms , Mutation , Humans , Male , High-Throughput Nucleotide Sequencing/methods , Female , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/mortality , Middle Aged , Aged , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Adult , Aged, 80 and over
5.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000146

ABSTRACT

Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD) are the two major neurodegenerative diseases with distinct clinical and neuropathological profiles. The aim of this report is to conduct a population-based investigation in well-characterized APP, PSEN1, PSEN2, MAPT, GRN, and C9orf72 mutation carriers/pedigrees from the north, the center, and the south of Italy. We retrospectively analyzed the data of 467 Italian individuals. We identified 21 different GRN mutations, 20 PSEN1, 11 MAPT, 9 PSEN2, and 4 APP. Moreover, we observed geographical variability in mutation frequencies by looking at each cohort of participants, and we observed a significant difference in age at onset among the genetic groups. Our study provides evidence that age at onset is influenced by the genetic group. Further work in identifying both genetic and environmental factors that modify the phenotypes in all groups is needed. Our study reveals Italian regional differences among the most relevant AD/FTD causative genes and emphasizes how the collaborative studies in rare diseases can provide new insights to expand knowledge on genetic/epigenetic modulators of age at onset.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Mutation , tau Proteins , Humans , Alzheimer Disease/genetics , Alzheimer Disease/epidemiology , Italy/epidemiology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/epidemiology , Frontotemporal Dementia/pathology , Female , Male , Middle Aged , Aged , tau Proteins/genetics , Age of Onset , C9orf72 Protein/genetics , Presenilin-2/genetics , Retrospective Studies , Amyloid beta-Protein Precursor/genetics , Presenilin-1/genetics , Progranulins/genetics , Adult , Aged, 80 and over , Genetic Predisposition to Disease
6.
Int J Mol Sci ; 25(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39000359

ABSTRACT

Immune checkpoint inhibitors (ICIs) demonstrate durable responses, long-term survival benefits, and improved outcomes in cancer patients compared to chemotherapy. However, the majority of cancer patients do not respond to ICIs, and a high proportion of those patients who do respond to ICI therapy develop innate or acquired resistance to ICIs, limiting their clinical utility. The most studied predictive tissue biomarkers for ICI response are PD-L1 immunohistochemical expression, DNA mismatch repair deficiency, and tumour mutation burden, although these are weak predictors of ICI response. The identification of better predictive biomarkers remains an important goal to improve the identification of patients who would benefit from ICIs. Here, we review established and emerging biomarkers of ICI response, focusing on epigenomic and genomic alterations in cancer patients, which have the potential to help guide single-agent ICI immunotherapy or ICI immunotherapy in combination with other ICI immunotherapies or agents. We briefly review the current status of ICI response biomarkers, including investigational biomarkers, and we present insights into several emerging and promising epigenomic biomarker candidates, including current knowledge gaps in the context of ICI immunotherapy response in melanoma patients.


Subject(s)
Biomarkers, Tumor , Epigenomics , Immune Checkpoint Inhibitors , Immunotherapy , Melanoma , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/immunology , Immune Checkpoint Inhibitors/therapeutic use , Biomarkers, Tumor/genetics , Immunotherapy/methods , Epigenomics/methods , Genomics/methods , Epigenesis, Genetic
7.
J Virol ; : e0065724, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007615

ABSTRACT

RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called "quasispecies." Minor genetic variants promote their rapid adaptation, allowing for the emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assessing the risk of cross-species transmission and the safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation. To test this, we investigated the adaptation of the Morbillivirus canine distemper virus to ferrets and compared an attenuated, Vero cell-adapted virus isolate with its recombinant derivative over consecutive ferret passages. Although both viruses adapted to the new host, the reduced initial genetic diversity of the recombinant virus resulted in delayed disease onset. The non-recombinant virus gradually increased the frequencies of beneficial mutations already present at very low frequencies in the input virus. In contrast, the recombinant virus first evolved de novo mutations to compensate for the initial fitness impairments. Importantly, while both viruses evolved different sets of mutations, most mutations found in the adapted non-recombinant virus were identical to those found in a previous ferret adaptation experiment with the same isolate, indicating that mutations present at low frequency in the original virus stock serve as genetic memory. An arginine residue at position 519 in the carboxy terminus of the nucleoprotein shared by all adapted viruses was found to contribute to pathogenesis in ferrets. Our work illustrates the importance of genetic diversity for adaptation to new environments and identifies regions with functional relevance.IMPORTANCEWhen viruses encounter a new host, they can rapidly adapt to this host and cause disease. How these adaptation processes occur remains understudied. Morbilliviruses have high clinical and veterinary relevance and are attractive model systems to study these adaptation processes. The canine distemper virus is of particular interest, as it exhibits a broader host range than other morbilliviruses and frequently crosses species barriers. Here, we compared the adaptation of an attenuated virus and its recombinant derivative to that of ferrets. Pre-existing mutations present at low frequency allowed faster adaptation of the non-recombinant virus compared to the recombinant virus. We identified a common point mutation in the nucleoprotein that affected the pathogenesis of both viruses. Our study shows that genetic memory facilitates environmental adaptation and that erasing this genetic memory by genetic engineering results in delayed and different adaptation to new environments, providing an important safety aspect for the generation of live-attenuated vaccines.

8.
Hematology ; 29(1): 2377860, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39007733

ABSTRACT

BACKGROUD: Li-Fraumeni syndrome is a hereditary tumor syndrome characterized by an elevated risk of malignancy, particularly acute lymphoblastic leukemia (ALL), which can be caused by the heterozygous germline mutation. TP53 gene germline mutation is considered a potential risk factor and crucial prognostic parameter for acute leukemia development and diagnosis, but rarely occurs in adults, and its specific pathogenic significance in acute leukemia is unclear. CASE PRESENTATION: We describes a case of a 45-year-old woman diagnosed with ALL. Whole-exome sequencing approach identified one of the TP53 germline mutations from her bone marrow sample with possible pathogenic significance, c.848G>A (p.Arg283His) heterozygous missense mutation located on exon 8, which was further verified in her hair, oral mucous and nail samples. Family pedigree screening revealed that the same TP53 genetic variant was present in the patient's father and non-donor son, whereas not in the donor. Digital PCR observed that this point mutation frequency dropped post-transplantation but remained low during maintenance therapy when the patient was leukemia-free. CONCLUSION: This suspected Li-Fraumeni syndrome case report with a likely pathogenic heterozygous TP53 variant expands the cancer genetic spectrum. Screening her family members for mutations facilitates identifying the optimal relative donor and avoids unnecessary treatment by monitoring TP53 germline mutations for minimal residual disease following hematopoietic stem cell transplantation. Its potential roles in hematological malignant tumor development and clinical pathogenic implications necessitate further probing.


Subject(s)
Germ-Line Mutation , Li-Fraumeni Syndrome , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Tumor Suppressor Protein p53 , Humans , Female , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Middle Aged , Tumor Suppressor Protein p53/genetics , Li-Fraumeni Syndrome/genetics , Li-Fraumeni Syndrome/diagnosis , Pedigree
9.
Cancers (Basel) ; 16(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39001384

ABSTRACT

According to recent reports, ovarian serous borderline tumor (SBT) harboring the BRAF V600E mutation is associated with a lower risk of progression to low-grade serous carcinoma. Preliminary observations suggest that there may be an association between eosinophilic cells (ECs) and the above-mentioned mutation, so this study aimed to evaluate interobserver reproducibility for assessing ECs. Forty-two samples of SBTs were analyzed for ECs with abundant eosinophilic cytoplasm. Immunohistochemical staining and genetic pro-filing were performed in all cases to verify the BRAF V600E mutation. A BRAF V600E mutation was found in 19 of 42 (45%) cases. Inter-observer reproducibility in the assessment of ECs was substantial (κ = 0.7). The sensitivity and specificity for predicting the mutation were 79% and 91%, respectively. Patients with BRAF-mutated SBTs were significantly younger than those without mutation (p = 0.005). SBTs with BRAF mutation were less likely to be accompanied by non-invasive implants than wild-type SBT: 12% (2/17) versus 33% (6/18). Seven cases were excluded due to incomplete cytoreductive surgery. Nevertheless, Fisher's exact test showed no significant differences between the two groups (p = 0.228). Overall, this study strengthens the idea that ECs in ovarian SBTs may represent a mutation with prognostic significance, which can serve as a primary screening test for BRAF V600E mutation in this pathologic entity.

10.
Cancers (Basel) ; 16(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39001385

ABSTRACT

We searched for the prevalence of actionable somatic mutations in exon 2 of the KRAS gene in western Mexican patients with CRC. Tumor tissue DNA samples from 150 patients with sporadic CRC recruited at the Civil Hospital of Guadalajara were analyzed. Mutations in exon 2 of the KRAS gene were identified using Sanger sequencing, and the data were analyzed considering clinical-pathological characteristics. Variants in codon 12 (rs121913529 G>A, G>C, and G>T) and codon 13 (rs112445441 G>A) were detected in 26 patients (with a prevalence of 17%). No significant associations were found between these variants and clinical-pathological characteristics (p > 0.05). Furthermore, a comprehensive search was carried out in PubMed/NCBI and Google for the prevalence of KRAS exon 2 mutations in Latin American populations. The 17 studies included 12,604 CRC patients, with an overall prevalence of 30% (95% CI = 0.26-0.35), although the prevalence ranged from 13 to 43% across the different data sources. Determining the variation and frequency of KRAS alleles in CRC patients will enhance their potential to receive targeted treatments and contribute to the understanding of the genomic profile of CRC.

11.
Cancers (Basel) ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39001451

ABSTRACT

Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene variations are linked to the development of numerous cancers, including non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). The lack of typical drug-binding sites has long hampered the discovery of therapeutic drugs targeting KRAS. Since "CodeBreaK 100" demonstrated Sotorasib's early safety and efficacy and led to its approval, especially in the treatment of non-small cell lung cancer (NSCLC), the subsequent identification of specific inhibitors for the p.G12C mutation has offered hope. However, the CodeBreaK 200 study found no significant difference in overall survival (OS) between patients treated with Docetaxel and Sotorasib (AMG 510), adding another degree of complexity to this ongoing challenge. The current study compares the three-dimensional structures of the two major KRAS isoforms, KRAS4A and KRAS4B. It also investigates the probable structural changes caused by the three major mutations (p.G12C, p.G12D, and p.G12V) within Sotorasib's pocket domain. The computational analysis demonstrates that the wild-type and mutant isoforms have distinct aggregation propensities, resulting in the creation of alternate oligomeric configurations. This study highlights the increased complexity of the biological issue of using KRAS as a therapeutic target. The present study stresses the need for a better understanding of the structural dynamics of KRAS and its mutations to design more effective therapeutic approaches. It also emphasizes the potential of computational approaches to shed light on the complicated molecular pathways that drive KRAS-mediated oncogenesis. This study adds to the ongoing efforts to address the therapeutic hurdles presented by KRAS in cancer treatment.

12.
Sci Total Environ ; : 174756, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004359

ABSTRACT

Tracking new variants of SARS-CoV-2 is vital for managing COVID-19 spread and allocating resources. Domestic antigen testing has created surveillance gaps that make it hard to identify new viral variants. We conducted whole genome sequencing of wastewater viral genes from major and minor treatment facilities in Dehradun from March 2022 onwards. Based on our analysis, the samples that achieved higher sequencing depth and covered >90 % of the viral genome uncovered a major variant pattern resembling the XAP recombinant lineage that is reported for the first time in the City of Dehradun, Uttrakhand and is the first ever records in India as on date. This novel XAP recombinant lineage had 9, 2, 30, 1, 2, 5, 1, 1, 1 aminoacid changes (total 54 mutations) in Orf1a, Orf1b, S, E, M, N, Orf3a, Orf6 and Orf8 regions of the gene respectively that shares 49 mutations common to the ancestral lineages BA.1* and BA.2*, with 6 unique mutations. Subsequent comparison and analysis of the clinical sequence data from the region post-detection of this rare and unusual variant showed no causalities infected with the newly detected XAP lineage. These findings are indicative of future alarming situation with plausible threats of fresh spur of Omicron variant led infections in the urban community.

13.
J Med Genet ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004446

ABSTRACT

BackgroundLynch syndrome (LS) is an inherited cancer predisposition syndrome caused by genetic variants affecting DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 Cancer risk in LS is estimated from cohorts of individuals ascertained by individual or family history of cancer, which may upwardly bias estimates. METHODS: 830 carriers of pathogenic or likely pathogenic (path_MMR) MMR gene variants classified by InSiGHT were identified in 454 756 UK Biobank (UKB) participants using whole-exome sequence. Nelson-Aalen survival analysis was used to estimate cumulative incidence of colorectal, endometrial and breast cancer (BC). RESULTS: Cumulative incidence of colorectal and endometrial cancer (EC) by age 70 years was elevated in path_MMR carriers compared with non-carriers (colorectal: 11.8% (95% confidence interval (CI): 9.5% to 14.6%) vs 1.7% (95% CI: 1.6% to 1.7%), endometrial: 13.4% (95% CI: 10.2% to 17.6%) vs 1.0% (95% CI: 0.9% to 1.0%)), but the magnitude of this increase differed between genes. Cumulative BC incidence by age 70 years was not elevated in path_MMR carriers compared with non-carriers (8.9% (95% CI: 6.3% to 12.4%) vs 7.5% (95% CI: 7.4% to 7.6%)). Cumulative cancer incidence estimates in UKB were similar to estimates from the Prospective Lynch Syndrome Database for all genes and cancers, except there was no evidence for elevated EC risk in carriers of pathogenic PMS2 variants in UKB. CONCLUSION: These results support offering incidentally identified carriers of any path_MMR surveillance to manage colorectal cancer risk. Incidentally identified carriers of pathogenic variants in MLH1, MSH2 and MSH6 would also benefit from interventions to reduce EC risk. The results suggest that BC is not an LS-related cancer.

14.
Clin Genet ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004944

ABSTRACT

Data are limited on the genetic profile of primary ciliary dyskinesia (PCD) from developing countries. Here, we report one of the first study on genetic profile of patients with suspected PCD from India. In this prospective cross-sectional study, we enrolled 162 children with suspected PCD. We recorded clinical features, relevant laboratory tests for PCD and performed whole exome sequencing (WES). We are reporting 67 patients here who had positive variant/s on WES. We had 117 variants in 40 genes among 67 patients. Among the 108 unique variants, 33 were categorized as pathogenic or likely pathogenic (P/LP). We had nine novel variants in out cohort. The 29 definite PCD cases, diagnosed by composite reference standards, had variants in 16 genes namely LRRC6/DNAAF11 (5), DNAH5 (3), CCDC39 (3), HYDIN (3), DNAH11 (2), CCDC40 (2), CCDC65 (2) and one each DNAAF3, DNAAF2, CFAP300, RPGR, CCDC103, CCDC114, SPAG1, DNAI1, and DNAH14. To conclude, we identified 108 unique variants in 40 genes among 67 patients. The common genes involved in definite cases of PCD in Indian patients were LRRC6, DNAH5, CCDC39, and HYDIN. Our findings suggest a need to develop a separate genetic panel for PCD in the Indian population.

15.
Hypertension ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005223

ABSTRACT

BACKGROUND: Autosomal recessive renal tubular dysgenesis is a rare, usually fatal inherited disorder of the REN (renin)-angiotensin system. Herein, we report an adolescent individual experiencing an unknown chronic kidney disease and aim to provide novel insights into disease mechanisms. METHODS: Exome sequencing for a gene panel associated with renal disease was performed. The REN-angiotensin system was assessed by comprehensive biochemical analysis in blood. REN expression was determined in primary tubular cells by quantitative polymerase chain reaction and in situ hybridization on kidney biopsy samples. Allele frequencies of heterozygous and biallelic deleterious variants were determined by analysis of the Genomics England 100,000 Genomes Project. RESULTS: The patient was delivered prematurely after oligohydramnios was detected during pregnancy. Postnatally, he recovered from third-degree acute kidney injury but developed chronic kidney disease stage G3b over time. Exome sequencing revealed a previously reported pathogenic homozygous missense variant, p.(Arg375Gln), in the AGT (angiotensinogen) gene. Blood AGT concentrations were low, but plasma REN concentration and gene expression in kidney biopsy, vascular, and tubular cells revealed strong upregulation of REN. Angiotensin II and aldosterone in blood were not abnormally elevated. CONCLUSIONS: Renal tubular dysgenesis may present as chronic kidney disease with a variable phenotype, necessitating broad genetic analysis for diagnosis. Functional analysis of the renin-angiotensin system in a patient with AGT mutation revealed novel insights regarding compensatory upregulation of REN in vascular and tubular cells of the kidney and in plasma in response to depletion of AGT substrate as a source of Ang II (similarly observed with hepatic AGT silencing for the treatment of hypertension).

16.
J Mol Biol ; : 168710, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39009073

ABSTRACT

Knowing the conformational ensembles formed by mismatches is crucial for understanding how they are generated and repaired and how they contribute to genomic instability. Here, we review structural and energetic studies of the A-C mismatch in duplex DNA and use the information to identify critical conformational states in its ensemble and their significance in genetic processes. In the 1970s, Topal and Fresco proposed the A-C wobble stabilized by two hydrogen bonds, one requiring protonation of adenine-N1. Subsequent NMR and X-ray crystallography studies showed that the protonated A-C wobble was in dynamic equilibrium with a neutral inverted wobble. The mismatch was shown to destabilize duplex DNA in a sequence- and pH-dependent manner by 2.4-3.8 kcal/mol and to have an apparent pKa ranging between 7.2 and 7.7. The A-C mismatch conformational repertoire expanded as structures were determined for damaged and protein-bound DNA. These structures included Watson-Crick-like conformations forming through tautomerization of the bases that drive replication errors, the reverse wobble forming through rotation of the entire nucleotide proposed to increase the fidelity of DNA replication, and the Hoogsteen base-pair forming through the flipping of the adenine base which explained the unusual specificity of DNA polymerases that bypass DNA damage. Thus, the A-C mismatch ensemble encompasses various conformational states that can be selectively stabilized in response to environmental changes such as pH shifts, intermolecular interactions, and chemical modifications, and these adaptations facilitate critical biological processes. This review also highlights the utility of existing 3D structures to build ensemble models for nucleic acid motifs.

18.
J Hered ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946032

ABSTRACT

Mpv17 (mitochondrial inner membrane protein MPV17) deficiency causes severe mitochondrial DNA depletion syndrome in mammals and loss of pigmentation of iridophores and a significant decrease of melanophores in zebrafish. The reasons for this are still unclear. In this study, we established an mpv17 homozygous mutant line in Nile tilapia. The developing mutants are transparent due to loss of iridophores and aggregation of pigment granules in the melanophores and disappearance of the vertical pigment bars on the side of the fish. Transcriptome analysis using skin of fish at 30 dpf (days post fertilization) revealed that the genes related to purine (especially pnp4a) and melanin synthesis were significantly downregulated. However, administration of guanine diets failed to rescue the phenotype of the mutants. In addition, no obvious apoptosis signals were observed in the iris of the mutants by TUNEL staining. Significant downregulation of genes related to iridophore differentiation was detected by qPCR. Insufficient ATP, as revealed by ATP assay, α-MSH treatment and adcy5 mutational analysis, might account for the defects of melanophores in mpv17 mutants. Several tissues displayed less mtDNA and decreased ATP levels. Taken together, these results indicated that mutation of mpv17 led to mitochondrial dTMP deficiency, followed by impaired mtDNA content and mitochondrial function, which in turn, led to loss of iridophores and a transparent body color in tilapia.

19.
Genetics ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946641

ABSTRACT

APOBEC proteins are cytidine deaminases that restrict the replication of viruses and transposable elements. Several members of the APOBEC3 family, APOBEC3A, APOBEC3B, and APOBEC3H-I, can access the nucleus and cause what is thought to be indiscriminate deamination of the genome, resulting in mutagenesis and genome instability. Although APOBEC3C is also present in the nucleus, the full scope of its deamination target preferences is unknown. By expressing human APOBEC3C in a yeast model system, I have defined the APOBEC3C mutation signature, as well as the preferred genome features of APOBEC3C targets. The APOBEC3C mutation signature is distinct from those of the known cancer genome mutators APOBEC3A and APOBEC3B. APOBEC3C produces DNA strand-coordinated mutation clusters, and APOBEC3C mutations are enriched near the transcription start sites of active genes. Surprisingly, APOBEC3C lacks the bias for the lagging strand of DNA replication that is seen for APOBEC3A and APOBEC3B. The unique preferences of APOBEC3C constitute a mutation profile that will be useful in defining sites of APOBEC3C mutagenesis in human genomes.

20.
Zhonghua Xue Ye Xue Za Zhi ; 45(4): 370-377, 2024 Apr 14.
Article in Chinese | MEDLINE | ID: mdl-38951065

ABSTRACT

Objective: The phenotype and genotype of a pedigree with Glanzmann thrombasthenia caused by compound heterozygous mutation in the ITGA2B gene and its molecular pathogenesis were explored. Methods: The platelet aggregation rate of the proband and his family was detected by using a platelet aggregation test with adenosine diphosphate, collagen, epinephrine, arachidonic acid, and ristocetin. The expression levels of CD41 (αⅡb), CD61 (ß3), and CD42b (GPⅠb) on the platelet surface was detected by flow cytometry. Gene sequencing technology was used for the genetic identification of the family. RT-PCR was used in the detection of mRNA splicing, and qRT-PCR was used in detecting the relative mRNA level of the ITGA2B gene. Bioinformatics analysis was used to evaluate the pathogenicity of mutation sites and their effects on protein structure and function. The expressions of total αⅡb and ß3 in platelets were analyzed by Western blot. Results: Except ristocetin, the other four inducers could not induce platelet aggregation in the proband. Flow cytometry showed that the expression levels of αⅡb and ß3 were only 0.25% and 9.76%, respectively, on the platelet surface of the proband, whereas GPⅠb expression was relatively normal. The expression levels of glycoproteins in the other family members were almost normal. c.480C>G and c.2929C>T mutations were detected in the proband through gene sequencing. The c.480C>G mutation was inherited from his mother, and the c.2929C>T mutation was inherited from his father. The RT-PCR and sequencing results showed that the c.480C>G mutation caused mRNA splicing in the proband and his mother, resulting in the deletion of 99 bases in c.476G-574A (p.S160-S192). qRT-PCR showed that the c.2929C>T variant reduced the mRNA level of the ITGA2B gene in the proband and his father. Bioinformatics analysis suggested that the c.480C>G mutation might form a binding sequence with hnRNP A1 protein and generate the 5'SS splice site. The three-dimensional structural model of the αⅡb subunit showed that the ß-propeller domain of the p.S160-S192 deletion lost two ß-strands and one α-helix in blade 2. The c.2929C>T nonsense mutation caused premature translation termination and produced a truncated protein with the deletion of p.R977-E1039, including the cytoplasmic domain, transmembrane domain, and a ß chain of the extracellular Calf-2 domain. The total αⅡb expression of the proband was absent, and the relative expression of ß3 was 11.36% of the normal level. Conclusion: The compound heterozygous mutation c.480C>G in exon 4 and c.2929C>T in exon 28 of the ITGA2B gene probably underlies Glanzmann thrombasthenia in this pedigree.


Subject(s)
Heterozygote , Integrin alpha2 , Mutation , Pedigree , Thrombasthenia , Humans , Integrin alpha2/genetics , Thrombasthenia/genetics , Male , Female , Platelet Aggregation , Genotype , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...